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Abstract—This paper presents the generalized p-values for testing
the Behrens-Fisher problem when one variance is unknown. We also
derive a closed form expression of the upper bound of the proposed
generalized p-value.
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I. INTRODUCTION

MAITY and Sherman [1] mentioned that the situation
of the hypothesis testing for the difference of two

normal population means with one variance unknown, arises
in practice. For example, when one is interested in comparing
a standard treatment with a new treatment. A known variance
comes from the standard treatment while an unknown variance
comes from the new treatment. Maity and Sherman found
that their proposed t-test has more power than the existing
Satterthwaite’s test [2], [3]. However, they did not investigate
the coverage probability and the expected length of the con-
fidence interval for the difference of two normal population
means when one variance is unknown. Niwitpong [4] also
derived analytic expressions to find coverage probabilities and
expected lengths of the confidence interval using the pivotal
statistic t-statistic proposed by Maity and Sherman compared
to Welch-Satterthwaite (WS) [5] confidence interval. In this
paper, following Weerahandi [6], we propose the gerneralized
p-value to test the hypothesis H0 : θ ≤ θ0 vs H1 : θ > θ0,
where θ is the parameter of interest, and, θ = μ1 −μ2 and θ0
is fixed and when one of variance is unknown.

II. GENERALIZED p-VALUES FOR THE BEHRENS-FISHER
PROBLEM

Let X1, ...Xn and Y1, ..., Ym be random samples from
two independent normal distributions with means μx, μy and
standard deviations σx and σy , respectively.
Let θ = μx − μybe the parameter of interest. The problem is
to test the hypothesis H0 : θ ≤ θ0 against the alternative hy-
pothesis Ha : θ > θ0 for some fixed θ0. The sufficient statistic
of this problem is (X̄, Ȳ , S2

xs, S
2
ys) (Tsui and Weerahandi [7])

where X̄ = n−1

n∑
i=1

Xi, Ȳ = m−1
m∑
j=1

Yj ,
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S2
xs =

n∑
i=1

(Xi − X̄)2

n and S2
ys

m∑
j=1

(Yj − Ȳ )2

m .

The probability distributions of the statistics, X̄ ∼ N(μx,
σ2
x

n ),

Ȳ ∼ N(μy,
σ2
y

m ), V =
S2
xs

σ2
x

∼ χ2
n−1 and U =

mS2
ys

σ2
y

∼ χ2
m−1

are independent of one another. Tsui and Weerahandi [7]
proposed the generalized p-value for the above hypothesis as
follow:

Suppose a random quantity T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

can be expressed as

T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) = T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)− θ

where

T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) =

X̄ − Ȳ − θ√
σ2
x

n +
σ2
y

m

√
σ2
xs

2
xs

nS2
xs

+
σ2
ys

2
ys

mS2
ys

and T (x, y, x, y, μx, μy, σ
2
x, σ

2
y) = x̄ − ȳ − θ0. It is

straightforward to see that T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is

free from nuisance parameters σ2
x and σ2

y and has the same

distribution Z

√
s2xs

V +
s2ys

U where Z ∼ N(0, 1).

T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is defined to be a generalized

test variable and T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is defined to be

a generalized pivot statistic and T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

is required to satisfy the following conditions:

C1. For a fixed x and y, the probability distribution of
T ∗(X,Y, x, y, μx, μy, σ

2
x, σ

2
y) is free of the unknown

parameters.

C2. The observed value of T ∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y),

namely T ∗(x, y, x, y, μx, μy, σ
2
x, σ

2
y) is simply θ.

C3. For fixed x, y and δ = (σ2
x, σ

2
y),

T∗(X,Y, x, y, μx, μy, σ
2
x, σ

2
y) is stochastically monotone

in θ.
The generalized pivot statistic T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)

is also required to satisfy the following conditions:

C4. For a fixed x and y, the probability distribution of
T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) is free of the unknown

parameters θ and δ = (σ2
x, σ

2
y).

C5. The observed valued of T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y),

namely
T (x, y, x, y, μx, μy, σ

2
x, σ

2
y) is simply equal to θ.

A 100(1−α/2)% generalized lower confidence limit for θ
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is then given by T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y)1−α, the

100(1− α)th percentiles of T (x, y, x, y, μx, μy, σ
2
x, σ

2
y).

Further, given the observed value x, let t1 and t2 be such
values that
P (t1 < T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) < t2|θ) = 1 − α for

chosen significant level α ∈ (0, 1) than the confidence interval
for parameter θ defined by{
θ : t1 < T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y) < t2

}
is a 100(1−α)%

generalized confidence interval for θ.
For the one-sided hypothesis given above they defined a

data-based extreme region Cx,y of the form

Cx,y(θ, σ
2
x, σ

2
y) =

{
(X,Y ) : T (X,Y, x, y, μx, μy, σ

2
x, σ

2
y)

− T (x, y, x, y, μx, μy, σ
2
x, σ

2
y) ≥ 0.

