
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

602

Benchmarking of Pentesting Tools
Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier Garcı́a Villalba

Abstract—The benchmarking of tools for dynamic analysis of
vulnerabilities in web applications is something that is done
periodically, because these tools from time to time update their
knowledge base and search algorithms, in order to improve their
accuracy. Unfortunately, the vast majority of these evaluations are
made by software enthusiasts who publish their results on blogs
or on non-academic websites and always with the same evaluation
methodology. Similarly, academics who have carried out this type of
analysis from a scientific approach, the majority, make their analysis
within the same methodology as well the empirical authors. This
paper is based on the interest of finding answers to questions that
many users of this type of tools have been asking over the years,
such as, to know if the tool truly test and evaluate every vulnerability
that it ensures do, or if the tool, really, deliver a real report of all the
vulnerabilities tested and exploited. This kind of questions have also
motivated previous work but without real answers. The aim of this
paper is to show results that truly answer, at least on the tested tools,
all those unanswered questions. All the results have been obtained
by changing the common model of benchmarking used for all those
previous works.

Keywords—Cybersecurity, IDS, security, web scanners, web
vulnerabilities.

I. INTRODUCTION

IN 2015 there were 5334 attacks to web applications, of

these cases a total of 908 confirmed exposure of sensitive

data that managed the web application [1]. Web applications

are present in almost every aspect of our daily lives. The

use of web applications to access financial services, purchase

products, government services or even interact with other

people, are just a small sample of all the web applications

which are used daily. These web applications manage, receive,

send and store much of information which, in most cases, is

personal and confidential, therefore, security within these web

applications should be a number one priority.

Security verification must be present in all stages of the

development cycle and especially in the final stages which are

critical to the implementation and launch of the application. In

these stages of development, it is fundamental to perform tests

that verify failures and possible presence of vulnerabilities,

in order to reduce the opportunity of a successful attack [2],

preventing possible data loss and also economic losses.

There are many options in terms of automatic pentesting

tools, which allow the review and detection of potential

vulnerabilities in web applications, therefore, choosing the

right tool is a essential task. The developer has full confidence

in the results given from the used tool. Hence, those results

Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco and
Luis Javier Garcı́a Villalba are with the Group of Analysis, Security
and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Office
431, Universidad Complutense de Madrid (UCM), Calle Profesor José
Garcı́a Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain (e-mail:
esarmas@ucm.es, asandoval@fdi.ucm.es, javiergv@fdi.ucm.es).

influence on vulnerability that can reach the application once

it is in production.

The use of penetration and dynamic analysis tools to

improve the security in an web application reduces time and

effort in the development cycle and allows to focus greater

efforts on more complex safety tasks [3] and other stages

of development cycle. Such tools are not trivial to set up,

correctly, for those who are not familiar with this kind of

software [4]. And because one of its biggest weaknesses is the

presence of false positive results [3]. Therefore it is important

to have accurate knowledge of the real capabilities of these

tools.

The aim of this work is to evaluate most of the generated

data over the interaction between the black-box tools and

the analysed web applications. This is achieved by gathering

execution time data, use of network resources, carried out

attacks and also the alerts and vulnerabilities showed in

the report. All this obtained information was contrasted and

compared between the result of each of the tools used in this

paper.

II. PREVIOUS WORKS

Previous studies have conducted several comparatives about

the accuracy of dynamic analysis tools for vulnerabilities on

web applications. In this section its reviewed the most relevant

works related to this paper.

In [4] the authors compare OWASP ZAP [5] and Skipfish

[6] tools, both free and widely used. These tools were run

in order to evaluate vulnerabilities in two vulnerable web

applications: Damn Vulnerable Web Application (DVWA) [7]

and Web Application Vulnerability Scanner Evaluation Project

(WAVSEP) [8]. Evaluation criteria includes the analysis of

reports and a comparison of characteristics that each tool

provides for the execution of the analysis. Results showed a

favorable value in the accuracy for detecting vulnerabilities

from the OWASP ZAP tool and a low value of false positives.

In [9] a group of 32 free analysis tools were compared

by applying the Web Application Security Scanner Evaluation

Criteria (WASSEC) [10] from Web Application Security

Consortium. WASSEC establishes eight main criteria to be

taken into account when assessing a dynamic analysis tool.

Out of the eitght criteria, Command and Control and Reporting

criteria were avoided in this study. From this analysis the best

tool in four of the six evaluated criteria was W3AF 1.2-rev509

[11].

