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Abstract— During last decades, worldwide researchers dedicate A monitoring network is composed by remote sensing

efforts to develop machine-based seismic Early \Mgrrsystems,
aiming at reducing the huge human losses and edondemages.
The elaboration time of seismic waveforms is tordmuced in order
to increase the time interval available for theivation of safety
measures. This paper suggests a Data Mining matekta correctly
and quickly estimate dangerousness of the runreisgrsc event.

Several thousand seismic recordings of Japanese Itatidn
earthquakes were analyzed and a model was obthineteans of a
Bayesian Network (BN), which was tested just ovhe ffirst
recordings of seismic events in order to reducedf@sion time and
the test results were very satisfactory.

The model was integrated within an Early Warningst&m
prototype able to collect and elaborate data froseiamic sensor
network, estimate the dangerousness of the runeamthquake and
take the decision of activating the warning promptl

stations that transmit in real-time to a centradgesssor that
provides to calculate in real-time seismic paransegeich as
location, origin time, magnitude.The purpose ofehethquake
EW is to quickly announce people that an earthquake
occurred and inform them about the estimated seismi
intensity several seconds or more before the dra¥/atrong
tremors caused by the quake. The present papefilsespart
of Data Elaboration Center included in the resegatject
“SIT_MEW - Integrated Network of broadband
communication with early warning methodologieslford and
emergency management in case of natural disasbexded by
Italian MIUR (Minestry of Education, University and
Research); the part described in the paper walkarge of the
authors. The project aimed at developing an EWesydioth

Keywords—Bayesian Networks, Decision Support Systemfor site-specific and regional warning, receivingissic

Magnitude Classification, Seismic Early Warning t8ys

|. INTRODUCTION

waveform from a monitoring sensor network placedttie
Irpinia region (southern Italy). The system was eakKor
efficiently taking decision upon the opportunity aferting
people and infrastructures in the area of Naplgswhen an

VER the last few decades there has been ongoiegrthquake originated in Irpinia, reducing the atabity of

experimentation into seismic early-warning (EW)teyss
in several active seismic areas of the world. E\Atesyis are
operating (active) in Mexico, Japan, Taiwan, Romaand
Turkey; while other systems are under developméaty(
India, California, Greece, ...). Although the predtiot of
earthquakes is not yet practicable, current tedgyhllows
prompt identification of the onset of any dangersesmic
event. As it is well known, seismic EW concerns ¢hpability
of estimating the destructive potential of an egutdke in the
seconds immediately following its generation. Suah
estimation can then be used in sending out an akarm
strategic sites in order to allow activities foreithsecuring
before the arrival of the destructive seismic wavesaddition
earthquake EW systems utilize the capability of erad
telecommunication systems to process and
information faster than seismic waves propagate.eiWha
suitable seismic sensor network is available totemto a
geographical area, or a specific site, fast prasgsmethods
can be applied to locate an earthquake, calcuteeetent
magnitude, and estimate the distribution of groomation. A
seismic network could be distributed in the epicardrea, or
localized around the area to be protected, if thieemter is
unknown.

G. Zazzaro, F.M. Pisano and G. Romano are with QliR#ian Aerospace
Research Centre), Via Maiorise sn, 81043 Capua (G&ly. (phone:
00390823623558; e-mail {g.zazzaro, f.pisano, g.mop@cira.it).

missed and false alarms.With such requirementssyiséem
was designed in order to match the pressing tinmstcaint of
assuring at least a time interval of 20 second#herctivation
of automatic safety measures (e.g. traffic lighasprevent
transit on threatened structures, shutdown of fyslines and
dangerous tanks, isolation of hospital operatirgms, etc.) in
the urban area of Naples. In order to do that, edeph from
the data collection to the warning decision waseftdly
designed to assure a limited time-consumption. dnendetail,
the data analysis step had to take into accourit elary
earthquake is recorded by more than one seismgogeand
each sensor produces at least three accelerogmmasfor
each coordinate axis; such complex physical phenome
makes Data Mining (DM) worthy for application besaof its

transnaibility to work with many variables and data. Adlyain

some recent papers [7], DM algorithms such as Dwetis
Trees, Clustering and Association Rules were agpiethe
seismic classification for post-processing analy$isis work
was carried out through the realization of the Kleage
Discovery in Database (KDD) process according te th
standard model process conceived by the Crossthydus
Consortium Standard Process for DM (CRISP-DM) [Tje
process is finalized to create a numerical modelsg&ismic
magnitude classification based on an appropridecten of
seismic parameters of the earthquake.This workpaaisof the
algorithm-based analytical core of a prototype eysfor the
application of seismic EW methods, for real-timeigaition of
earthquake effects
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In this work Weka tool
Environment for Knowledge Analysis) was used ([H)],
[12]) to carry on DM analysis, from data exploratim model
evaluation.

Il. BUSINESSUNDERSTANDING

A.Early Warning Definition

EW is widely defined as all the actions that cantddeen
during the lead time of a catastrophic event. Tdaalltime is
defined as the time elapsing between the instarénwihne
occurrence of a catastrophic event in a given place
reasonably certain and the moment it actually ccddi.
Typical lead times are of the orders of seconddets of
seconds for earthquakes, minutes to hours for tsism&tc.

