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Bifurcation analysis of a delayed predator-prey
fishery model with prey reserve in frequency
domain

Changjin Xu

Abstract—In this paper, applying frequency domain approach, a
delayed predator-prey fishery model with prey reserve is investigated.
By choosing the delay 7 as a bifurcation parameter, It is found
that Hopf bifurcation occurs as the bifurcation parameter 7 passes a
sequence of critical values. That is, a family of periodic solutions bi-
furcate from the equilibrium when the bifurcation parameter exceeds
a critical value. The length of delay which preserves the stability of
the positive equilibrium is calculated. Some numerical simulations
are included to justify the theoretical analysis results. Finally, main
conclusions are given.
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I. INTRODUCTION

In recent years, the dynamics properties of the predator-prey
models which have significant biological background have
received much attention from many applied mathematicians
and ecologists. Many interesting results have been reported[9-
11,13,15-16,18]. In 2007, Zhang et al.[17] have investigated
the existence of biological and bionomic equilibrium and the
local and global stability of the following non-autonomous
predator-prey system with prey dispersal in a two-patch envi-
ronment

Xi(t) =rixi(l—#5) — XiXz — 1X1 + 2Xo
—q1E1xq,

Xo(t) = raXo(l — &) + 1X1 — 2Xa,

Xg(t) = 7dX3 + k X1X3 — QQE2X3,

(M

where X (t) and X3(t) are biomass densities of prey species
and predator species inside the unreserved area which is an
open-access fishing zone, respectively, at time t. X2(t) is the
biomass density of prey species inside the reserved area where
no fishing is permitted at time t. All the parameters are
assumed to be positive. 'y and ry are the intrinsic growth
rates of prey species inside the unreserved and reserved areas,
respectively. d, and K are the death rate, capturing rate and
conversion rate of predators, respectively. K; and Ky are
the carrying capacities of prey species in the unreserved and
reserved areas, respectively. 1 and o are migration rates from
the unreserved area to the reserved area and the reserved area
to the unreserved area, respectively. E; and E, are the effects
applied to harvest the prey species and predator species in the
unreserved area. (; and (2 are the catch-ability coefficients.
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We must point out that system (1) only assumes that the
mature of the prey is instantaneous, but in the natural word, it it
more realistic to require time lag for mature of prey, Based on
this viewpoint, then system (1) becomes the following delayed
autonomous predator-prey system

X1 (t) = rixy [1 - %TT)} — X1X3 — 1X1
+ oXo —qiE1xy,
Xa(t) = raoxo [1 — %ﬁ} + 1X1 — 2Xg,

Xg(t) = —dx3+ K XiX3— q2E2X3.

@

It is well known that the research on the existence of Hopf
bifurcation is very critical. To obtain a deep and clear un-
derstanding of dynamics of predator-prey system with time
delay, in this paper, we shall investigate the existence of
Hopf bifurcation for system (2). It is worth pointing out
that many early work on Hopf bifurcation of the delayed
differential equations is used the state-space formulation for
delayed differential equations, known as the “time domain”
approach[2,9-11,13-15]. But there exists another approach
that comes from the theory of feedback systems known as
frequency domain method which was initiated and developed
by Allwright[1], Mees and Chua[6] and Moiola and Chen
[6,7] and is familiar to control engineers. This alternative
representation applies the engineering feedback systems theory
and methodology: an approach described in the “frequency
domain”—the complex domain after the standard Laplace trans-
forms having been taken on the state-space system in the time
domain. This new methodology has some advantages over
the classical time-domain methods[4,5,8,12]. A typical one
is its pictorial characteristic that utilizes advanced computer
graphical capabilities thereby bypassing quite a lot of profound
and difficult mathematical analysis.