In [12] the performance of three dynamic analysis tools

(Nessus, Acunetix and OWASP ZAP) were analyzed on two

test applications developed by the researchers. The tests were

developed in two stages. In the first step attacks on both

applications are performed using the three tools with the same



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

603

configuration. In the second stage attacks are performed with

only the Nessus tool with different settings. From the results

obtained, the time and accuracy of each tool is analyzed as

well as every tool configuration. Besides the accuracy and

traffic that each tool generates, the time it takes to run the

analysis is also an important factor to consider.

Some previous studies have used the SNORT - Network

Intrusion Detection and Prevention System (SNORT) [13] to

detect SQL attacks on web applications. In [14] SNORT was

used to detect SQL Injection attacks on applications such as

DVWA. The purpose was to analyze the efficiency in detecting

SQL Injection attacks by a group of new rules proposed.

The set of rules developed in [15] for SNORT allow to

detect three different types of attacks: SQL Injection, XSS

and Command Execution. The experiment consists in perform

attacks on the DVWA application, which will be prevented by

SNORT and the new set of rules developed.

In this paper the authors intend to apply a different approach

than previous studies by introducing into the typical structure

an intruders detection system IDS, that allows to obtain the

attack requests of each analysis tool and contrast these requests

with the corresponding report. Therefore, it would be possible

to get information that will determine the efficiency of the

tools at the time of analysis.

III. TESTING MODEL

The system was run on two computers, one attacker and

another as a server. Both are connected by a physical network

and a network router, as shown in Fig. 1.

Fig. 1 Test Environment

A. System Tools

The tools used in this paper were OWASP ZAP, Acunetix

WVS, HP WebInspect [16] and the Arachni Scanner [17].

These tools were chosen because all of them are well known

and used in the vulnerability analysis of web applications.

These tools also have been used in previous studies [4], [18],

where those tools highlighted over the rest of tools.

All tools used in this work were configured with its standard

scan profiles that each bring default, without setting any further

particular feature.

B. IDS

To the evaluation of pentest tools the SNORT network

intrusion detection and prevention system is used in this paper.

SNORT has been chosen because it is free and open source.

SNORT has been configured with more than seventy-three

thousand rules exclusively for HTTP-HTTPS traffic. All of this

rules try to cover all possibilities of attack that each pentest

tool can make during analysis.

C. Vulnerable Web Applications

In this work one vulnerable web application was used.

Its documented and has supply detailed information on the

location of each vulnerability. All this information allow to

compare the obtained results more easily.

WackoPicko is a vulnerable web application developed

by Adam Doupe and used in [19]. Its design was intended

to simulate the behaviour of an regular not intentionally

vulnerable web application. It acts as an application for

sharing and selling images, contains different sections such

as authentication page for entry to the site, an viewer section

to see and comment any selected image, an upload section

where the user can upload images into the site to share it.

All the vulnerabilities present in WackoPicko are showed in

Table I [20].

TABLE I
VULNERABILITIES INSIDE OF WACKOPICKO

Vulnerability Quantity
Reflected Cross Site Scripting 3

Stored Cross Site Scripting 2

Stored SQL Injection 1

Reflected SQL Injection 1

Path Traversal 1

Command-line Injection 1

Remote File Inclusion 1

Parameter Manipulation 1

Logic Flaw 1

Weak username/password 1

Forceful Browsing 1

SessionID vulnerability 1

IV. ANALYSIS AND RESULTS

Each tool has been use once and separately. In each single

tests the reports generated by SNORT were compared. All

of the vulnerabilities of the evaluated web application and the

report generated by each of the pentesting tool have been taken

into account. Fig. 2 shows the method that has been followed

to check the accuracy of the scanners in this paper. A summary

of the results of WackoPicko analysis can be observed in Table

II.

A. WackoPicko Results

Acunetix WVS identify less than 50% of vulnerabilities

presents in this web application. Furthermore, was not

reported two critical vulnerabilities: Directory Traversal and

Command-line Injection, presents in the web application and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

604

Fig. 2 Method followed to check the scanners accuracy

TABLE II
RESULTS OF ANALYSE WACKOPICKO

Vulnerability WackoPicko IDS Acunetix WVS IDS OWASP ZAP IDS HP WebInspect IDS Arachni
Reflected Cross Site Scripting 3