B.Early Warning Principle

Tremors extend out from the seismic focus in a wikee
motion. When an earthquake occurs it releases gnerthe
form of waves that radiate from the earthquake c®uim all
directions. The principle on which EW systems assdd
exploits the consideration that seismic waves trawvigh
velocity less than electromagnetic signals, usetatasmit the
seismic information about the incoming event frdra sensor
networks to the elaboration centre. In additiorre¢hare two
main types of seismic waves: P-waves (Primary) rotial
tremors (not destructive), and S-waves (Secondaityich
cause stronger tremors and damages. P-waves
compressional waves that are longitudinal in natGrevaves
are slower than P-waves and move at about halfsge=d
of P-waves. Vertical ground motion generated byaves is
highly damaging to the structures. An EW systerbased on
the different propagation velocities between P &ndaves.

TABLE |
DIFFERENCES AMONGP AND S“WAVES AND ELECTROMAGNETIC WAVES

Traveling speed of seismic waves

P-waves cause rattling tremors around 7kmn/s

cause larger, more

S-waves
powerful tremor

around 4km/s

Electromagnetic
waves

around
300000km/s

to spread the seismic aleft

The time interval from the arrival of P-waves ame tS-
waves may be used to activate security measuresatisr of
fact, the goal is to exploit the time delay of Pves with
respect to S-waves in order to forecast the efiéthe latter
based on the automatic elaboration of the former.

Assuming that the warning time provided by the E}stam
is sufficient for the activation of the protectianeasures,
based on the predictions from the first few secafdB-wave
observation, an effective decision has to be maldethver to
activate the alarm or not.

(Version 3.6.2) (Waikato

2517-942X
No:4, 2012

l Seismic waves
(~4 Km/s)
Epicentre A
AA
A A A
Seismic Network

Fig. 1 EW system can save a lot of lives

Information

(~300000 Km/s)

Specific site

Since prediction is uncertain in making this demisifalse
and missed alarms are possible. As a consequenkey a
element of an EW system is a better understandfnthe
parameters that play a fundamental role in thietamty. As
a result performance-based approach to EW systeigrdand
decision models is a mandatory necessity.

A decision model is then presented to take a detisi a
real-time scenario based on the expected consegsieard
savings coming from the decision itself.

If the magnitude threshold is exceeded, a warniggas is
transmitted through an area-wide transmitter ca toonitored
target site. The message contains information efithoming
event. As the event evolves, more data are aveilalbrder to
confirm and increase the accuracy of the infornmatio
processed starting from the incoming signals.

C.Data Mining Goals

In order to predict the level of danger of an egutke
when it is running and to distinguish dangerouanfroon-
dangerous seismic events, a lot of data miningnigcles have
BE®N applied to create a numerical model of claasin.

In order to recognize a seismic event as dangesoust
while it's running many different DM techniques weapplied
to create a successful model which, once deployatisfied
the strict time constraint for classification.

The problem of seismic events classification wasdaby
means of Bayesian Networks, whose objective isuittllup a
model able to classify a seismic event, represeoyea set of
significant parameters, as dangerous by associdtmgalue
YES to the binary target value; the classificatisncorrect
only if the magnitude of the event is higher thhe thosen
threshold.

The Business goal was the prediction of the magdaitf an
earthquake in progress, so it was translated irdata mining
goal consisting of the classification of the magdé of
seismic events. In particular, the classificatiana binary
classification and the target class is the mageithdeshold.

The threshold is fixed to 5, because an earthquake
considered dangerous (in Irpinia area of Italy [@])]) if its
magnitude is greater than 5.

If the value of the expected magnitude exceedshifeshold
value, then a warning message could be given.

I1l. DATA UNDERSTANDING

A.Data Source

For the present work two data sources were used:
1) JAPAN, called J from KIK database [14], is aatat of
seismic registration from Japan KIKnet.
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2) RISSC, called R from RISSC database [15], iatagkt of
southern lItaly seismic registration from ISnet ifiig
Seismic network).

B.Data Format

The original data format was SAC which stands for
"Seismic Analysis Code". It was originally devedab to
analyze data in time series, especially seismia.dats one of
the most widely used data formats for data storiag¢he
seismological research community [13].

Every SAC file contains a fixed length header secti
followed by one or two data sections. The headentatos
floating point, integer, logical, and charactetd&

The following table shows some of the contentshef $AC
binary data file header. For example, Name of taga, date
of the seismic event, magnitude and event locafiwery SAC
file contains 133 fields, some defined and someefindd (set
to “-12345").

The second section of a SAC file contains the Sewes of
the dependent variable (acceleration or velocijated to the
header, registered by a seismic sensor.

The following is a SAC file header of a Japanesthgaake
of magnitude 4 occurred in 2006, February 18. Tieader has
32 defined fields.

