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 
Abstract—The biaxial buckling behavior of single-layered 

graphene sheets (SLGSs) is studied in the present work. To consider 
the size-effects in the analysis, Eringen’s nonlocal elasticity 
equations are incorporated into classical plate theory (CLPT). A 
Generalized Differential Quadrature Method (GDQM) approach is 
utilized and numerical solutions for the critical buckling loads are 
obtained. Then, molecular dynamics (MD) simulations are performed 
for a series of zigzag SLGSs with different side-lengths and with 
various boundary conditions, the results of which are matched with 
those obtained by the nonlocal plate model to numerical the 
appropriate values of nonlocal parameter relevant to each type of 
boundary conditions. 

 
Keywords—Biaxial buckling, single-layered graphene sheets, 

nonlocal elasticity, molecular dynamics simulation, classical plate 
theory. 

I. INTRODUCTION 

UE to outstanding mechanical, electrical, and chemical 
properties, the families of carbon nanostructures such as 

grapheme sheets (Fig. 1), carbon nanotubes, and fullerenes 
provide a new foundation to apply in different emerging fields 
of nanoscience and nanotechnology [1]–[4]. Because of their 
small scale, there are some difficulties in conducting 
experiments to investigate the behaviors of nanostructures 
which make their theoretical analyses become increasingly 
important. 
 

 

Fig. 1 Definition of chiral vector for a graphene sheet 
 
Based on the classical plate theory (CLPT), Kitipornchai et 

al. [5] investigated the vibration response of multi-layered 
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graphene sheets (MLGSs) with simply-supported boundary 
conditions using a continuum model. They proposed an 
explicit formula for the van der Waals interaction between any 
two sheets of an MLSG. Liew et al. [6] proposed a continuum 
model to analyze the vibrations of MLSG embedded in an 
elastic matrix. 

As the classical continuum models do not have the 
capability to consider the size-effects in the analysis of 
nanostructures, using them to predict the behavior of 
structures at the nanoscale becomes controversial. Hence, the 
extension of the continuum mechanics to accommodate the 
size dependence of nanostructures is a topic of major concern. 
Modified continuum models are one of the most applied 
theoretical approaches for the investigation of nanomechanics 
due to their computational efficiency and their capability to 
produce accurate results which are comparable to those of the 
atomistic models [4]. The application of nonlocal continuum 
mechanics allowing for the small scale effects in the analysis 
of nanostructures has been recommended by many research 
workers. 

Ansari et al. [7] developed a nonlocal finite element model 
to investigate the vibrations of MLGSs with different 
boundary conditions embedded in an elastic medium. Shen 
and his assistances [8] studied the nonlinear vibrations of 
simply supported SLGSs in thermal environment based on 
nonlocal orthotropic plate model. The vibration analysis of 
MLGSs embedded in a polymer matrix was investigated by 
Pradhan and Phadikar [9] using nonlocal continuum 
mechanics. 

Continuing with the nonlocal continuum applications, 
Murmu and Pradhan [3] developed a single-elastic beam 
model to analyze the thermal vibration of CNTs based on 
thermal elasticity mechanics, and nonlocal elasticity theory. 
nonlocal scale parameter effects on the wave propagation in 
multi-walled carbon nanotubes was represented by Narendar 
and Gopalakrishnan [10]. Arash and Ansari [11] studied the 
vibration characteristics of single-walled carbon nanotubes 
(SWCNTs) based upon a nonlocal shell model. There are so 
many other researches in which the behaviors of 
nanostructures under various loading conditions have been 
predicted based on continuum elastic models [12], [13], which 
indicates the wide range of application of this type of modified 
continuum mechanics in the nanomechanics.  
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II. NONLOCAL ELASTICITY THEORY 

The essence of the nonlocal elasticity theory is that the 
stress field at a reference point x in an elastic continuum 
depends not only on strain at that point but also on strains at 
all other points in the body. This is in accordance with the 
atomic theory of lattice dynamics and experimental 
observations on phonon dispersion. The scale effects are 
accounted for in the theory by considering internal size as a 
material parameter. The most general form of the constitutive 
relation for nonlocal elasticity involves an integral over the 
whole body. According to the nonlocal elasticity theory 
initiated by Eringen [14], the nonlocal constitutive equation in 
differential form can be written as: 

