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Abstract—The median problem is significantly applied to derive
the most reasonable rearrangement phylogenetic tree for many
species. More specifically, the problem is concerned with finding
a permutation that minimizes the sum of distances between itself
and a set of three signed permutations. Genomes with equal number
of genes but different order can be represented as permutations.
In this paper, an algorithm, namely BeamGA median, is proposed
that combines a heuristic search approach (local beam) as an
initialization step to generate a number of solutions, and then a
Genetic Algorithm (GA) is applied in order to refine the solutions,
aiming to achieve a better median with the smallest possible reversal
distance from the three original permutations. In this approach,
any genome rearrangement distance can be applied. In this paper,
we use the reversal distance. To the best of our knowledge, the
proposed approach was not applied before for solving the median
problem. Our approach considers true biological evolution scenario
by applying the concept of common intervals during the GA
optimization process. This allows us to imitate a true biological
behavior and enhance genetic approach time convergence. We were
able to handle permutations with a large number of genes, within
an acceptable time performance and with same or better accuracy as
compared to existing algorithms.

Keywords—Median problem, phylogenetic tree, permutation,
genetic algorithm, beam search, genome rearrangement distance.

I. INTRODUCTION

IN early 1970s, since the beginning stages of the studies of

computational molecular biology, scientists and researchers

have been focusing on the DNA and amino acid arrangements

and how to analyze them. In this field, gene prediction,

similarity searching, and phylogeny reconstruction are the

most tackled problems [1]. Change in evolution of genes

is the key element of the solutions to these problems.

Through evolutionary history, the modifications of genomes

and the relationship of genome construction and role in

various biological species or subspecies are being studied in

comparative genomics. Comparative genomics is one of the

fields of computational molecular biology, which is basically

based on studying variations in the order and content of

genes in the genomes of associated organisms. Comparative

genomics has many applications such as building comparative
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genomic maps, rebuilding phylogenetic associations between

organisms, and estimating the comparative frequencies of

genome rearrangement methods [1].

This paper focuses on devising a heuristic approach for

solving the median problem, which is a well-known problem

in bioinformatics. We examine the opportunities to overcome

the limitations of other approaches with respect to speed

and/or accuracy. The previous approaches handled a limited

number of genes in each permutation, due to the exponential

time complexity of the problem. In our approach, we aim to

handle a large number of genes within an acceptable time

performance with a similar accuracy rate as compared to

existing algorithms. The proposed approach is a heuristic

initialization step followed by a Genetic Algorithm. To the best

of our knowledge, this approach was not applied before for

this biological problem. The computational results show that

the algorithm is comparable to previous solution approaches

with respect to quality of the obtained solution.

The paper organization is as follows: Section II presents

the state of the art studies related to the problem under

discussion. Section III describes the median problem. Section

IV introduces the proposed method BeamGA. Section V

addresses the experimental results and finally Section VI

concludes this research work.

II. RELATED STUDIES

Computing the distances between genomes is quite difficult,

and has been proved to be computationally intensive and

suspected to be NP-hard [3]. However, the Median problem

has two important properties that could help in finding

good solutions with reasonable computational effort: the

non-uniqueness of the problem solution, and the probability

to find the median on or near the XX gene orders rather than

the center.

Sankoff and Blanchette [4] proposed an algorithm for the

median problem based on breakpoint distance. They reduced

the breakpoint median problem to a particular case of the

Traveling Salesman Problem (TSP). The breakpoint distance

measure has some disadvantages such as lacking simple

biological explanation, as it does not associate in a straight line

to any real rearrangement method, even though it is helpful

as a heuristic measure. Given these disadvantages, Siepel [1]

devised an efficient branch-and-bound exact algorithm for

the reversal median problem that deals with the inversion

rearrangement method. Siepel’s algorithm relies on bounds

that are calculated with the metric feature of reversal distance

only. Although they cost more to compute, when reversal
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medians are compared to breakpoint medians regarding

the inversion distance, breakpoint medians are weaker [1].

Moreover, Eriksen [6] proved that the reversal median

algorithm cannot provide efficient results when the distance

between the species is reasonably large. This result has

conducted the researchers toward two directions. To solve

the median problem, they used another evolutionary distance

and/or applied the rearrangement operations on a common

interval. Common intervals detect sets of genes that take

place successively in all input gene orders. Matthias Bernt

et al. [5] proposed an exact algorithm to solve reversal

median problem using common interval for three given gene

orders. The authors used the preserving minimum reversal

distance between two gene orders which is an NP-hard

problem (whereas the same problem with reversals that are

not necessarily preserving can be solved in polynomial time).