TABLE Il

SAC HEADER EXAMPLE
FILE: AlIC0010602181621.UD.sé- 1
NPTS = 600
B = 0.000000e+00
E = 5.999000e+01
IFTYPE = TIME SERIES FILI
LEVEN = TRUE
DELTA = 1.000000e-02
DEPMIN = -3.949165e+00
DEPMAX = 2.167225e-01
DEPMEN =-1.835354e+0
AMARKER =9.19 (I-0)
TOMARKER =15.418
KZDATE = FEB 18 (049), 2006
KZTIME = 16:21:26.00
KSTNM = AIC001
STLA = 3.529440e+C
STLO = 1.367530e+02
STEL = 6.000000e+00

The header parameters have the following meanit@js [

TABLE Il
MEANINGS OF SAC HEADER PARAMETERS

NPTS Number of points per data component

B Beginning value of the independent variable

E Ending value of the independent vale

IFTYPE Type of file

LEVEN TRUE if data is evenly spaced

DELTA Increment between evenly spaced sampleq

DEPMIN Minimum value of dependent varia

DEPMAX Maximunr value of dependent varial

DEPMEN Mear value of dependent varial

AMARKER First arrival time (seconds relative {o
reference time) — P-wave arrival time

TOMARKER | Second arrival time (seconds relative |to
reference tim) — S-wave arrival tim

KZDATE Alphanumeric form of GMT reference d

KZTIME Alphanumeric form of GMT reference time

KSTNM Station nhame

STLA Station latitude

STLO Station ongitud¢

STEL Station elevatio

KEVNM Event name

EVLA Event latitude (degrees)

EVLO Event longitude (degrees)

EVDP Event depth below surface (meti

DIST Station to event distance (k

AZ Event to station azimuth (degrees)

BAZ Station to event azimuth (degrees)

GCARC Station to event great circle arc length
(degrees

LOVROK TRUE if it is okay to overwrite this file o
disk

USER1 User defined variable storage argea.
Magnitude event in this header

RNVHDR Header version numk

NWFID Waveform IC

LPSPOL TRUE if station components have a positive
polarity

LCALDA TRUE if DIST, AZ, BAZ, and GCARC are
to be calculated from station and event
coordinates

KCMPNM Component nam

The other header fields are undefined.

C.Earthquake Magnitude

Usually, the SAC field number 39 called MAG stothe
earthquake magnitude.

KEVNM = NONE

EVLA = 3.568500e+0

EVLO = 1.364210e+02

EVDP = 1.300000e+01

DIST =5.277971e+01

AZ = 1.450985e+0

BAZ = 3.252903e+0

GCARC = 4.746583e-01

LOVROK = TRUE

USER1 = 4.100000e+00

NVHDR = €

NWFID = 19¢

LPSPOL = TRUE

LCALDA = TRUE

KCMPNM = C

The magnitude is a parameter used by seismologfists
guantify the earthquake size. The Richter magnitadale
summarizes the amount of seismic energy releasedrby
earthquake. It is obtained by calculating the ldabar of the
combined horizontal amplitude of the largest disptaent
from zero on a seismometer output. Measurements hav
limits and can be either positive or negative [10].

D.Japan DataBase

The initial dataset consisted of 8208 files in Sfgtmat,
representing 2736 seismic events occurred in JAPR{.
each event the dataset contained three files:itbefor the
EW component (east-west), the second for the NSooent
(north-south) and the third for the UD (up-down) ibfe
acceleration of registration of seismic events.
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1. Japan Data Exploration

Userl attribute of SAC file header stores magnitade
seismic events whose histogram over the datasg&tawn in
Figure 4. The minimum value taken from this fietddi, while
the maximum is 7.3, the average is 4,915 whilestamdard
deviation is 0,766.

Selected attribute

Type: Numeric
Unique: 1 (0%)

Name: userl

Wissing: 01{0%) Distinct: 32

Skatistic value
Minimurn 4
Maximum 7.3
Mean

StdDew

4,915
0.766

[ visushze a1

Class: userl (Mum)

488

347

T d
4 585 73

Fig. 2 Userl=mag statistical distribution

E.RISSC DataBase

1. Irpinia Seismic Network

Irpinia Seismic Network (ISNet) is a local netwarkstrong
motion and it was designed in 2002. ISNet coversraa of

approximately 100 km x 70 km along Campania-Lucania

Appennine chain in Irpinia and is deployed along #ttive

fault responsible for the 1980, November 23, Ma@ 6.

Campania—Lucania earthquake [4]. ISNet consists28f
seismic stations, each of which is connected wdhl-time
communication to a Local Control Center (LCC) that
generally located in an urban area. The six LCCkenfast
elaborations over the incoming data from seisnatiats.

Fig. 3 Topology of communicatio

Irp Sais “
Network (ISNet) in southern Italy

2. The Waveforms and Events Database

RISSC (http://www.rissclab.unina.it/) keeps track the
events detected by ISNet and the relative wavefososrded
by the sensors.

After the request for permission it is possibleatwess the
database RISSC (http://dbserver.ov.ingv.it:8080Agsp).
This database stores objects for events, origiimagbns

(time and location), magnitude estimations and faves. A
waveform object for each sensor that recorded #inthguake
is also linked to the event object and stored atpoito a SAC
file.

3. Irpinia Seismic Events

In the last years no dangerous seismic event hagred in
Irpinia, thankfully.