In this paper, we will devote our attention to finding
the Hopf bifurcation point for models (2) by means of the
frequency-domain approach. We found that if the coefficient

is used as a bifurcation parameter, then Hopf bifurcation
occurs for the model (2). That is, a family of periodic solutions
bifurcates from the equilibrium when the bifurcation parameter
exceeds a critical value. Some numerical simulations are
carried out to illustrate the theoretical analysis. We believe
that it is the first time to investigate Hopf bifurcation of the
model (2) using the frequency-domain approach. Throughout
the paper, we assume that

(H].) M — 1—q1E1>(),r2— 2>0;
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[}

2
X3°,
Kyt

(H2) (r1 - 1 7q1E1)XT + 2X§ >

where

K ro — \/r* 2 drooixy
1= '

k 2= 2ry

The remainder of the paper is organized as follows: in Sec-
tion 2, applying the frequency-domain approach formulated
by Moiola and Chen [7], the existence of Hopf bifurcation
parameter is determined and shown that Hopf bifurcation
occurs when the bifurcation parameter exceeds a critical value.
In Section 3, some numerical simulation are carried out to
verify the correctness of theoretical analysis result. Finally,
some conclusions are included in Section 4.

II. THE EXISTENCE OF HOPF BIFURCATION

It is obvious that under the conditions (H1) and (H2), system
(2) has a unique positive equilibrium E. (X}, X5, X3), where
(= 1 —@E)X + ox5 — 237

X% '

*
3=

We can rewrite the nonlinear system (1.2) as a matrix form

% = AX(1) + H(x), 3)
where X = (X1 (t), X2(t), x3(1))7,
rn— 1—0qE; 2 0
A = 1 ro— 2 0 .
0 0 —d —g2E,

_nmmzi(t-7)

n X1X3
- rozox2(t—7)
Ko
K X1 X3

H(x)

Choosing the coefficient as a bifurcation and introducing
a “state-feedback control” u = g[y(t — ); ], where y(t) =
(y1(t), y2(1),y3(1))T, we obtain a linear system with a non-
linear feedback as follows

dr — Ax + Bu,
y = —Cx, @)
u=glytt— ) |
where
1 00
B = C=(01 0],
0 0 1
_rmyin(t=7)
K, Y1Ys
U= gly(t— ) = | —rewsten
K yiys

Next, taking Laplace transform on (4), we obtain the standard
transfer matrix of the linear part of the system

G(s; )=C[sl —A]"!B.

Then
Ji11 12 Qi3
G(s; )= 921 922 23 |, &)
Js1 032 Uss3

where

013 = 023 =031 =0J32 =0,

g _ S*(rQ* 2)

H [s=(ri— 1—@E)[s—(ra— 2)]— 1 2
_ 2

Gz = [s=(ri— 1—@E)[s—(r2a— 2)]— 1 2

= [s=(ri— 1—@E)|[s—(r2— 2)]— 1 2
. S—(r1— 1—0Ey)

J22 =

[s=(ri— 1—@E)][s—(r2— 2)]— 1 2
If this feedback system is linearized about the equilibrium
y = —C(x3, x5, x35)T, then the Jacobian of U = gly(t— ); ]

L _ag _
is given by J( ) = 7] B
=1 +e™ )X+ X3 0 X3
0 ;(—22(1 +e )X 0
—k X3 0 -k xj

{[(s—r1+ 1+q@E)(s—ra+ 2)— 1 2]

(s—Tat 1) [;_1(1%,57))(” xg}}

1

x{[(s—r1+ 1+ qmE)(S—re+ 2)— 1 2]

—(s—ri+ 1+qE) {2(1 + efsT)Xg} }
Ky

X[(S+d+q2E2) +k Xﬂ

.
— 1 ok 2x{x’2‘x§K—22(1+e’”)x§

+{[(s—r1+ 1+ qE)(s—ro+ 2)— 1 9

Ko
X(S—To+ 2) 2kxix; + (s+d+ q2E»)
r
K12 X (147X
Ko

—(s—ri+ 1+qEy) |:E(1 + efST)X;:| }

x|

Ky

Applying the generalized Nyquist stability criterion with S =
i , we obtain the following results.

(I4+e™)x] + xg} =0.

Lemma 2.1. [7] If an eigenvalue of the corresponding Jaco-
bian of the nonlinear system, in the time domain, assumes
a purely imaginary value i o at a particular =
then the corresponding eigenvalue of the constant matrix
G(i o; 0)J( o) in the frequency domain must assume the
value —1+i0 at = .