For the one-sided Behrens-Fisher problem, the generalized p-
value is

p∗ = Pr(T (X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

− T (x, y, x, y, μx, μy, σ
2
x, σ

2
y)|θ = θ0).

III. 3. MAIN RESULTS FOR BEHRENS-FISHER PROBLEM
WITH ONE VARIANCE UNKNOWN

Following Maity and Sherman [1], we suppose one
of variances is unknown i.e., σ2

y . According to Tsui and
Weerahandi [7], one of the potential pivotal quantity can be
defined as

W (X,Y, x, y, μx, μy, σ
2
x, σ

2
y)

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

n
+

σ2
y

m
+ θ

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

n
+

σ2
y

m

s2x
S2
x

+ θ

=
X̄ − Ȳ − θ√

σ2
x

n +
σ2
y

m

√
σ2
x

n
+

σ2
y

U
+ θ

= Z

√
σ2
x

n
+

s2y
U

+ θ (1)

For the one-side Behrens-Fisher problem as stated,
H0 : θ < θ0 against Ha : θ > θ0 , we can assume θ0 = 0
without loss of generality, and the generalized p-value for the
one-sided Behrens-Fisher problem is p(w) which is

Pr(W (X,Y, x, y, μx, μy, σ
2
x, σ

2
y) ≥ wobs|θ > 0)

= Pr

(
Z

√
σ2
x

n
+

s2y
U

≥ x̄− ȳ

)

= Pr

⎛
⎝Z ≥ (x̄− ȳ)

1√
σ2
x

n +
s2y
U

⎞
⎠

= Pr

⎛
⎝Z ≤ (ȳ − x̄)

1√
σ2
x

n +
s2y
U

⎞
⎠

= EU

⎛
⎝Φ

⎛
⎝(ȳ − x̄)

1√
σ2
x

n +
s2y
U

⎞
⎠
⎞
⎠ (2)

where Φ(.) is a cdf of the standard normal distribution and
EU (.) is an expectation operator with respect to U .

Now to find the upper bound of p(w) using the method
described by Tang and Tsui [8], we need Theorems 1 and 2
as following,

Theorem 1. Define

f(u) = Φ

(
z

√
1

t1 +
t2
u

)
for u ∈ (0, 1).

Then for fixed z < 0, f(u) is a convex function of u.

Proof: Letting

h(u) = z

√
1

t1 +
t2
u

,

we have f(u) = Φ(h(u)). Let Φ be the probability density
function of the standard normal distribution.
Then

f ′′(u) = (f ′(u)′) = (Φ(h(u))h′(u))′

= Φ′(h(u))(h′(u))2 +Φ(h(u))h′′(u)

For Z < 0, h(u) < 0. Hence Φ′(h(u)) ≥ 0. Obviously,
Φ(h(u)) ≥ 0. Moreover,

h′′(u) = z

[(
−1

2

)(
t1 +

t2
u

)−3/2(
− t2
u2

)]′

=
z

2

[(
t1 +

t2
u

)− 3
2
(
t2
u2

)]′

=
z

2

[
− 2

u3
t2

(
t1 +

t2
u

)− 3
2

+

(
t2
u2

)
3

2

t2
u2

(
t1 +

t2
u

)− 5
2

]

=
z

2

[
3

2

t22
u4

(
t1 +

t2
u

)− 5
2

− 2t2
u3

(
t1 +

t2
u

)− 3
2

]

=
z

2

⎡
⎣
⎛
⎝ 3

2
t22
u4(

t1 +
t2
u

) 5
2

⎞
⎠−

⎛
⎝ 2t2

u3(
t1 +

t2
u

) 3
2

⎞
⎠
⎤
⎦

=
z

2

⎡
⎣ 3

2
t22
u4 − 2t1t2

u3 − 2t22
u4(

t1 +
t2
u

) 5
2

⎤
⎦

= −z

2

⎡
⎣ t22

u4 + 2t1t2
u3(

t1 +
t2
u

) 5
2

⎤
⎦ > 0
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Hence f (u) ≥ 0, and f(u) is convex in u.

Theorem 2. Let

g(a) = P

[
Φ

(
z

√
1

a+ (1−a)Cm−1

m−1

≤ r

)]
,

where z, Cn−1 are independent random variables such that
z ∼ N(0, 1), Cm−1 ∼ χ2

m−1. Then g(a) is a convex function
in a.