The preserving reversal distance is the minimum number of

reversals that preserve all common intervals between two given

gene orders.

Bader [7] addressed a new method to solve the weighted

reversal and transposition medians. It consists of extending

Caprara’s median solver by using a new branch and bound

algorithm.

Using breakpoint distance, reversal distance or any

evolutionary distance, the median problem is known to

be NP-hard [1], [2]. Hence, exact algorithms become

prohibitive for large problem sizes, and heuristic approaches

are considered as an attractive alternative in such cases.

Rajan et al. [8] proposed greedy heuristic based on DCJ

median. The proposed method can deal with large size

genomes. However, it cannot handle the length of inversions.

Among the heuristic approaches, Evolutionary Algorithms

are well known techniques to efficiently solve complex and

hard problems due to their good exploration and exploitation

of the search space. Our idea is to solve the rearrangement

genome median problem using an evolutionary algorithm,

Genetic Algorithm, and taking into account the common

interval. This direction has only been recently treated by [9]

in his thesis at the end of 2014. The author proposed a method

based on DCJ sorting and Indel operations using Genetic

Algorithm, called GA-DCJ for solving unequal genomes

median problem (without duplication). Our proposed method

uses reversal distance to solve equal genomes median problem.

III. THE MEDIAN PROBLEM

Input: given three signed permutations π1, π2, and π3 that

represent three different taxa.

Output: finding the fourth permutation (median) πφ, with the

smallest possible distance score S(φ) from the three original

permutations as shown in Fig. 1 and explained as follows:

S(φ) = dπ1,φ + dπ2,φ + dπ3,φ,

S(φ) ≥ Mmin, S(φ) ≤ Mmax

Mmin = [
dπ1,π2

+dπ1,π3
+dπ2,π3

2 ]

Mmax = min{(dπ1,π2+dπ2,π3)+(dπ1,π2+dπ1,π3)+(dπ2,π3+
dπ1,π3

)}

Fig. 1 The Median Problem representation [1]

Fig. 2 Initialization Phase

IV. METHOD: BEAMGA

The BeamGA is based on two phases, the Initialization

phase, where a beam search algorithm is applied in order

to generate the initial population. This is followed by an

optimization phase, where a genetic algorithm is applied on

common intervals in order to enhance the median score.

A. Initialization Phase: Beam Search

Given three signed permutations π1, π2, and π3, and:

• i: The number of random reversals that can be applied

to get the three original permutations from the identity

permutation for every taxon (2, 6, or 10) π.

• i/2: The maximum levels number of reversals to be

applied on π.

• r ≤ i/2: the current level.

• k: The number of feasible neighbors fs that can be

generated from π.

• q < k: The number of best-scoring neighbors fs that are

added to priority queue T .

• m: maximum population size.

• n: number of genes.

In the initialization phase, we generate a population of

size m by using a beam search [10]. The search starts by

initializing a priority queue T to be empty. For each πi,

we generate k neighbors by performing one rearrangement

operation on the previous permutation, and put the best

generated q from k neighbors in T based on their median

scores. The process is repeated for r levels as displayed in Fig.
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Fig. 3 Genetic Algorithm

2. Finally, we pick m best-scoring S(φ) from T and add them

to P (the initial GA population in the optimization phase).

B. Optimization Phase: Genetic Algorithm (GA)

Given an initial population P , each individual in the

population (a possible median φ) is assigned a fitness value

based on its median score S(φ) with respect to the three

original permutations. Then a genetic algorithm is applied.

Parents are selected using tournament selection, crossover is

performed by swapping a randomly chosen common intervals

between the selected parents to produce two children, and

mutation is done on each child by a random rearrangement

operation (e.g reversal) within a randomly chosen common

interval. To generate the new population, elitist replacement

chooses the best individuals from the new and the old

generations. The GA is repeated until the perfect median is

reached or no improvement can be achieved for a number

of iterations. If both conditions cannot be satisfied, the GA

continues for a pre-specified number of iterations. The best

solution in the final population is returned as the best median.

Fig. 3 shows the different steps of GA and Algorithm1 presents

the pseudocode of BeamGA.

V. EMPERICAL RESULTS

A. Experimental Setup

Extensive experiments are conducted on simulated data to

evaluate the performance of our algorithm compared with

previous algorithms. In order to evaluate our algorithm,

performance analysis is performed and median accuracy score

is compared with other algorithms. The computer used in these

experiments has an Intel(R) CORE(TM) i5-3337U CPU with

clock speed of 1.80 GHz 2 Cores 4 logical Processors, 64-bit

operating system, and 4 GB RAM memory and the code was

implemented using MATLAB R2010a.