To apply Lemma 2.1, let = (i ; ) be the eigenvalue

of G(i ; )J( ) that satisfies (i o; o) = —1 + Oi. Then

h(=1,i o; o) =0.
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Separating the real and imaginary parts and rearranging, we
obtain

[(k Xi —d—=02E2)(Mmin; —NiN3) +halcos2 ¢ ¢

+ o[(M1n1 —NiNg)]sin2 ¢ o

[(k X —d—02E2)(Iamy + 11M2 — pany — pin2)

+ o(N1l2 +N2ly —Myp — pim2)

+v1+S1+hi]cos o o+ [(k X7 —d—qg2E2)

x(Nylz +nNaly —mMyp2 —pima) + o(lamy

+limg — pany — p1nz) +t1]sin o o

+(k X7 —d—0q2E2)(l1l2 — p1p2) + o(l1p2 — 11p1)

+vi +w; +hg =0, (6)
o(MiNy —NiNg)cos2 ¢ o + [(K Xj —d—q2E2)

x(mMiNy —NiNg2) + fo]sin2 ¢ o + [(lamy + l1mMy

—P2n1 — PNz + (K X7 —d —q2E2)(N1lz + N2l

—M1P2 — P1M2) +ti]cos o o+ [ o(Nil2 +Naly

—MiP2 — piMa) + (K X] —d —q2E2)(Iamy + 1im;

—p2N1 — P1N2) + Vi +S1 + fi]sin ¢ o

+ oflila = p1p2) + (k X7 —d —g2E2)

X(|1p2*|1p1)+W2* 0:0, (7)
where
M = (o o) 22Xt me=( 1 4+qE —r)2x
1 = 2 2K21,271Q11 1K21'
ng = IF—zx* n :r—2x*
1 K, 1 0N2 = 1mXs o
h = 1 24— 1—@E)(2—r2)— (2)
M2« X
—( 2—r2)(K—2x1+ X3),
lo = 124 — 1—mE)(2-r2)+ o
)
— Eq —rp)—=—x3,
(1+0Er 1)K2 2
pr = (m— 1—®@E) o+ ( 2—"2) o
p2 = (rm— 1—MmE:) o—(2-r2) o
vi = —k XEXE2xE 2,
1 L 2XiXoTXg
2 EIVEIE r2
s1 = (2—r2) “kX7x5x5( 1+q1E17r1)K—2,
tt = (2—r9) 2kX1X2X3K—2:
w = (2—ra) 2kxix3l(ri— 1 —qEy)
r
X(2—Ta— 1 2)+ §—( 1+Q1E1—r1)X§K—22
+ o 2kxixzl(ri— 1 —qE1) o
— ol 2-Te= 124 o)
o 2—r2 12 K, %2
Wo = K o X{X3[(r1— 1 —QuE1)( 2—T2— 1 2)
r
+§—(1+qﬁh—rﬂﬁﬁﬁ
2
+( 2 —r2) kXX — 1 —@Er) o
—o(2=rm 1)+ o)
ol 2—T2 12 K, 0%l
r
ho = k122ﬁ@@é—d—%&,

rira
h1 = k 1 92 XX X7+ X5,
172 K1K2 1 3
rira 2042 rra
hy = K13 XTXZQm,fl:k 12 °X] X§K1K2'
rire
f2 = 2k 1 2 2X*2X* — Xk,
1 3K1K2 3

Similar to paper[14], by (6) and (7), we can obtain the
expression of cos ¢ o, say

cos o o="Ti( o) ®)

where f1( o) is a function with respect to (. Substitute (8)
into (6), then we can easily get the expression of sin ¢ ¢, say

sin 00— fg( 0), (9)
where f2( ¢) is a function with respect to (. Thus we obtain
f12( o)+ F2%( o) =1. (10)

If the coefficients of the system (2) are given, it is easy to use
computer to calculate the roots of (10) (say (). Then from
(8), we derive

k= i[arccos1:1( 0)+2k ] (k=0,1,2,--9).  (11)
0

Theorem 2.1. (Existence of Hopf bifurcation parameter)For
system (2), if conditions (H1)-(H2) hold and ¢ is positive real
roots of (10), then Hopf bifurcation point of system (2) is

1
r = —Jarccosfi( o) +2k ] (k=0,1,2,--),
0

where T1( o) is defined by (8).

III. ESTIMATION OF THE LENGTH OF DELAY TO PRESERVE
STABILITY

In the present section, we will obtain an estimation  for
the length of the delay  which preserves the stability of
the positive equilibrium E., (X3, X5, x3), i.e., E. (X}, X5, X3) is
asymptotically stable if < .

