
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3375

Abstract—Testing accounts for the major percentage of technical

contribution in the software development process. Typically, it

consumes more than 50 percent of the total cost of developing a

piece of software. The selection of software tests is a very important

activity within this process to ensure the software reliability

requirements are met. Generally tests are run to achieve maximum

coverage of the software code and very little attention is given to the

achieved reliability of the software. Using an existing methodology,

this paper describes how to use Bayesian Belief Networks (BBNs) to

select unit tests based on their contribution to the reliability of the

module under consideration. In particular the work examines how the

approach can enhance test-first development by assessing the quality

of test suites resulting from this development methodology and

providing insight into additional tests that can significantly reduce

the achieved reliability. In this way the method can produce an

optimal selection of inputs and the order in which the tests are

executed to maximize the software reliability. To illustrate this

approach, a belief network is constructed for a modern software

system incorporating the expert opinion, expressed through

probabilities of the relative quality of the elements of the software,

and the potential effectiveness of the software tests. The steps

involved in constructing the Bayesian Network are explained as is a

method to allow for the test suite resulting from test-driven

development.

Keywords—Software testing, Test Driven Development,

Bayesian Belief Networks.

I. INTRODUCTION

ECENT research by Wooff et al [1, 2, 3, 4] introduces the

use of Bayesian Belief Networks (BBNs) or Bayesian

graphical models to aid software testers, developers and

managers in the selection and ordering of software tests.

BBN’s are a probabilistic framework that can combine the

software system structure with the expert opinion to select

tests to achieve the required level of reliability at system,

subsystem or even module level.

Manuscript received January 25, 2006. (Write the date on which you

submitted your paper for review.) This work was supported by DKIT as apart

of HETAC strand I project.

Vijaya Periaswamy.S., a master’s research student of Department of

Computing and Mathematics, Dundalk Institute of Technology, Dundalk,

Republic of Ireland (phone: +353 429370563; e-mail:

Vijaya.Periaswamy@dkit.ie).

Kevin McDaid is a Lecturer of Department of Computing and

Mathematics, Dundalk Institute of Technology, Dundalk, Republic of Ireland.

(e-mail: Kevin.McDaid@dkit.ie).

With the assistance of a major international company,

Wooff et al have trialed the approach on a number of systems.

This research is built on their work but goes beyond existing

work by investigating, through a real software project,

whether this approach can be applied to a system developed

using a test-driven development (TDD) methodology.

The paper is structured as follows. Section II describes the

methodology pioneered by Wooff et al to use BBNs to assess

the quality of tests based on their contribution to the reliability

of the software system. Section III discusses the application of

the methodology within the test driven development scenario.

 Section IV illustrates our work through a case study that

applies the approach to an existing system. W explain how the

resulting model may be used to assess the quality of the tests

that are generated through TDD and to propose supporting

tests that can contribute to a significant reduction in the

remaining reliability of the module examined. Section V

concludes the work.

This paper presents some early results from a study whose

broader objective is to research the application of the BBN

methodology to systems developed using test-driven

development.

II. BAYESIAN BELIEF NETWORKS

The theory of BBNs, developed over the last two decades,

has, through the availability of good computing facilities,

become an increasingly powerful tool for the solution of

complex decision problems where a large number of factors

contributing to overall uncertainty [5].

A BBN is a network of nodes connected by directed links

with a probability function attached to each node. The nodes

represent uncertain variables and arcs represent the casual

relationships between the variables.

The probability tables for each node provide the

probabilities of each state of the variable represented by that

node. Nodes without parents require marginal probabilities

while for the nodes with parents, these are conditional

probabilities for each combination of parent state values [6].

In effect, if there is a directed link from one node (parent)

to another (child) in a BN then the probability of the child is

evaluated conditionally on the values of the node from which

the link originates [7]. Sections II and IV describe a particular

BBN in more detail.

In general, the network is characterized by providing a

formal framework for the combination of data which, in our

Bayesian Belief Networks for Test Driven

Development

Vijayalakshmy Periaswamy S., and Kevin McDaid

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3376

case, allows test results to be combined with experts’ opinion

to assess the quality of software tests.