A total of 38763 SAC files, related to events ofwlo
magnitude occurring between 2005 and 2009, were
downloaded from online RISSC database. The filexmiged
1297 earthquakes. For each event the dataset cedt#iree
files: the first for the up-down component (0), exond for
the north-south component (1) and the third for eéhst-west
(2) of the acceleration of registration of seisewents.

4, RISSC Data Exploration

MAG attribute of SAC file header stores the magnhétof
seismic events whose histogram over the datasgtasn in
Figure 4. The minimum value recorded in this figd0.4,
while the maximum is 5.7, the average is 1.745 avttile
standard deviation is 0,752.

Selected attribute

Type: Mumeric
Unique: 1 (0%)

Name: mag
Missing: 0(0%)
Statistic

Minirum 0.4

Distinct: 45

Walue

Maximum 5.7
Mean 1.745
StdDev 0,752

Class: mag (Kum) v \[ visualize Al

P ] P W)
i

F T
04 205 57

Fig. 4 mag statistical distribution

From data exploration analysis of the dataset its wa
observed that few earthquakes with magnitudes gré¢laan 3
are related to distant earthquakes from the seismataork
(dist > 200 km).

F.J + R Dataset

From data exploration step it is observed that dapeents
have higher magnitude than RISSC events.

TABLE IV
COMPARISON BETWEENDATASETSJAND R
JAPAN RISSC
8208 files 38763 files
# SAC 2736 UD, NS and EW 12921 0, 1 and 2
component component
Events dates From 1996 to 2006 From 2005 to 2009
# recorded 2736 12690
events
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al

JAPAN RISSC B.Seismic Attributes
# undefined On kind suggestion of an expert on seismology,raber of
k 102 78 Lo )
fields physical indicators were selected and thresholdhafnitude
#f'ed'df in ft'”a' 26 26 distinguishing events as dangerous or not waoset t
atase . .
% seismic events| 337 1597 These parameters were extracted from the tlmess_aﬂmg
In userl SAC header an “ad hoc” developed JAVA procedure for real-timata
Event field (mag field is | M Mag ~SAC integration.
; ) header field
Magnitude undefined)
[0.4,5.7]
(4, 7.3] TABLE V
be::r\:\;:er:rr?zctenl In delta SAC header| In delta SAC SEISMIC DERIVATE ATTRIBUTES WITH FORML.JLA.S AND MEANINGS
Y1 field header field Attribute Description
spaced 0.01 Hertz 0.008 Hertz Where PD is the module of tipeak
samples (Hertz) oG displacementmeasured in the first 4 seconds
. In dist SAC header| In dist SAC header| LOG(PD) f initial P-wave.
Station to event | - ) o) a ave
distance (km) field field LOG is a base-10 logarithm.
[2.07, 59.86] [0.32, 427 4] Where TP is the maximum, within 4 seconds
Eventdepth | In evdp SAC header| In  evdp SAC the initial P-wave, of theredominant
below surface | field header field period7 . , of the vertical component
(Km) [0, 50] [0.7, 459.8 P
waveform.,
IV. DATA PREPARATION
LOG(TP)
A.Time-check
The numberat =t, -a is calculated for each record, where A § A |
. . . . . Where v, and a, are the vertical componentt
a andt, are contained in the SAC file headers; in paréicul z ‘ . ) P )
) ) of speed and acceleration, and 0 is the arri
t, is the S-wave temporal marker (seconds relative tq of F-wave
reference time), whilea is the P-wave temporal marker (first Where TD is the maximum, within 4 second
. . . . of the initial P-wave, of theredominant
arrival time — seconds relative to reference tiniéje check . :
. . period7, , of the vertical component
requires thatAt>4 seconds [Fig. 5]. All those records, for waveform
which the time interval elapsing between the atrdfahe first ; :
wave (P-wave longitudinal, no-destructive seismaves) and LOG(TD [u2(39ds
the second wave (S-wave transversal, destructivemie (TD) rq(t) = 102—
waves) is less than 4 seconds, are excluded frerdataset. In [vz(9ds
fact, if At <4seconds the S-wave covers the P-wave and the Wh g ?h ical )
. . erevV, and U, are the vertical componen
signal to be analyzed will be corrupt and unusabla. the . 5 dd_z | 40 F; )
sake of clarity, all seismic parameters will becoddted in the ofspeedan 'Sgi‘f@z\fgt‘ and Ois the ari
first 4 secon_ds of P-waves in orqler.to reduce thge tof Where IV is the peak of speed integral, withi
warning. Making a recap, if the beginning of thev®ve is too LOG(IV2) seconds of the initial P-wave. IV2 is IV to
close to the beginning of the P-wave, time seried ois _square
covered by the time series of S and it is not fssb use the '-L%GG('T\'?ZZ/F',\I/)Z) PD2 is PD to square
first 4 seconds of the initial P-wave in order teegict the ( ) . -
N Where R is calculated from the parametiiss
trend of S-wave as expected from an Early Warniygjesn. LOG(RIL0) andevdpfound in the SAC file header.