 
2(1 ) :S                                                                            (1) 

 
where S is the fourth order elasticity tensor and ‘:’ denotes the 
double dot product.   is the nonlocal parameter which leads 

to consider the small scale effect and 2  is the Laplacian 
operator which is given by  2 2 2 2x x     . Two-dimensional 

nonlocal constitutive relations can be expressed as: 
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here E is the Young’s modulus of the material and ν is the 
Poisson ratio. To model the SLGSs, consider a thin elastic 
plate of length a in the x direction, width b in the y direction 
and thickness h, as shown in (Fig. 2). Based on the classical 
plate theory, the displacement components (u1, u2, u3) along 
the axes (x, y, z) can be written in a general form as: 
 

1 2 3;  ;  ( , )
w w

u z u z u w x t
x y

 
    

 
                                           (3) 

 
where w  is the lateral deflection. 
 

 

Fig. 2 Schematic of a biaxially compressed monolayer GS 
 

The bending and twisting moments per unit length are given 
by: 
 

   
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With the principle of virtual work, the equilibrium equation 
governing the buckling of biaxially compressed plates takes 
the form: 
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                              (5) 

 
where P is the critical biaxial buckling load. Using (2) and (4), 
one can arrive at the nonlocal governing equation of (5) in 
terms of displacements as: 
 

3 4 4 4 3 4 2 2

2 4 4 2 2 2 2 2 2
2 0

12(1 ) 6(1 )

Eh w w w Eh w w w
P

x y x y x y x y


 
        

                     
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III. GDQM SOLUTION PROCEDURE 

The DQ method has been proved to be an efficient higher-
order numerical technique for the solution of initial and 
boundary value problems. The DQ technique has been widely 
reported to yield successful solutions for various dynamic and 
stability problems [15]-[17]. 

The  mth-order derivative of a single function f(x) at a given 
discrete grid point i can be approximated by the DQ method 
with N discrete grid points as:  
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where N is the number of grid points in the x-direction 

and  m
ijw  represents the respective weighting coefficient related 

to the mth-order derivative. So, for example, if m = 1, the 
first-order derivative is obtained as follows: 
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where the superscript (m) and (m + 1) denote the order of the 
derivative. The number of discrete grid points and the grid 
point distribution can be chosen arbitrarily in the 
implementation of the DQM. However, it is shown that the 
grid point distribution, which is based on well-accepted 
Gauss–Chebyshev–Lobatto points [18], gives sufficiently 
accurate results. The coordinates of the grid points are as 
follows: 
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where N is the number of grid points in the y-direction and M 
is the number of grid points in the y-direction. In the case of 
the rectangular graphene sheet, the computational domain is 
0 x a  a and 0 y b  .In the present case same numbers of 

grid points are used in x and y directions (N=M). As it was 
previously mentioned, a and b are the length and width of the 
grapheme sheet, respectively. Here, it is assumed that the 
thickness of the plate is constant. GDQM can be used to deal 
with complicated problems reasonably well because its 
implementation is very simple. 

For convenience and generality (6) we introduce the 
following nondimensional parameters: 
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Substituting (11) into (6), we have the nonlocal governing 
equation for compressed plate in nondimensional form: 
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(12) 
 

Transformation of continuous boundary conditions into 
discretized form under GDQ rule mapping is performed by a 
direct substitution of these conditions into governing 
equations, as shown in [18]: 
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All edges clamped (CCCC): 
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Two opposite long edges simply supported, others clamped 
(CCSS): 
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The computational domain of the rectangular plate 

is 0 1  ; 0 1  . Making use of (7) and incorporating the 
boundary conditions by modified weighting coefficient 
method [18], we write (12) in the nondimensional form: 

 
11 1

(4) 2 (2) (2) 4 (4)