A. How to Build BBNs for Software Testing?

The BBN methodology focuses on major software actions

and the probability that there is no input that is processed

incorrectly by the action.

A software action is effectively a self contained collection

of software code responsible for a piece of processing that can

be practically tested. In the following example we examine a

single discrete software action. In practice a more complicated

system is likely to contain one or more transactions each of

which may consist of a series of software actions.

An example would be a transaction in an ATM machine

which may consist of a series of actions including checking of

card, requesting of information such as PIN and account

details, processing of information to complete selected

financial request and finally the delivery of the cash and

receipt.

Generally, the first key issue in the development of the

representative BBN involves the sequencing of these actions

linked to an inputted test. This is typically the first stage in the

development of a BBN. We now discuss the process in more

detail.

B. Stages Involved in Structuring BBNs

The different features involved in creating a BBN to aid

testing of a software module are depicted in Figure 1.

Initial development consists of identifying the Software

Actions and structuring the BBN based on the possible inputs

and the relationships between SAs. Sequencing of SAs is

particularly important in the process.

The next stage involves the development of domain nodes

for each software action based on partitioning the possible test

inputs for the Software Actions. The inputs are the possible

test values and the input spaces can vary for different SAs.

Construction of the groupings is based on expert beliefs

regarding the likelihood that certain test inputted values are

more or less likely to fail than others.

Using a well-quoted practical example, the processing of a

PIN number may depend on the length of the number and thus

require two domain nodes to represent the two subgroups of

possible tests, namely long numbers and short numbers.

Technically the inputs for any domain node should be

exchangeable in the sense that the processing of any input

within a group by the associate software action does not give

any more information then the processing of another input

within the group.

Once the input nodes are established the method inserts

nodes to represent the problem that at least one input of each

exchangeable type fails.

The structuring activity is completed through the creation of

the BBN for the software action. This involves specifying

nodes for the possible problems that could cause the software

to fail. The node representing the overall quality of the

software, through the probability that at least one failure

causing fault remains, follows from these problem nodes.

Fig. 1 Structuring a BBN

Once structuring is complete, the next stage is assessing

prior specification for all the nodes. The probability values

defined for the root nodes in the network are elicited and the

conditional probability values for the child nodes are assigned

based on the structural relationships between nodes.

When we later take a practical example we shall see that the

BBN for a software action can be seen to consist of two

separate layers. The first relates to faults and the source of

faults in the action. We label this the Fault layer, the second

looks at possible inputs and tests and the likelihood that the

action may process an input incorrectly. This we term the Test

layer.

All the results required in the approach are computational

and it can performed using packages like HUGINTM,

NeticaTM, MSBNX etc...The stages given above are an

outline for the development of BBN’s, for further details

we refer to [1].

We demonstrate this approach as part of our ongoing study

and describe the overall aspects of the implementation of our

approach in the following section We next term our attention

to the area of Test Driven Development before we investigate

whether the BBN methodology can be applied to code

developed using this methodology.

I n i t i a l S t r u c t u r i n g

A s s e s s i n g P r i o r

S p e c i f i c a t i o n

B B N

 R i s k o r D e c i s i o n

A n a l y s i s

D o m a i n N o d e s

 f o r B B N

C o n d i t i o n a l

P r o b a b i l i t y T a b l e (s)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3377

III. TEST-DRIVEN DEVELOPMENT (TDD)

TDD is one of the emerging software programming

techniques that combine test-first development, where you

write the tests before you write the code to fulfill that test and

with refactoring of tests [8]. The primary goal is the

requirement specification and not validation. To be precise it

follows that you design before you write the functional code.

TDD does not replace traditional testing. Instead it defines

a way to ensure effective unit testing. The outcome is that the

resulting tests are the working examples for the invoking

code, thereby satisfying the specification of the code. The

question in this paper is how these tests should be

incorporated within the BBN methodology proposed.

TDD has been found to be a much more flexible approach

to the client’s ever changing requirements by embracing

iterative development techniques. This will cause a natural

and longer testing period and improve the quality of the

application.

TDD, when implemented, results in a suite of automated

tests. Automated tests have significant advantages. By

maintaining a suite of tests that are both repeatable and

automated we can benefit by updating the changes needed for

the code design with prior knowledge that any deviations or

errors will be traced by re-running the test suite [9].