The number of J + R records in the dataset thad paes
time-check is 11196 corresponding to about 76% 3111

R= \[dist2 + evdp2

seismic events) of the original dataset.

THRESHOLD_5

IF MAG<5 THEN THRESHOLD_5 = ‘NO’
ELSE THRESHOLD_5 = ‘YES’

Where MAG is the earthquakeagnitude

Amplitude VNSZ+EW24+ UD?

Time (sec)

Fig. 5 Time Interval between P-wave and S-wave

In particular, R parameter is the Euclidean distafrom

recording station to earthquake hypocenter:

Epicentre

Station
dist

Ground

evdp

Hypocenter

R=4/dist* +evdp*

Fig. 6 R seismic parameter
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TABLE VI
SEISMIC ATTRIBUTES WITH TYPES

# Name_Attribute Type

1 LOG(PD) Numeric
2 LOG(TP) Numeric
3 LOG(TD) Numeric
4 LOG(IVZ Numeric
5 LOG(PD2/IV2 Numeric
6 LOG(IV2/PD) Numeric
7 LOG(R/10) Numeric
8 THRESHOLD_5 NominglVES,NO}

ISSN: 2517-942X
Vol:6, No:4, 2012

In particular, Cluster number 1 has 9147 (82% df fu
dataset) records, while Cluster 2 has 2049 (18%0rds.

2. Cluster’s Evaluation

Starting from the dataset consisting of 11196 esaf J +
R described by 10 attributes (7 seismic attributes
THRESHOLD 5 + MAG + ORIGIN) two groups called
Clusterl and Cluster2 were obtained. The above WEKA
printout shows three obtained centroids: the fins¢é for the
full dataset and the others for two centroids.

Fixing Class attribute=ORIGIN, choosing Test

THRESHOLD_5 is the target attribute for all the ®at mode="Classes to clusters evaluation on traininga’da

Mining classification procedures.

k-means gave the following results:

=== Run information ===
Instances: 11196

Test mode: Classes to clusters evaluation on trgidata

=== Model and evaluation on training set ===
Cluster centroids:

Attribute Full Data 1
(11196) (9147)
MAG 2.388 1.8298
LOG(PD; -0.11¢ 0.282:
LOG(TP, -0.60¢ -0.525¢
LOG(TD) -0.190: -0.132:¢
LOG(IV2) 0.586¢ 1.250¢
LOG(PD2/IV2) -0.8149 -0.6858
LOG(IV2/PD) 0.7008 0.9681
LOG(R/10) 0.774 0.7984

Clustered Instances
1 9147 (82%)
2 2049 (18%)

Class attribute: ORIGIN

Classes to Clusters:
1 2 <--assigned to cluster
020451J

9147 4|R

Cluster 1 <--R Cluster 2 <--J
Incorrectly clustered instance 4.0 0.0357 ¢

2
(2049)
4.88
-1.883¢
-0.95¢
-0.448¢
-2.37¢
-1.391
-0.4925
0.6653

WEKA showed the distribution of JAPAN and RISSCaet
over the two classes, represented in Table VIII:

TABLE VII
THRESHOLD_5TARGET CLASS DISTRIBUTION TABLE VIII
THRESHOLD_5 class CLUSTERING MATRIX
Value Count 1 2
SI 887( 0 2045 | J
No 1030¢ o147 A R
From Table VII, the target class has an unbalanced TABLE IX
distribution. In addition, for any registration afangerous INSTANCENUMBER 75550FJ + R
seismic event in the dataset, there are aboutregiétrations 1 LOG(PD; -3.98014
f ts that are not dangerous (with MAG<5) 2 LOG(TP, -0.99441.
oreven g : 3 LOG(TD) -0.701155
. 4 LOG(IV2) -6.335259
+
C.J + R Clustering 5 LOG(PD2/IV2) -1.625029
In order to explore the complete dataset J+R andetk 6 LOG(IV2/PD) -2.35511!
possible outliers, a clustering algorithm was agahli 7 LOG(R/10; 1.10569:
1. K-Means g THRI;S:(? LD_S 2N7o
Thfe k-means aIgonthm. is one of the most y\(|delyduse 10 ORIGIN R
algorithms for data clustering. Using WEKA toolifig k=2, 11 CLUSTER cluster:

In particular the four red-highlighted records e tmatrix
belonged to R but they were attributed to J byélgerithm.
So these four records could be outliers. In stesisan outlier
is an observation that is numerically distant frive rest of the
data. These four records were removed from thesdaR + J.

The table 1X shows one of the records (instance bam
7555 of the original dataset).

3. Cluster's Representation

In Fig. 7 and in Fig. 8 below, the clusters areespnted in
planes LOG(IV2),LOG(IV2/PD) and LOG(PD),LOG(TD),
respectively.

Fig. 7 Clusters in LOG(1V2), LOG(>IV2/PD) plane
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2 LOG(PD) (fum) | | Y: LOG(TD) (Murn)

Colour: Cluster {Nom) v | | Select Instance

[ Gewr [ on J 5w ] stter

Plot: COMPLETO CON ORIGIN_clustered

Class colour

clusterl

clusterz

Fig. 8 Clusters in LOG(PD), LOG(TD) plane

In addition Clusterl is the blue one while Cluster¢he red
one. The outliers are circled in blue and we cam teir
distance from the centroids of the obtained clssier the
considered plans.