In initialization phase, test data set of three signed

permutation is constructed by applying random reversals on

/*————– Initialization phase ——————-*/
π1, π2, and π3

T = 0
for πi i : 1 to 3 do

for r : 1 to i/2 do
for j : 1 to k do

S(φ)=GRO (πi)
T=push S(φ)

end
Pick best q from k neighbors in T based on GRD

end
end
P=m best-scoring S(φ) from T
/*————– Optimization Phase —————–*/
Repeat
for i : 1 to m do

(φ1,φ2)=Select parents (m)
Crossover Px: (φ1,φ2)

1) cm ← Find CM(φ1,φ2)
2) x ← random CM(cm)
3) (C1, C2) ← Swap CM (φ1,φ2)
4) Mutation Pm: (C1,C2)

a) cm ← Find CM(C1,C2)
b) x ← random CM(cm)
c) (C1, C2) ← GRO with in CM x (C1,C2)

5) New ←(C1,C2)
end
P ← Elitisim strategy (P ,New)
Until (iteration = 100 Or S(φ)= Mmin Or iteration with out

improvment=10)

Algorithm 1: BeamGA pseudocode

identity permutation. This simulates the biological evolution

such that each set is a three taxa generated by applying reversal

on shared ancestors. Three parameters are used to control

generated data sets n, s and i. n represents the number of

genes in each permutation. s represents the number of data

set generated and i represent the number of reversal applied

to generate every taxon. The number of reversals applied on

original set to generate neighbors are kept i/2 throughout the

experiments.

The experiments are divided into two types:

1) Testing variation of n and i: test data consists of

three different set of three signed permutation (taxon)

with different size of n and different values of i. i

represents the number of reversal applied on the identity

permutation to generate the three texa. n represents the

number of genes in each permutation which can hold

25, 50, 75, 100 and 125. The value of i for each n is 2,

6 and 10.

2) Testing variation of i for the same n: test data consists of

three different sets of three signed permutations (taxon)

where n is 25 and i have the values: 2, 3, 4, 5 and 6.

The probability of crossover px and the probability of

mutation pm were tuned until most accurate median with

respect to time. px was set to 0.8 while pm was set to

0.05 throughout the whole experiments. Moreover, some other

parameters k, q and T values are altered in each experiment.

k represents the numbers of neighbors generated from each

permutation by applying random reversal. Initially, k was set

to be 50% of n, while q which represents the best scoring
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Fig. 4 The accuracy of the median score found through five experiments of
i=6 with five different values of n: 25, 50, 75, 100 and 125, where k = 14,

q = 7, the size of priority queue T is 3 ∗ q ∗ r

permutation is set to 50% of k (beam width). After that, we

change the value of k and q to 14 and 7 respectively to reduce

the initialization phase time. As a result, the performance

increased and the accuracy measures remained the same.

Throughout the experiments we evaluate the accuracy and the

performance using various measures:

1) The actual score which is the score obtained from the

identity permutation used to generate the set.

2) The minimum of the minimum best score median found

for 10 runs of the three data sets.

3) The average of minimum best score median found for

10 runs of the three data sets.

4) The average of the best score median found for 10 runs

of the three data sets.

5) The average time in seconds for the initialization time,

GA time and the total time through the 10 runs of the

three data sets.

The experiments are divided into two stages:

1) The number of neighbours generated k is equal to 14,

beam width q is set to 7, the size of the priority queue

T is set to q ∗ r ∗ 3 and the number of iteration without

improvement is set to n.

2) The parameter k is set to 14, q is set to 7, the size of the

priority queue T is set to 30 and the number of iteration

without improvement is set to n.

B. Experimental Results

Fig. 4 depicts the accuracy of the median score when i=6
and n have five different values: 25, 50, 75, 100 and 125. For

each value of n, three sets are generated such that each set run

10 times. After that, the average is calculated for the 10 runs

of each set. Then, the average of the three sets is computed.

The figure shows the minimum of minimum best score is close

to the actual score for all values of n.