However, the key question remains regarding the quality of

the tests that are generated through TDD. In practice a further

suite of unit tests are added to this harness, through

refactoring, to ensure the modules are sufficiently reliable.

This paper studies the methodology to establish the

reliability of the existing tests and to propose supporting

additional tests.

TDD has its origin in Java and Smalltalk [9] and has grown

to include a number of supporting tools. These include CUnit,

DBUnit, JUnit, OUnit, NUnit and VBUnit. These tools are

represented by means of ‘xUnit framework’ following the

language agnostic version of different tools. Based on the

application needs, these frameworks can be ported to many

different platforms and languages

Generally unit tests are coupled tightly to application code,

as they grew up with the code from scratch. If it is the case,

one should normally change the unit test to test the

functionality of the unit instead of design internals. But if the

deadline is tight, as is often the case with software

development, there is often only time to fix the unit tests and

to ensure they continue to run.

TDD offers clear advantages for the software professional.

However, it is not perfect and it is difficult for the

professional to establish whether module code has been tested

sufficiently. The BBN methodology may overcome this issue.

The next section examines a test suite consisting of a set of

unit tests developed for a module of a real system and

explores whether the BBN approach can be used to assess the

quality of the tests.

IV. CASE STUDY

We next examine one module from a recently developed

software system to demonstrate the methodology. Ongoing

research is applying the methods to a large number of

modules. The module, named Module X, takes two floating

point inputs labeled D and T, and returns an array of floating

point values following a set of calculations. This piece of

code, which is an important task within a bigger system, is

treated as a single software action.

In general software actions may involve a number of

modules and thus unit tests, developed through TDD, may

combine to indicate the reliability of software actions. This

module includes 7 tests.

This system is developed in Java and the TDD framework

used is JUnit 3.8.1. The module and the unit tests were run in

the Eclipse 3.0.2 platform. Details of the company and the

software system under investigation are not revealed for

confidentiality reasons.

We present an example of a BBN designed for the module

in question following the stages discussed in Section II.

A. Construction of BBN

For this single module there is one Software Action

requiring two inputs with 7 tests already in place following

test driven development. The question arises as to whether

these tests are sufficient to establish the reliability of the

system or whether further tests are required. We construct the

BBN to answer these questions.

The entire BBN is shown in Figure 2. It centers on the

reliability node N which gives the probability that the

software module contains no faults. This is the crucial

measure of the reliability of the module.

The two floating point inputs to the module are D and T.

The first step is identify the classes of inputs that are

exchangeable, that is the separate group of inputs within

which no one pair of inputted values for D and T is believed

to be more likely to fail then another.

After careful examination of the code, in collaboration with

the developer, it was decided that the inputs could be

separated into five groups of exchangeable inputs. These are

listed in the table below together with a description of allowed

values. The breakdown can be seen to depend strongly on the

product of the two inputs.

Each of the nodes, L, M, H, D0 and T0 feeding into N

represent the probability that at least one fault from the

exchangeable input group will fail due to a fault that affects

these inputs.

To allow the elicitation of expert opinion in a natural way

the BBN includes the nodes L*, H*, D0* and T0* to represent

the probability that there is a problem in the code which may

affect the particular set of inputs alone.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3378

Fig. 2 BBN for the Module X

Thus, for example, L* is the event that there is a problem in

the code which produce faults for inputs of the exchangeable

group L but not for inputs of any of the other groups M, H,

D0, T0. The C* node reflects the chance that there is a

problem which may affect any input. Note that there is no M*

node as it is felt that the any problem which affected this node

would affect any of the others and thus could be replaced by

C*.

The lower half of the BBN deals with the possible test

inputs. In particular the nodes PL, PM, PH, PD0 and PT0 give

the proportion of inputs of each exchangeable group that are

likely to fail conditional on the state of the parent nodes. From

these we have the test nodes L tests, M tests, H tests, D0 tests

and T0 tests which represent the possible tests.

B. Quantify Beliefs

The model can be quantified through an elicitation process.