X
5

X
6

X
5

X
7

Persistent Cross Site Scripting 2 1 2 - 6
Stored SQL Injection 1

X 1 X 2 X 1 X 1
Refected SQL Injection 1
Path traversal 1 X - X - X 1 - -
Command-line Injection 1 X - - - X - X 1
Remote File Inclusion 1 - 2 X 1 X - - 1
Parameter Manipulation 1 - - - - - - - -
Logic Flaw 1 - - - - - - - -
Weak username/password 1 - 1 - - - - - -
Forceful Browsing 1 - - - - - - - -
SessionID vulnerability 1 - - - - - -

also vulnerabilities whitch had been attacked by Acunetix

according to SNORT’s alerts report. Acunetix could not

determine the category of SQL Injection attacks. Thus, in the

Table II all kind of SQL injections attacks are shown together.

OWASP ZAP reported fewer successes in vulnerabilities

founds compared with the vulnerabilities that Acunetix WVS

found. OWAS ZAP does not include in its report the presence

of Directory Trave rsal vulnerability, despite of the fact that it

was exploited according to the SNORT’s alerts report. SNORT

shows an attack to exploit that vulnerability during the analysis

with OWAS ZAP.

HP WebInspect does not showed more accurancy than

the other evaluated tools. SNORT shows that there were

File Inclusion and Command-line injection attacks into the

WackoPicko application, but HP WebInspect did not report

the presence of such vulnerabilities, although WackoPicko has

these two. Like the other tools HP WebInspect did not perform

a search for at least all the vulnerabilities in the OWASP Top

10 2013 [21].

In the report presented by Arachni all vulnerabilities found

were attacked, as reported by SNORT. Also there were no

alerts in Arachni not reported by SNORT.

V. CONCLUSION

The approach proposed in this paper allowed to obtain

details on the results that in previous work were not

considered. The evaluated tools showed deficiencies to

identifying vulnerabilities in the tested web applications.

Most of the tools that were used in this paper demonstrated

that attacks were made and confirmed by SNORT, but in

the final report of the tool was not considered as vulnerable,

despite its existence in the application. In addition becomes

clear that there was not carried out attacks in search of

at least OWASP TOP 10 2013. This can be considered as



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:5, 2017

605

a disadvantage in these tools, mainly because its intention

is to cover at least the vulnerabilities more important and

documented and that according to reports obtained in this work

was not done.

Although SNORT had thousands of rules for a wide range

of possible attacks, in his report could not disaggregate fine

grain type of attack, similar to each tool presents, in order to

refine the results and be more accurate in comparison. It is

important to develop new rules specifically allow SNORT to

determine the type of attack not to generalize results. Each

tool report contain basic information and helps the developer

to identify faults in the application. The runtime of any

tool black box is much less than the time it would take to

analyze the application manually. To improve the analysis of

these tools, it is important to conduct a study on the false

positives obtained in each report, that this work was not

done. Also it is essential to include rules in SNORT that

allow specifically determine the type of attack and that no

it generalizes when comparing results. Because of the results

obtained, it is considered important to conduct more analysis

using different tools and applications containing vulnerable

closer to a real web application, as the case of WackoPicko

features

ACKNOWLEDGMENT

This project has received funding from the European Unions

Horizon 2020 research and innovation programme under grant

agreement No 700326.

REFERENCES

[1] Verizon Enterprise. 2016 Data Breach Investigations Report. Report,
Verizon Enterprise, July 2016.

[2] A. Sagala and E. Manurung. Testing and Comparing Result
Scanning Using Web Vulnerability Scanner. Advanced Science Letters,
21(11):3458–3462, November 2015.

[3] P. Baral. Web Application Scanners: A Review of Related Articles.
IEEE Potentials, 30(2):10–14, March 2011.

[4] Y. Makino and V. Klyuev. Evaluation of Web Vulnerability Scanners.
In Proceedings of the IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), volume 1, pages 399–402, Warsaw, PL,
September 2015.

[5] The Open Web Application Security Project OWASP. OWASP Zed
Attack Proxy Project. https://www.owasp.org/index.php/OWASP Zed
Attack Proxy Project, April 2016.

[6] Google. Google Code - Skipfish. https://code.google.com/archive/p/
skipfish/, March 2016.

[7] RandomStorm. Damn Vulnerable Web Application (DVWA). http://
www.dvwa.co.uk, March 2016.

[8] Google. Google Code - WAVSEP. https://code.google.com/archive/p/
wavsep/, March 2016.