Fig. 5 demonstrates the accuracy of the median score when

n=50 and i have three different values: 2, 6 and 10. When

i=2 the minimum of minimum best score almost matches the

Fig. 5 The accuracy of the median score found through three experiments of
n=50 with three different values of i: 2, 6, and 10, where k = 14, q = 7, the

size of priority queue T is 3 ∗ q ∗ r

Fig. 6 The accuracy of the median score found through five experiments of
n=25 with five different values of n: 2, 3, 4, 5 and 6, where k = 14, q = 7,

the size of priority queue T is 3 ∗ q ∗ r

actual score. The distance between them increases as the value

of i increases.

Fig. 6 demonstrates the accuracy of median score of five

experiments of i= 2, 3, 4, 5 and 6 and n=25. The minimum

of minimum best score is identical to the actual score when

i=2. As the value of i increases the difference between them

increases.

Fig. 7 shows that our algorithm requires less than 1.8

seconds when n=25. Moreover, the time decreases to 1.733

when n=50 .After that, the time increases proportional to the

value of n. initialization phase requires around 1 second for

various values of n while GA time increases gradually as the

value of n increases.

Fig. 8 depicts the performance of our algorithm where i=2,
6 and 10 and n = 50. GA time remains steady throughout

the experiment. The total time follows the pattern of the

initialization time which increases proportional to the value

of i.
Initialization phase outperforms the GA phase in

performance when n=25 and i=2,3,4,5 and 6 as depicted in
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Fig. 7 The time performance of the median score found through five
experiments of i=6 with five different values of n: 25, 50, 75, 100 and 125,

where k = 14, q = 7, the size of priority queue T is 3 ∗ q ∗ r

Fig. 8 The time performance of the median score found through three
experiments of n=50 with three different values of i: 2,6, and 10, where k =

14, q = 7, the size of priority queue T is 3 ∗ q ∗ r

Fig. 9 The time performance of the median score found through five
experiments of n=25 with five different values of n: 2, 3, 4, 5 and 6, where

k = 14, q = 7, the size of priority queue T is 3 ∗ q ∗ r

Fig. 10 The accuracy of the median score found through five experiments of
i=6 with five different values of n: 25, 50, 75, 100 and 125, where k = 14,

q = 7, the size of priority queue T is 30

Fig. 11 The time performance of the median score found through five
experiments of i=6 with five different values of n: 25, 50, 75, 100 and 125,

where k = 14, q = 7, the size of priority queue T is 30

Fig. 9. The algorithm runs in 0.8 seconds to 1.8 second for

different values of i.
The accuracy in Figs. 4 and 10 are quite identical even when

the priority queue differs. However, the performance measures

show better results when T=3*q*r as demonstrated in Figs.

7 and 11.

For various values of i the accuracy measures are identical

when T = 3 ∗ q ∗ r and T=30 as shown in Figs. 5 and

12. However, when GA performance remains steady around

1 second throughout the experiment when T = 3 ∗ q ∗ r as

depicted in Fig. 8, the GA time decreases from less than 1.5

seconds when i=2 to less the 1 second when i=6 and T=30 as

demonstrated in Fig. 13. After that, the time remains steady.

The minimum of minimum best score is near to the actual

score in Fig. 14 than in Fig. 6 when n=25 and i=2, 3, 4, 5
and 6. In addition, the performance measures follow the same

pattern with better results when T=30 as illustrated in Figs. 9

and 15.

Figs. 9 and 11 show the time performance recorded for

the previous experiments. In Fig. 11, the total time recorded
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Fig. 12 The accuracy of the median score found through three experiments
of n=50 with three different values of i: 2,6, and 10, where k = 14, q = 7,

the size of priority queue T is 30

Fig. 13 The time performance of the median score found through three
experiments of n=50 with three different values of i: 2,6, and 10, where k =

14, q = 7, the size of priority queue T is 30

Fig. 14 The accuracy of the median score found through five experiments of
n=25 with five different values of i: 2, 3, 4, 5 and 6, where k = 14, q = 7,

the size of priority queue T is 30

Fig. 15 The time performance of the median score found through five
experiments of n=25 with five different values of i: 2, 3, 4, 5 and 6,

where k = 14, q = 7, the size of priority queue T is 30

is less than 4.5 second while the time increased directly

proportional with the growing values of n. Fig. 9 shows that

the time of initialization phase and total time increase when i

values increase but GA time starts with 1 second for i=3 then

decreases to almost .8 for i=6 and remains steady.

VI. CONCLUSION

We proposed a heuristic approach for solving the median

problem. The accuracy of BeamGA for the median score

is excellent when compared to the actual score. Further

optimization can be added to the initialization phase to

enhance its time performance. For more accurate assessment,

the performance needs to be tested on real biological data.
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