For this BBN we start specifying probabilities for the root

nodes based on the Expert’s judgment. The conditional

probability tables for the nodes L, M, H, D0, T0 and N are

often deterministic in structure and require no elicitation

activity. The proportion nodes PL, PM, PH, PD0 and PT0

however require an amount of expert input. In particular the

expert must assess the likelihood that all inputs will fail if

there is a problem with at least one input. Furthermore the

expert must provide indications as to the best beta distribution

to model the likely proportion from 0 to 1 that will fail given a

problem that affects the particular group of inputs. The final

group of nodes representing the probability of test success and

failure follow from the proportion nodes.

C. Test Procedure

Testing of the module involves the selection of pairs of D

and T values with each pair associated with a one of the

exchangeable groups. Each test will add one test node to the

appropriate proportion node in the BBN. Note that when

running the tests all other inputs should be selected randomly.

 If the test passes in practice then this information is added

to the BBN through the instantiation of the appropriate test

node. This then reduces the chance of failure of similar tests.

Most importantly the success of a test should increase the

reliability of the module and reduce the chance of failure of all

tests as they are indirectly linked through the C* node. If a test

fails then the BBN can indicate where the problem is most

likely to lie. Once the software is repaired a redesign of the

BBN may be necessary.

This approach provides a probabilistic assessment of the

reliability of the software being tested before and after the

testing process and helps to choose the test suite which

maximizes the conditional probability of software

acceptability.

The tests can be chosen by searching all possible

combinations to maximize the achieved reliability though

node N.

C*

D0* L* H*

M

T0*

L D0 H T0

N

PM PL PH PD0 PT0

L Tests M Tests H Tests D0 Tests T0 Tests

TABLE I

LIST OF ALLOWED VALUES FOR THE DIFFERENT DOMAIN NODES

S.No Group Labels Description

1 L D > 0 & T > 0 & D,T Low

2 M D > 0 & T > 0 & D,T Medium

3 H D > 0 & T > 0 & D,T High

4 D0 D = 0 & T > = 0

5 T0 D > 0 & T = 0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3379

The approach can be applied when tests are already in place

though TDD. In our case study, we have taken initially seven

possible test cases within the test suite and analyzed the

reliability outcome in the node N. The presentation of our

results and brief discussion concludes the work.

V. RESULTS AND DISCUSSION

Following construction of BBN and elicitation of all expert

opinion but before inclusion of test results it was found that

the reliability of the module was 64.33 %.The results are

shown in Table 2.

To increase this reliability the BBN methodology proposes

that the tests should be selected based on their contribution,

assuming they pass, to this reliability. It was found that a test

using inputs from group H (labeled H Test 1) would increase

the reliability by 21.03% which was better than the rest of all

other tests. Hence H Test1 should be carried out first. This is

then considered to have passed and the appropriate test node

instantiated.

The process again examines the five possible distinct test

cases next to apply and chooses based on their contribution to

the achieved reliability. If we continue on this tack, wishing to

achieve over 99.50% reliability say, then Table 2 shows the

order in which tests would be selected.

 That results in an order for tests as follows D0 Test1, L

Test1 followed again by H Test2, L Test2, H Test3, L Test3, T

Test1, L Test4, H Test4, L Test5, L Test6, H Test5, D0 Test 2,

and H Test5 subsequently increasing the reliability by 6.58,

3.37, 2.08, 0.62, 0.53, 0.31, 0.19, 0.18, 0.17, 0.11, 0.07, 0.06

and 0.05 percentages at each successive test runs.

 As the table shows 11 tests are required to achieve the

desired reliability of 99.50%. The eleven tests are broken

down as four of type H and five of type L and one of type D0

and one type of T test with no tests of type M necessary.

It is clear to see the diminishing effect on reliability as

further tests are added. The point at which further testing is no

 longer economically viable is a decision for each developing

organization. Note that, these are scenarios where further tests

are completely redundant. This will occur where the expert

opinion indicates that either all tests pass or all tests fail.

The selection of tests described hitherto does not account

for the Test Driven Development methodology. Under this

approach a number of tests are in place prior to any subsystem

testing. These must be allowed for in both the initial

specification of the reliability and in the selection of further

tests.