[9] F. A. Saeed. Using WASSEC to Analysis and Evaluate Open Source
Web Application Security Scanners. International Journal of Computer
Science and Network, 3(2):43–49, April 2014.

[10] Web Application Security Consortium. Web Application Security
Scanner Evaluation Criteria WASSEC. http://goo.gl/aePtyC, April 2016.

[11] W3af. W3af - Open Source Web Application Security Scanner. http:
//w3af.org, Abril 2016.

[12] N. I. Daud, K. A. A. Bakar, and M. S. Md. Hasan. A Case Study on
Web Application Vulnerability Scanning Tools. In Proceedings of the
Conference of Science and Information (SAI), pages 595–600, 2014.

[13] Snort - Network Intrusion Detection and Prevention System. https://
www.snort.org/, Abril 2016.

[14] H. Alnabulsi, Md. R. Islam, and Q. Mamun. Detecting SQL Injection
attacks using SNORT IDS. In Proceedings of the 2014 Asia-Pacific
World Congress on Computer Science and Engineering (APWC on CSE),
pages 1–7. IEEE, Nov 2014.

[15] M. Dabbour, I. Alsmadi, and E. Alsukhni. Efficient Assessment and
Evaluation for Websites Vulnerabilities using SNORT. International
Journal of Security and its Applications, 7(1), 2013.

[16] HP. HP WebInsPect. Product Manual, HP, March 2015.
[17] Arachni. ARACHNI Web Application Security Scanner Framework.

http://www.arachni-scanner.com, March 2016.
[18] F. A. Saeed. Using WASSEC to Evaluate Commercial Web Application

Security Scanners. International Journal of Soft Computing and
Engineering (IJSCE), 4(1):177–181, March 2014.

[19] A. Doupé, M. Cova, and G. Vigna. Detection of Intrusions and Malware,
and Vulnerability Assessment. In Christian Kreibich and Marko Jahnke,
editors, Proceedings of the 7th International Conference (DIMVA 2010),
pages 111–131, Bonn, Germany, July 2010.

[20] A. Doupé. WackoPicko Vulnerable Website. https://github.com/
adamdoupe/WackoPicko, March 2016.

[21] The Open Web Application Security Project OWASP. OWASP Top 10
- 2013 The Ten Most Critical Web Application Security Risks. Release,
The Open Web Application Security Project OWASP, June 2013.

Esteban Alejandro Armas Vega He received a
Informatics Engineering degree from the Polytechnic
Institute “José Antonio Echeverria” of Havana
(Cuba) in 2009. He holds a M.Sc. in Informatics
Engineering from the University Complutense
of Madrid in 2016. He is currently a Ph.D.
student at the University Complutense of Madrid
and a member of the research group GASS
(http://gass.ucm.es), in the Department of Software
Engineering and Artificial Intelligence (DISIA) of
the Faculty of Computer Science and Engineering.

His main research interests are Multimedia Forensic and Information Security.

Ana Lucila Sandoval Orozco She received
a Computer Science Engineering degree from
the Universidad Autnoma del Caribe (Colombia)
in 2001. She holds a Specialization Course in
Computer Networks (2006) from the Universidad
del Norte (Colombia), and holds a M.Sc. in
Research in Computer Science (2009) and a Ph.D. in
Computer Science (2014), both from the Universidad
Complutense de Madrid (Spain). She is currently a
Research Assistant at Complutense Research Group
GASS. Her main research interests are Computer

Networks and Computer Security.

Luis Javier Garcı́a Villalba He received a
Telecommunication Engineering degree from the
Universidad de Mlaga (Spain) in 1993 and holds
a M.Sc. in Computer Networks (1996) and a
Ph.D. in Computer Science (1999), both from
the Universidad Politcnica de Madrid (Spain).
Visiting Scholar at COSIC (Computer Security and
Industrial Cryptography, Department of Electrical
Engineering, Faculty of Engineering, Katholieke
Universiteit Leuven, Belgium) in 2000 and Visiting
Scientist at IBM Research Division (IBM Almaden

Research Center, San Jose, CA, USA) in 2001 and 2002, he is currently
Associate Professor of the Department of Software Engineering and Artificial
Intelligence at the Universidad Complutense de Madrid (UCM) and Head
of Complutense Research Group GASS (Group of Analysis, Security and
Systems) which is located in the Faculty of Information Technology
and Computer Science at the UCM Campus. His professional experience
includes research projects with Hitachi, IBM, Nokia and Safelayer Secure
Communications. His main research interests are Computer Networks and
Computer Security.