D.HoldOut Method with Stratified Remove Folds Filter

In order to carry on the modeling phase of the GRIBV,
R and J datasets were split into a selection ofestisb

Business and Data Understanding phases showeeéahbht
earthquake was recorded by many stations withinséigmic
network.

To facilitate rapid prediction of the earthquakedra that
is running, it was decided to split the dataseitd fwo subsets
IJ and NIJ, containing respectively all of the tfireaveforms
(time-check passed) of the seismic events and uhsegjuent
ones. Accordingly, the same splitting for the detaR was
made and the subsets IR and NIR were obtained.

Using a sequence of Stratified Remove Folds fifeweka
tool, it's possible to apply HoldOut Method [8] ddbtain some
subsets from original dataset J+R.

The following Fig. 9 and Fig. 10 show the splittiofJ and
R datasets.

5% STORE 18
1 25% TEST 74
347 10% VALIDATION 33
JAPAN
5% STORE 85
NIJ 15% VALIDATION 231
1698

Fig. 9 Splitting of JAPAN dataset

5% STORE 44
I 25% TEST 188
877 10% VALIDATION 84
5% STORE 414
NIR 15% VALIDATION 1123
8274

Fig. 10 Splitting of RISSC dataset

In table X, the results obtained concerning thedatgion
of the original dataset are summarized. In additite
descriptions and uses of these subsets are aksw. lis

TABLE X
USES ANDDESCRIPTIONS OFDATASETS
Dataset Name Description Use Cardinality
First and no-first To build the
TRAINING registrations classificatio 8898
from J and R datast n model:
First and no-first -Loe;erlsg;g;:
VALIDATION registrations varving the 1471
from J and R datasetq ying
parameters
First registrations To test the
TEST from J and R datasetq selected 262
models
First and no-first For new
STORE registrations records if 561
from J and R datasety necessary
without 4 outliers (they were in training set) 11192

V.MODELING

In order to classify dangerous earthquakes,
modeling techniques were selected and applied, thed
parameters were calibrated to optimal values. Irtiqudar,
many WEKA algorithms were applied MultilayerPeraept
for Neural Networks, J48 for Inductive Decision &seand
BayesNet for Bayesian Networks. In general all et
classification models showed good results on thet &et
consisting of only the first seismic recordingsthis paper we
show the results of applying an algorithm basedBagesian
Networks.

A.Bayesian Approach

As it is well known Bayesian classifiers are statéd
classifiers. They can be Naive or (Belief) Networkainly.
They can predict class membership probabilitieshsas the
probability that a given sample belongs to a palgic class.
Bayesian classification is based on Bayes theorem.

Bayesian or Belief Network (BN) used in this wosk a
probabilistic graphical model that represents acfaandom
variables and their conditional dependencies vidiracted
acyclic graph (DAG). BN specifies joint conditional
probability distributions.

various
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Formally a BN is defined by two components [8]:

1) DAG (defined by its topology), where each noglgresents
a random variable and each arc represents a pfistiabi
dependence (if an arc is drawn from a node A toderB,
then A is a parent of B, and B is a descendent)of A

2) Conditional Probability Table (CPT) for eactrigale (the
CPT for a variable A specifies the conditional wlgition
P(A| Parents(A)), where Parents(A) is the set of parehts
A).

Each node is associated with a probability functtbat
takes as input a particular set of values for thdefs parent
variables and gives the probability of the variatdpresented
by the node.

B.WEKA BayesNet

WEKA tool provides several algorithms for bayesia
classification. In order to classify seismic ewerggistrations,
in this work BayesNet algorithm of WEKA was applied

As it was already said, a BN is made up of two congmts:
the network topology and the conditional probapiiébles.

WEKA BayesNet algorithm [1] let to define such
components by means of the following parameters:

1) searchAlgorithm selects the method for searchietwork
topology; we fixed it to K2.

2) Estimator selects the algorithm for calculatine
conditional  probability tables. We
SimpleEstimator algorithm.

chose tth

concerning all the first registration of earthquakeSuch
metrics are traditionally the followings:
1) True Positive (TP) and True Negative (TN) rates.
2) False Positive (FP) and False Negative (FNprate
3) ROC and ROC Area (AUC).
4) Confusion Matrix.
5) Total Cost.
In particular the overall (total) cost performanoetric is
defined as follows:

C = NpgC(#,4)+ NepC(=#)+ NpyC(=-)+ Ny C(+,-)» for a binary class
problem.
Nrp
classified by the modelNg, describes the amount of negative

records misclassified as positive and so on. Meeav(, j)

r;s the cost of classifying a record in the i-thsslas a record of

the j-th class.
The next 2x2 cost matrix was fixed following domaipert
advices for evaluating the models built:

TABLE XII
COSTMATRIX
Positive | Negative
Positive 0 11.6
Negative 1 0

The cost C(+,-) = 11.6 of committing a false negagrror
as chosen taking into account the unbalancedluison of
“THRESHOLD_5" attribute target (Table VII): the dosef

In the next table, WEKA BayesNet parameters ar@ommitting a false negative error is 11.6 timegéarthan the

summarized.