2 2 1 1

11 1
0 2 (4) 2 (2) (2) 4 (4)

2 2 1 1

1
(2) 2 (2)

2 1

( 2 )

[ ( 2 )

( )] 0

y yx x

y yx x

yx

N NN N

ik kj ik jm km jm im
k k m m

N NN N

ik kj ik jm km jm im
k k m m

NN

ik kj jm im
k m

A W A B W B W

N A W A B W B W

A W B W

 

  



 

   

 

   



 

 

  

  

   

   

 

          (16) 

 
It should be noted that the (18) is solved for inner grid 

points. DQ procedures could be advantageous in dealing with 
nonlocal elasticity problems of small scale structures over 
other approaches because its implementation is very simple 
and could handle complicated problems reasonably well. 
These problems include nonlocal Mindlin plate theory or 
higher order nonlocal plate theories with axially stressed 
conditions. The above DQ analogous (16) can easily be 
reduced to an eigenvalue problem: 

 

   0[ ]totalK W N W                                                                (17) 
 
where 0N  is the nondimensional buckling load described in 
(11). The (17) can be solved by a standard eigenvalue solver. 
From this solution the buckling loads of graphene sheets are 
obtained. 

IV. MODELING AND SIMULATION 

Square zigzag graphene sheets are considered in this study. 
The definitions of the chirality for the graphene sheets are 
similarly defined as in carbon nano-tubes [19], [20]. The 
boundary conditions of the graphene sheets are assumed to be 
SSSS, CCCC and CCSS. 

The parallel molecular dynamics code package LAMMPS 
(http://lammps.sandia.gov/index.html) [21] is used for 
performing the MD simulations, while the molecular 
visualization package VMD [22] is employed for post-
processing of the simulation results. 

In the MD simulations, energy minimization is first 
conducted to fully relax the system with free boundary. 

All simulations are established using the Adaptive 
Intermolecular Reactive Empirical Bond Order (AIREBO) 
potential [23]. The AIREBO potential is an extension of the 
commonly used REBO potential developed for solid carbon 
and hydrocarbon molecules [23]. 

There are various factors which can significantly affect the 
results obtained from MD simulations. The most important 
ones are thermal conditions, time step, and strain rate. The 
MD simulations presented here are all performed at constant 
temperature equal to the room temperature (i.e., a canonical 
NVT ensemble). The van Gunstern–Berendsen thermostat [24] 
is employed in such a way that the scaling factor is used after 
each step of the MD simulation; the velocities of the atoms of 
system are scaled as the average kinetic energy remains 
approximately constant. To choose the value of time step, on 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:11, No:4, 2017

327

 

 

the basis of a general rule, it should be smaller than one-tenth 
of the vibration period time for an atom of the system 
simulated by MD simulation [25]. 

Based on the obtained stress and strain history, we can plot 
the stress–strain curve to investigate the mechanical behavior 
under compression. The point where the elastic response ends 
is defined as the onset of buckling, the corresponding strain is 
referred to as the critical strain. 

 

 

Fig. 3 Algorithm of an MD simulation 
 

 

(a) 
 

 

(b) 

Fig. 4 An SLGS under biaxial compressive strain (a) simulation start, 
(b) after relaxation 

 
An algorithm containing the summary of procedure 

conducted in the MD simulations is shown in Fig. 3. 

Compressive biaxial strain is applied to the all sides of each 
SLGS by mathematically changing the coordinates of the 
carbon atoms [4] to a biaxial compressively strained condition. 
Then using the LAMPPS simulator, various time steps to relax 
the system of atoms to their equilibrium position are arranged 
to enable the nanosheets reach to the equilibrium 
configuration. This procedure is repeated for different values 
of the compressive strain while for a certain value of the 
strain, the SLGS collapses corresponding to its buckling mode 
shape as depicted in Fig. 4. 