We consider system (2) in C([— ,oc), R?) with the initial
values XZ‘( ) = z( ), Z(O) >0,i=123 ¢€ [* ,0].
Let x;(t) = x;(t) + x5, (i = 1,2,3), for simplification, we
still denote X;(1) as x;(t), then the linear equation of (2) at
E.(Xj, x5, x5) takes the form

X1(t) = a1X1 + @2Xe + asxs + aox1(t — ),
Xa(t) = biXy + baXa + boxa(t — ), (12)
X3(1) = C1X1 + CaXs,

where

rixj
a = === X5 — 1—qEja= o

1
rle r2x§
a3 = — X, a=———>Db=— 1 bh=ry— -
3 1:4do K, 1 1,02 2 Ky 2
rQX*

b = -— 2,C1:k Xg,CQZK XT*d*QQEQ.

Ka
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Taking Laplace transform of system (12), we get
(S — al))~(1 = aoXy + agX3 + ape "Xy
+ape " Ky(s) + 1(0),
= b1X1 +bge "Xy + bpe ™" K2(S) (13)
+ 2(0),
(S — Cg))~(3 =C1X1 + 3(0),
where X;(i = 1,2,3) are the Laplace transform of x;(1)(i =
1,2, 3), respectively, Kq(s) = fET e75Tx, (1)dt,
Ka(s) = fET e~ 57X (t)dt. Solving (13) for X; leads to X; =

KJ((S;;) , where

K(s, ) =

(S — bg))zz

[aokle_” + 1(0)}(3 — by — boe_STMl(S))
X (S —C2)+as 3(0)(s—by—Dbee™")
—a(s — Ca)[boe ™Ky (s) + 2(0)],
(s—a;—ape™®)(s— by —bee™*")(s — C2)
—asCy (S — by — boEiST) — agbl(S — CQ).

J(s) =

Following along the lines of [3] and using the Nyquist
criterion, we obtain that the conditions for local asymptotic
stability of E. (X}, X3, Xj;) are given by
Im{J(i o)} >0, (14)
Re{J(i o)} =0, (15)

where Im{J (i o)} andRe{J(i o)} are the imaginary part and
real part of J(i o), respectively and  is the small positive
root of (14). It follows from (15) that

Picos2 o +H2sin2 ¢ 4 M3zcos o

+Hgsin g = Ho, (16)
where
Ho = 2[(a1+ba+C2) 3+ashaCi o+ aibaCa)]
+aoCz(ba — bo),
Hi = agCa(ba +Dg), h2 = ap(bz o — Do),
Hs = 2 o(aiby —agCa — baCy — ashy),
Ha = cCa(aohs —aibo) — (ao + o) 3 — aghsC;.
Hence

|aoC2(b2 + bo)| + |aobz| o + |aobol
+2 glaihs — agCa — baCa — ashy|
+|Cc2(aobe — a1bo)| + |ao + bo| 3 + |asbaCy|
> 2[(a1 + by 4+ C2) § +ashacy o+ aibacy)]
+aoC2(b2 —bo),

which leads to

20+ 1 0+ 0=<0, )
where
o = aoCz(ba —bo) 4 2a102Co — [apCa (b2 + bo)|
—laobo| — |c2(@ob2 — aibo)| — [azbacy],
1 = 2aghyCi — |aghy| — 2]ai1by — apCs — baCay — @shyl,
2 = 2(a;+Dbg+C2) —|ag + byl

We assume that
(H3) 2(81 + by + CQ) — |ao + b0| > 0.

If we denote

Vv 2+4
— | 1|+ 1 + ‘ 0 2| (18)
2 5

Under the condition (H3), we have ¢ < 4. From (14) we
derive

2< 10082 o + g2sin2 g + 3cos g

+ 4sin o + o, (19)
where
apb aob
0o = (b202 - % —aiby —aicy — a3C1> o+ %,
aobo o + agbo aobaCo + aghoCa
1 = ——(0—— 2= —
2 2
3 = (aoha —aiby 4+ agCa +boCa) o,
4 = aghaCy +azbgCi —aghy —aihacy —ag o.
It is easy to see from (16) that
6= (20)

2(a; +ba +Co)'

where

= Micos2 ¢ +H2sin2 g 4 Hzcos o + Hasin g
—80C2(b2 — bo) — 283b2C1 0— 281b2C2.