Proof:

g(a) = P

[
Φ

(
z

√
1

a+ (1−a)Cm−1

m−1

≤ r

)]

= P

[
z

√
m− 1

a(m− 1) + (1− a)Cm−1
≤ Φ−1(r)

]

= P

[
z ≤

√
a(m− 1) + (1− a)Cm−1

m− 1
(Φ−1(r))

]

= ECm−1

[
Φ

(√
a(m− 1) + (1− a)Cm−1

m− 1
(Φ−1(r))

)]

ECm−1
(.) is an expectation operator with respect to Cm−1

with (n − 1) degree of freedom and Φ(.) is a cdf of the
standard normal distribution, denote

h1(a) =
√

a(m−1)+(1−a)Cm−1

m−1 (Φ−1(r))

and g1(a) = Φ(h1(a)) we have

g′′1 (a) = (g′1(a))
′ = (Φ(h1(a))h

′
1(a))

′

= Φ(h1(a))(h
′
1(a))

2 +Φ(h1(a))h
′′
1(a).

For r ≤ 0.5, h1(a) ≤ 0, and consequently, φ′(h1(a)) ≥ 0.
Morever,

h′′
1(a) =

[
1
2

(
a(m−1)+(1−a)Cm−1

m−1

)− 1
2

Φ−1(r)
(

(m−1)−Cm−1

m−1

)]′
=− 1

4Φ
−1(r)

[(
a(m−1)+(1−a)Cm−1

m−1

)− 1
2
(

(m−1)−Cm−1

m−1

)2]
≥ 0.
Hence g′′1 (a) ≥ 0. That is g1(a) is convex in a. As a result,
g(a) = ECm−1(g1(a)) is convex in a.

Theorem 3. For the one-sided Behrens Fisher problem ,
when one of variation is unknown with H0 : μ1 − μ2 ≤ θ0
and any 0 < r < 0.5. The generalized p-value , p(w) in (2),
has the following property under H0:

Pw(p(w) ≤ r) < Φ(Φ−1(r))

Where Φ(.) is a cdf of the standard normal distribution and
Φ−1(.) is the inverse function of Φ(.).

Proof: Denote

A =
σ2
x

n
σ2
n

n +
σ2
m

m

z =
ȳ − x̄√
σ2
n

n +
σ2
m

m

Cm−1 =
ms2x
σ2
x

From (2)

p(w) = EU

⎡
⎣Φ
⎛
⎝(ȳ − x̄)

1√
σ2
n

n +
σ2
y

U

⎞
⎠
⎤
⎦

= EU

⎡
⎣Φ
⎛
⎝ (ȳ − x̄)√

σ2
x

n +
σ2
y

m

1√
σ2
x

n +
σ2
y

U

√
σ2
x

n
+

σ2
y

m

⎞
⎠
⎤
⎦

= EU

⎡
⎢⎢⎣Φ
⎛
⎜⎜⎝Z

1√
σ2
x/n+s2y/U

σ2
x/n+σ2

y/m

⎞
⎟⎟⎠
⎤
⎥⎥⎦

= EU

⎡
⎢⎢⎣Φ
⎛
⎜⎜⎝Z

1√
σ2
x/n

σ2
x/n+σ2

y/m
+

1
U (Cm−1σ2

y/m)

σ2
x/n+σ2

y/m

⎞
⎟⎟⎠
⎤
⎥⎥⎦

= EU

⎡
⎣Φ
⎛
⎝Z

1√
A+ (1−A)Cm−1

U

⎞
⎠
⎤
⎦

For any r < 0.5 and p(w) < r, we must have. Hence by
theorem 1

f(U) = Φ

⎛
⎝Z 1√

A+
(1−A)Cm−1

m−1

⎞
⎠ is convex in U.

By Jensens Inequality,

p(w) = EU (f(U) ≥ f(E(U))) = f(m− 1)

p(w) = φ

⎛
⎝Z

1√
A+ (1−A)Cm−1

m−1

⎞
⎠ ≡ p1(w)

Now observe that under μ1 − μ2 = 0, z ∼ N(0, 1),
Cm−1 ∼ χ2

m−1and z, Cm−1 are independent of one another.
For 0 < r < 0.5.

Pw({w : p(w) ≤ r} ≤ Pw {p1(w) ≤ r} = g(A)

. where g(a) is a defined in theorem 2. Next by theorem 2 for
0 < r < 0.5, g(A) is convex in A.

g(A) ≤ max {g(0), g(1)}

= max

{
P (Φ (Z ≤ r)) , P

(
Φ

(
Z

√
1

Cm−1

m−1

≤ r

)}

= max

{
P
(
Z ≤ Φ−1(r)

)
, P

(
Z

√
1

Cm−1

m−1

≤ Φ−1(r)

)}

= max(Φ(Φ−1(r)),Ψm−1(Ψ
−1(r)))

= Φ(Φ−1(r))

where Φ(.) is cdf of standard normal distribution.
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IV. CONCLUSION

In this paper, we derive an expression of the upper bound of
the generalized p-value for the Behrens-Fisher problem with
one unknown variance used the method described by Tang
and Tsui [8]. This upper bound can be easily computed by R
program with command: pnorm(qnorm(r)), when r is a fixed
real value between 0 to 0.5.
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