TABLE XI
BAYESNET PARAMETERS

estimator SimpleEstimatc
searchAlgorithm | K2

A lot of bayesian models have been produced byyampl
BayesNet algorithm, by changing the values of thet two
parameters:

1) A = alpha parameter of the SimpleEstimator athor

which sets the starting value for the -calculatioh o

conditional probability.

2) P = maxNrOfParents parameter of K2 algorithnichvisets
the maximum value of the number of parents of eade
in the network topology.

The performances of the built models were calcdlaed
compared.

C.Model Performance Metrics

The Data Mining models test was designed with tnpase
of selecting models with high performance resuftsasrectly
recognizing dangerous seismic events (i.e. clasgify
magnitude) elaborating only the first registratiaf the
earthquake, so that the whole elaboration timehef Early
Warning System was appreciably reduced.

Performances of obtained models were estimatedstmgu
ad hoc metrics on the TEST dataset containing 262rds

cost of committing a false alarm. In other wordsjufe to
detect any positive example is just as bad as cttingill.6
false alarms.

D.BayesNet Applications

The algorithm parameters were calibrated basedhen t
model performance results over the VALIDATION sEbr
the sake of clarity, we set P and changed A. Thelt®of the
obtained models were compared. It was selectedribeel
whose metrics got the best values correspondir®ytal, P =
2and P =3.

In the following boxes the results are shown. Tinst
section of every box contains the testing results o
VALIDATION set and the second one reports the tegti
results on TEST set. In addition, the topologiea@) of the
networks (P = 1,2,3) are given.

THRESHOLD 5,

LOG(PD) LOG{TP)

Fig. 11 Bayes Network with P=1

indicates the amount of positive cases correctly
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P=1 A=8.4
=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1332 90.5506 %

Incorrectly Classified Instances 139 9.4494 %
Kappa statistic o35

Total Cost 322

Mean absolute error 0.0925

Root mean squared error 0.283

Relative absolute error 64.3528

Root relative squared error 105.8562 %

Total Number of Instances 1471
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision ROC Area Class
0.93 0.097 0.447 0.971 YES
0.903 0.07 0.994 0.971 NO
=== Confusion Matrix ===

a b <-- classified as

106 8| a=YES
131 1226| b=NO

=== Evaluation on TEST set ===

Correctly Classified Instances 219 83.5878 %

Incorrectly Classified Instances 43 16.4122 %
Kappa statistic B4

Total Cost 4.3

Mean absolute error 0.1609

Root mean squared error 0.3893

Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.938 0.178 0.423 0.959 YES
0.822 0.063 0.99 0.959 NO

=== Confusion Matrix ===
a b <-- classified as

30 2| a=YES
41 189 b=NO

LOG(PD)

<

LOG(PD2{TV2

LOG(TV2)

LOG[TP)

L OG{IVZjPDY)

LoG{TR)

P=2 A=11.3
=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1413 96.0571 %

Incorrectly Classified Instances 58 3.9429 %
Kappa statistic @70

Total Cost 480

Mean absolute error 0.0454

Root mean squared error 0.1734

Relative absolute error 31.5909

Root relative squared error 64.8546 %

Total Number of Instances 1471

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.667 0.015 0.792 0.98 YES
0.985 0.333 0.972 0.98 NO

=== Confusion Matrix ===
a b <-- classified as

76 38| a=YES
20 1337| b=NO

=== Evaluation on TEST set ===

Correctly Classified Instances 247 94.2748 %

Incorrectly Classified Instances 15 5.7252 %
Kappa statistic (%]

Total Cost 6.8

Mean absolute error 0.0667

Root mean squared error 0.2044

Relative absolute error 36.7881

Root relative squared error 61.8782 %

Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.906 0.052 0.707 0.979 YES
0.948 0.094 0.986 0.979 NO

=== Confusion Matrix ===
a b <--classified as

29 3| a=YES
12 218| b=NO

Fig. 12 Bayes Network with P=2

LOG{PD)

LOG(TR)

LOG(TD) L OG{PDZ/IV2),

Fig. 13 Bayes Network with P=3
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P=3 A=3.27

=== Evaluation on VALIDATION set ===

Correctly Classified Instances 1413 96.0571 %
Incorrectly Classified Instances 58 3.9429 %
Kappa statistic @70

Total Cost 480

Mean absolute error 0.0429

Root mean squared error 0.1659

Relative absolute error 29.838

Root relative squared error 62.0562 %

Total Number of Instances 1471

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class

0.667 0.015 0.792 0.983 YES
0.985 0.333 0.972 0.983 NO
=== Confusion Matrix ===
a b <-- classified as
76 38| a=YES
20 1337| b=NO
=== Evaluation on TEST set ===
Correctly Classified Instances 251 95.8015 %
Incorrectly Classified Instances 11 4.1985 %
Kappa statistic ne
Total Cost 2.3
Mean absolute error 0.0618
Root mean squared error 0.1947
Relative absolute error 34.0841
Root relative squared error 58.9282 %
Total Number of Instances 262

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.938 0.039 0.769 0.984 SI

0.961 0.063 0.991 0.984 NO

=== Confusion Matrix ===

a b <--classified as
30 2 | a=38lI
9 221| b=N(

E.Models Comparison

The performances of the built models were calcdlated
compared.

