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Abstract—In this paper, Backstepping method is proposed to 

synchronize two fractional-order systems. The simulation results 
show that this method can effectively synchronize two chaotic 
systems. 
 

Keywords—Backstepping method, Fractional order, 
Synchronization. 

I. INTRODUCTION 

RACTIONAL calculus is very interesting area, which has 
been originated from 17th century. For demonstrate the 

chaotic behavior some fractional-order differential systems 
such as Chua circuit [1], Duffing system [2], jerk model [3], 
Chen system [4], the Fractional-order Lü system [5], Rossler 
system [6], Arneodo system [7] and Newton–Leipnik system 
[8] have been found. Chaotic systems are difficult to be 
synchronized. Control of chaotic systems has been considered 
as an important and challenging problem because of 
sensitivity of initial conditions. Different control technique as 
in [9] (FSMC) strategy for synchronization of chaotic systems 
has been proposed. In [10] an active sliding mode controller 
has also been presented to synchronize two chaotic systems 
with parametric uncertainty. An algorithm is designed to 
determine parameters of active sliding mode controller in 
synchronizing different chaotic systems have been studied in 
[11]. A systems with uncertainties of an adaptive sliding mode 
controller has also been studied in [12].Over the past decade, 
Backstepping has become the most popular design method for 
adaptive nonlinear control because it can guarantee global 
stabilities, tracking, and transient performance for a broad 
class of strict feedback systems. It has been shown that many 
chaotic systems as chaos, including Duffing oscillator, van der 
pol oscillator, Rossler system, Lorenz system, Lü system, 
Chen system and Chua’s circuit, can be transformed into non-
autonomous form has been studied in [13]-[15] and the 
backstepping control schemes have been employed to control 
these chaotic systems with key parameters unknown. In 
particular, the output of the controlled chaotic system has been 
designed to asymptotically track any smooth and bounded 
reference signals generated from a known reference model 
which may be a chaotic system. In this paper Backstepping 
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method is applied to synchronize two fractional-order chaotic 
systems. 

II. BACKSTEPPING METHOD FOR FRACTIONAL SYSTEM 
Consider two dynamical systems. The master system and 

slave system as: 
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The fractional order derivatives of the systems (1) and (2) 
are  
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The error dynamics are 
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D e =                     (5) 
 

In this section, the backstepping design technique is applied 
to obtain control laws of error system (5). The design 
procedure is divided into the following steps. 

In the first step we consider the stability of the first equation 
of system (5) 
 
D w  ( )  
 
D w  ( )                                                          (6) 
 
where    and    and  are controllers choose the first 
Lyapunov functional candidate as follow 
 
v  =  w 0                                                  (7)  
      
The derivative of the above function is 
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where  is a positive constant and for  
 
 0, the equation is 
 
v = w  
 

Subsequently the zero solution of (7) is asymptotically 
stable. 

 
= e   

 
When e   is considered as an controller,   is                                                                                                                             

estimative function. Defining 
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where  and  are controllers now, we candidate the second 
Lyapunov function as 
 
v , = v w   0                      (9)    
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Assuming controllers 
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and = ,  
 
v ,  = w w  + w D ( )) 
 
where  is a positive constant, and for , =0, the 
equation is  
 
 v ,  = w w 0  
 

This will guaranty that the zero solution of (9) is 
asymptotically stable. 

When   is considered as a controllers in (8), ,  
is estimative function. Defining 
 

= e  ,  
 
we study ( , ,  
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where  is a controller. Now the Lyapunov function is 
 
v , , = v w v ,   0 
 
v , , = w w  + w D D w  
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v , , = w w  + w D ( 
2     
 
Assuming controller 
 

= 2 D  w (13) 
 
Therefore, the equation 
 
 v , , = w w w 0  
 
where  a positive constant. The controller is , ,  will 
stabilize the (5). 
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where   is a controller the Lyapunov function is  
 
v , , , = w w w +w D w  
 
v , , , = w w w w D

)      
                            
Assuming 
 
  = k D w    (16)    
                                                 
The time derivative is  
 
v ( , , , = w w w w 0 
 
where  is a positive constant. 

III. NUMERICAL SIMULATION 
Numerical simulations have been carried out using the 

MATLAB to solve the sets of fractional- order differential 
equations related to the master and slave systems. It has been 
shown that all of the state variables of the slave system 
converge to that of the master system. The simulation results 
verify the performance of the Backstepping controller. We 
applied Backstepping control to synchronize two fractional-

order systems by considering the values 
0.95, 10, 28, , 1.The initial conditions for 
the master system are (1,1,1,1) and for slave system are (3, 4, 
6, 5). The values of , , , , is chosen as (10, 10, 10, 
10). 

 

 
Fig. 1 Synchronization between master and slave system 

 

 

Fig. 2 Synchronization between  and  
 

 

Fig. 3 Simulation result between  and  
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Fig. 4 Simulation result between master and slave system 

 

 

Fig .5 Synchronization of control signal  
 

 

Fig .6 Synchronization of control signal  

IV. CONCLUSION 
In this paper synchronization between fractional order 

master and slave systems has been investigated by using 
backstepping control method. Through simulation it has been 
established that our analytical results and computational 
results are in excellent agreement.  

 

 

Fig. 7 Synchronization of control signal  
 

 

Fig. 8 Synchronization of control signal  
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