Substituting (20) into (19) and rearranging, we obtain

1(COS2 0 —1)+ 2sin2 g
+ 3(cos o —1)+ 4sin ¢ < o, 21)

where
o = 2(a1+by+c2) o+ agCa(ba —byp)
+ 2a3baC1 o + 2a1baCe

— M1 —2(a; + b2 +C2) 1]
— [ps —2(a1 + b2 +C2) 3],

1 = M —2(a1+b2+C2) 14
2 = M1 —2(a+b2+c2)

3 = M3 —2(ay+ba+cCa) 3,
4 = MHa—2(ar+bs+cCa) 4

Using the bounds

1
1(cos2 g —1) < 2 ;sin? (%) §§| |32
1
3(cos2 ¢ —1) < 2 zsin? (%) §§| sl 3%
QSiIIQ 0 S 2| 2| + 481112 0 SQ' 4| +
we have

Ly 2+ Ly <Ls,
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where

1
Ly, = §[|80C2(b2+b0)|+2‘81+b2+C2|

2
-‘1-‘2 +\a1b2 — apCy — baCy — 32b2|

—2|81+b2+C2|
x|aghs — aibg + aoCa + boCa| +]] i
Lo = 2[[ao(lbz| + + [bo|)| + 2[a1 + bz + Cof
y |aob2C2 + aonC2|
2
+‘(ao+bo)| i+|a3b2c1\+2|a1+b2+02|

><(|a()b2C2| + |83b0C1| + |a0b2| + |a1b202|
+laol +)] +
apho

|_3 = 2|81 + b2 + C2| (|b2C2 — T — albg — adi1Cq

+ |C2(aob2 - 31b0)|

|aghz|

—asCi| ++ T)

‘HaoCz(bQ — bo)‘ + 2|83b2C1| ++ 2|alb2C2|.

. . —Lot+/L2+4L, L
It is easy to see that if < 4 = %ﬂlg, the
stability of E. (X}, X5, x3) of system (1.2) is preserved.

Theorem 3.1. For system (2), under the conditions (H1)-(H3),
ifthere existsa in0< < L suchthatl, 2+L, < Ls,
then L is the maximum value(length of delay) of  for which
E.(X3. X5, X3) is asymptotically stable.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical results of system
(2) to verify the analytical predictions obtained in the previous
section. Let us consider the following system

Xl(t) = 0.5X1(1 — 0.2X1(t — )) — 0.8X1y —0.4x¢
+ 2Xo — 0.06X1,

Xg(t) = 0.5)(2(1 — 0.9X2(t — )) + 0.4Xy — 2Xao,

X3(t) = —0.6y + 1.9x1y — 0.6y,

(22)

which has a positive equilibrium E.(X], X3, X5) =
(0.2020,0.5711,1.0417) and satisfies the conditions indi-
cated in Theorem 2.1. The positive equilibrium E, =
(0.2020,0.5711,1.0417) is asymptotically stable for <
o ~ 2.6. Figs.1-7 show that the positive equilibrium Ey ~
(0.6316,0.1945,0.2789) is asymptotically stable when =
2.5 < o = 2.6. When passes through the critical value
0, the positive equilibrium E,. =~ (0.6316,0.1945,0.2789)
loses its stability and a Hopf bifurcation occurs, i.e., a family
of periodic solutions bifurcate from the positive equilibrium
E. ~ (0.6316,0.1945,0.2789). Figs.8-14 show that a family
of periodic solutions bifurcate from the positive equilibrium
E. ~ (0.6316,0.1945,0.2789) when = 2.658 > ( ~ 2.6.
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equilibrium E, ~ (0.6316,0.1945,0.2789). The initial value
is (0.5,0.2,0.22).

V. CONCLUSIONS

In this paper, by choosing the coefficient as a bifurcating
parameter, we investigated a delayed predator-prey fishery
model with prey reserve in frequency domain approach. It
is found that a Hopf bifurcation occurs when the bifurcating
parameter  passes through a critical value. Meanwhile, the
length of delay preserving the stability of the positive equilib-
rium E, (X}, X3, X3), is estimated. Considering computational
complexity, the direction and the stability of the bifurcating
periodic orbits for system (2) have not been investigated. It
is beyond the scope of the present paper and will be further
investigated elsewhere in the near future.
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