In Table XllI the results of the three previous ralsdare
summarized.

In the next Fig. 14 the ROC curves of the bestethmedels
obtained are compared.

TABLE XIlI
SOME COMPARATIVE METRICS

AUC
Nr Parameters VGiEl on | Matrix on

Cost | regr| TEST set
P=maxNrOfParentsq1 300 2

1 A=alpha=8.4 64.21 0.95 41) 189

Confusion

= E 29| 3
5 P malerOf?arents 246.8 0.97
A=alpha=11.3 12| 218

P=maxNrOfParents3 30§ 2
3 [ s | 322 | 0845155

L ]

FP rate

Fig. 14 Bayes ROC curves

As it is well known, the closer the curve is to tigper left
corner, the better the classifier performs becahse True
Positive rate dominates over the False Positive rat

In this case the classifier number 3, called RE&sgifier,
with P=3 and A=3.27 offers the best results. Itsegponding
AUC on the TEST set was higher and his total cest lower.

F.Models Test on Irpinia Earthquake

On November 23, 1980, a powerful earthquake detesta
the Irpinia area. Irpinia is a region of the ApernMountains
around Avellino, a town in Campania, southern I@hput 40
km east of city of Naples. Measuring 6.9 on thehRic Scale,
the quake, originated beneath the village of Corkiked
2.914 people, injured more than 10.000 and left.(0D
homeless. This event produced vast damaging armmhgstr
amplitude shaking on a wide area. This event marked
beginning of quantitative seismic hazard assessnient
southern ltaly [6].

It is well known that there are no real seismogréonghis
great energy event because ISNet (par. Il E) westtive in
1980. In order to test the obtained data mining emxd
synthetic seismic traces were used, that simulatesl
waveforms recorded by the ISNet stations. Thesehstin
seismograms are enclosed in 75 SAC files correspgrid 75
/ 3 = 25 records (25 stations). The records weaesformed
accordingly to activities described in the Data Ersthnding
and Preparation phases, and the seismic parametes
calculated from the first recording of the earthaquahat
exceeds the time-check seconds and they weres sepuat to
the RED classifier which correctly classified thpihia event
as dangerous. In other words, the record of tte¢ $iynthetic
registration of Irpinia earthquake was well classif in
TRESHOLD_5 class as “YES”. In the following tablé\Xthe
7 seismic parameters of the first registrationsm@wn. The R
distance is about 25 km. And the first time-cheakged signal
was registered after 4.3 seconds from the originthef
earthquake.
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TABLE XIV that one of the advantages assured by using Datangi

IRPINIA EARTHQUAKE FIRST RECORD
FIRST
REGISTRATION OF
IRPINIA SISMA
LOG(PD -1.3345¢
LOG(TP) -0.41132 [1]
LOG(TD) 0.166463
LOG(IV2) -2.326¢ [2]
LOG(PD2/IV2 -0.3428¢
LOG(IV2/PD) -0.99172 (3]
LOG(R/10) 0.409054
VI. DEPLOYMENT [4]

The RED classifier was integrated within an EW eyst [5]
able to connect to a seismic monitoring sensor otwsing
the most widespread seismic data format via TCpytfRocol, (6]
to receive the data and process them in order t@axthe
physical indicators and evaluate the level of damggness of (7]
the running event just basing on the first regtgiraof the
earthquake. Flowing the synthetic data of the Igih980
earthquake into such EW system, very good resulsew
obtained: the overall time interval from catchiing tevent to [9]
the warning was 6.1 seconds and the probabilifalsé alarm
was less than 3%.

The EW system was enriched with advanced functitesl
for the multidimensional analysis of historical seic data, [11]
based upon data warehousing technologies. [12]

[10]

The logical architectural view of the cited EW systis [13]
depicted in the following Fig. 15. [14]
[15]
7 Dialog Management System
TR User Interf = ]
g y‘/ ser Interface ]
T2 . [
(13| pommin podien || [t Mg Apcation |
ensor a U 1] A
n Data Mining
AL . Engine
Aa g (/"'\
£ T Model Management System
ahA | _ _ E
A AA B ° D&B W
A A DB-GIS -
AAASI ? R
\\ .:, Data Management System / Real-time
///

Fig. 15 I:ogical Architectural View of Seismic EW Sgm

VII. CONCLUSION

In our knowledge, the application of Data Mining
techniques for seismic early-warning purposes isyeb fully
explored. Many future developments can be addrestseting
from the creation of models based on more inforomati
coming from the reduction of the time interval aled for
passing the initial check, ending to the formulatiof the
estimation of the magnitude as a multiclass clasdibn
problem. In addition, other approaches can be gdbicarry
on the model phase: for example Neural Network#lexrging
the reduction of false alarms. Finally, it is wotthunderline

analysis methods was the availability of well-knowissed
and false alarms probability.
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