V. RESULTS AND DISCUSSION 

The thickness of plate in the nonlocal plate elasticity 
models is assumed to be equal to the spacing of graphite (h = 
0.34 nm). Moreover, the values of Young’s modulus and 
Poisson’s ratio are considered E = 1 TPa and m = 0.16, 
respectively [5]. 

In order to assess the accuracy of the present study, the 
critical biaxial buckling loads of square armchair monolayer 
GSs with all edges simply supported obtained via (17) by 
GDQM are compared with those of MD simulations in Table I 
for different values of side length. The nonlocal parameter μ is 
calculated by utilizing the least square technique so that the 
sum of the squares of the errors between the results from MD 
simulations and the corresponding ones from the present 
model is minimized. It is observed that the two sets of results 
are in excellent agreement. Therefore, the nonlocal formulas 
given by (17) can be considered as reliable relations capable 
of determination of critical biaxial buckling loads of SLGS 
provided that the nonlocal parameter is properly calibrated. 

 
TABLE I 

MD AND GDQM RESULTS FOR CRITICAL BIAXIAL BUCKLING LOADS OF 

SIMPLY-SUPPORTED ZIGZAG SQUARE SLGSS (NN) 

L(nm) MD GDQM(μ=1.86 nm2) Error% 

4.99 1.0835 1.1219 3.5 

8.08 0.6535 0.6524 0.1 

10.077 0.4459 0.4412 1.0 

14.65 0.2609 0.2685 2.9 

22.35 0.1191 0.1228 3.0 

30.04 0.0737 0.0714 3.2 

37.81 0.0449 0.0456 1.5 

 
TABLE II 

APPROPRIATE VALUES OF NONLOCAL PARAMETER CORRESPONDING TO 

DIFFERENT TYPES OF BOUNDARY CONDITIONS 
Type of boundary 

conditions 
Appropriate value of nonlocal 

parameter 
SSSS 1.86 

CCCC 1.17 

CCSS 1.52 

 
The variation of obtained critical biaxial buckling loads 

with the side-length of square SLGSs is illustrated in Figs. 5–7 
relevant to different values of nonlocal parameter with 
different boundary conditions. 

Table II presents the appropriate values of μ derived 
through fitting procedure corresponding to different types of 
boundary conditions. It is evident that there is an excellent 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:11, No:4, 2017

328

 

 

agreement between the results of MD simulations and the ones 
predicted by the present nonlocal continuum plate model with 
their appropriate values of nonlocal parameter. 

VI. CONCLUSION 

Biaxial buckling characteristics of SLGSs were investigated 
in this work. To this end, Eringen’s nonlocal elasticity 
equations were incorporated into classical plate theory (CLPT) 
to consider the size-effects in the biaxial analysis. GDQM 
form of numerically solution was conducted to obtain the 
critical biaxial buckling loads of SSSS, CCCC and CCSS 
square SLGSs with different values of side-length and 
nonlocal parameter. 
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Fig. 5 Variation of critical biaxial buckling load with side-length of 
square SLGS corresponding to the different values of nonlocal 

parameter for nonlocal CLPT and comparison with MD simulation 
for SSSS 
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Fig. 6 Variation of critical biaxial buckling load with side-length of 
square SLGS corresponding to the different values of nonlocal 

parameter for nonlocal CLPT and comparison with MD simulation 
for CCCC 

 
Afterward, MD simulations were performed for zigzag 

SLGSs with different values of side-length, and boundary 

conditions the results of which were fitted with those 
calculated by the nonlocal elasticity plate model through a 
least-square fitting procedure to extract the correct values of 
nonlocal parameter corresponding to each type of boundary 
conditions It was revealed that nonlocal elasticity theory can 
extimate the biaxial buckling response of SLGSs with great 
accuracy using the proposed values for the nonlocal 
parameter. which is comparable to the results of MD 
simulation. This analysis showed that the importance of the 
small length scale is dependent on the boundary conditions of 
SLGS. 
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Fig. 7 Variation of critical biaxial buckling load with side-length of 
square SLGS corresponding to the different values of nonlocal 

parameter for nonlocal CLPT and comparison with MD simulation 
for CCSS 
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