The existing test suite consists of seven unit tests to verify

the functional aspects of the module. These tests were

matched to the exchangeable input groups used in the

specification of the BBN. On examination it was found that

the test suite consists of three H Tests, three L tests and one

D0 Test. The test sets were not run with a specific order in

mind. Appropriate test nodes were added to the BBN and

instantiated to reflect this information.

It is interesting to note that, as with the derived test cases,

these automated tests do not include inputs of type M or T0

The seven TDD tests increase the reliability by 34.52%

from 64.33% to 98.85%. Using the methodology described we

determined that to obtain reliability of 99.50% we must apply

one further tests of type H, two test of type L and one test of

type T.

VI. CONCLUSION

This paper illustrates an emerging technique to aid the

selection of software tests. The BBN methodology is both a

flexible and powerful way to organize the belief modeling to

support the key activities of software testers and managers.

We apply the methodology through a case study of a single

module developed using test driven development. By its

nature, this approach yields working tests prior to extensive

subsystem and system testing. We show that these can be

included in the methodology to guide the selection of further

tests.

In future research we intend to apply the methodology to a

larger system.

ACKNOWLEDGMENT

The authors acknowledge the support of the TSR fund

administered by the Council of Directors of Institutes of

Technology in Ireland as well as the research secondment

programme at Dundalk Institute of Technology.

TABLE II

LIST OF ALLOWED VALUES FOR THE DIFFERENT DOMAIN NODES

Test Test Name Reliability Attained (%)

None 64.33

1st run H Test 1 85.36

2nd run D0 Test 1 91.94

3rd run L Test 1 95.31

4th run H Test 2 97.39

5th run L Test 2 98.01

6th run H Test 3 98.54

7th run L Test3 98.85

8th run T Test 1 99.04

9th run L Test 4 99.22

10th run H Test 4 99.39

11th run L Test 5 99.50

12th run L Test 6 99.57

13th run H Test 5 99.63

14th run D0 Test 2 99.68

15th run H Test 6 99.70

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3380

REFERENCES

[1] David A. Wooff, Michael Goldstein, and Frank P.A. Coolen, “Bayesian

Graphical Models for Software Testing”, IEEE Transactions Software

Engineering, May2002, pp 510-525.

[2] Kearton Rees, Frank Coolen, Michael Goldstein, and David Wooff,

“Managing the Uncertainties of software testing: a Bayesian Approach”.

Quality and Reliability Engineering International, 17, in 2002 pp 191-

203.

[3] F.P. Coolen, M. Goldstein, and D.A. Wooff, “Using Bayesian statistics

to support testing of software systems”. Proceedings of the 16th

Advances in Reliability Technology Symposium, in 2005, pp 109-121.

[4] F. P. A. Coolen and M. Goldstein and D. A. Wooff, “Project viability

assessment for support of software testing via Bayesian graphical

modeling”, In: Safety and Reliability, Lisse: Swets & Zeitlinger, in 2003,

pp 417-422.

[5] Jensen, F.V.,”.Bayesian Networks and Decision Graphs”. New York:

Springer 2001

[6] “Bayesian Belief Networks”, Available:

 http://www.hugin//developer.com//

[7] Norman E. Fenton, Martin Neil, “Software Metrics: roadmap”,

Proceedings of the Conference on the future of Software Engineering,

ACM Press, 2000, pp 357-370.

[8] “Introduction to Test-Driven Development (TDD)”, Available:

http://www.agiledata.org//

[9] “Improving Application Quality Using Test-Driven Development

(TDD)”, Available: http://www.methodsandtools.com//

Vijaya Periaswamy S., received her Engineering Degree at REC, Trichy,

India and after three years in Software Development and Training, Vijaya now

researches the application of Bayesian Belief Networks to Software Testing

under the guidance of Dr. Kevin McDaid as part of her Msc.

Kevin McDaid received his BSc, joint honors, in Mathematics and

Mathematical Physics and his Msc in Statistics from University College

Dublin. He received his PhD in Statistics from Trinity College Dublin. He

currently lectures in the Computing Department at Dundalk Institute of

Technology where he specializes in teaching Computer Mathematics and

Programming. Kevin is interested in the application of statistical techniques to

Software Engineering. His research is currently focused on decision problems

in software development and he has conducted significant research into the

problem of when to stop testing software.

