
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1962

Abstract—One of the most importance of intelligence in-car and
roadside systems is the cooperative vehicle-infrastructure system. In
Thailand, ITS technologies are rapidly growing and real-time vehicle
information is considerably needed for ITS applications; for example,
vehicle fleet tracking and control and road traffic monitoring
systems. This paper defines the communication protocols and
software design for middleware components of B-VIS (Burapha
Vehicle-Infrastructure System). The proposed B-VIS middleware
architecture serves the needs of a distributed RFID sensor network
and simplifies some intricate details of several communication
standards.

Keywords—Middleware, RFID sensor network, Cooperative
vehicle-infrastructure system, Enterprise Java Bean.

I. INTRODUCTION
ANGKOK city and its vicinity have been facing traffic
and transport problems for long time. This substantially

diminishes the logistics efficiency of the city. A working
group from Burapha University is the one of initiative
cooperative vehicle-infrastructure system teams who proposes
the RFID sensor network infrastructure to alleviate such
problems [1]. The proposed middleware architecture for RFID
sensor network is a part of success of the system.

We propose the B-VIS middleware architecture that serves
the needs of our distributed RFID sensor nodes for real-time
vehicle fleet tracking and control and road traffic monitoring
systems. In addition, we present an incorporated programming
model to interested application developers to retrieve the real-
time vehicle information generated from the RFID sensor
stations. The incorporated model reduces the complexities of
the heterogeneous communication layers and data sources.

This paper is structured as follows; we first present the
current efforts in the field of CVIS [2]. Then, we present the
B-VIS middleware architecture and propose the service
interface for some service layers in order to make the B-VIS
to be a service-oriented middleware. The functionalities of
each service layer are also discussed is this section. In the last
section, we evaluate the performance metric of end-to-end
delay time connection and conclude our RFID testbed
implementations in real-use aspect.

Wiroon Sriborrirux and Sorakrai Kraipui are with Electrical Engineering
Department, Faculty of Engineering, Burapha University, Chonburi, 20131,
Thailand (e-mail: sriborrirux, kraipui@gmail.com).

Nakorn Indra-Payoong is with Faculty of Logistics, Burapha University,
Chonburi, 20131, Thailand (e-mail: nakorn.ii@gmail.com).

II. CURRENT EFFORTS ON CVIS
One of the most important functions of intelligent transport

system (ITS) applications is to support vehicle-to
infrastructure system. Generally, the system comprises a
beacon connected to the roadside infrastructure and used to
maintain wirelessly contact with passing vehicles.

In many countries, like US, EU and Japan [3], a number of
projects exist for the development and deployment of
cooperative-vehicle infrastructure systems (CVIS). In the US,
called Vehicle Infrastructure Integration (VII) is an initiative
research and applications development for a series of ITS
technologies directly linking vehicles to their roadside
infrastructure in order to improve road safety as well as traffic
efficiency. In European countries, CVIS underlines the
importance of intelligence in-car and roadside systems for
improving traffic safety and efficiency and environmental
impact [4]. In Japan, the national Smartway project enables
communication among vehicles, drivers and pedestrian with
advanced ITS technologies [5]. In Thailand, there are only
few CVIS working groups, and are still on going research and
analyzing testbed implementation.

In this paper, we propose a specific service-oriented
middleware for handling cooperative vehicle-infrastructure
systems and also propose the Eclipse plug-in for enterprise
application development environments built on the Eclipse
platform for interested developers.

Our first CVIS effort is made for bus fleet monitoring
system in the Bangkok city [6]. It is a coordinated deployment
of communication technology for public transport operations,
and shows major service improvements through real-time
communication between vehicles and roadside RFID reader
stations.

It is noted that the problems of heterogeneous applications
and ITS information are still one of main issues in ITS
exchangeable services. Therefore, the service-oriented
middleware development has emerged as an important
architectural component in supporting our distributed RFID
sensors. We present a unified programming model to
application developers and to mask out problems of
heterogeneity and distribution. As increasing visibility of
standardization activities, such as ISO/ITU-T Reference
Model for Open Distributed Processing [7], Open
Management Group (OMG)’s CORBA, the Java RMI [8],
J2EE/EJB (Sun) and Microsoft’s.NET, we then decide to
focus on the service-oriented middleware development.

Wiroon Sriborrirux, Sorakrai Kraipui, and Nakorn Indra-Payoong

B-VIS Service-oriented Middleware for RFID
Sensor Network

B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1963

III. PROPOSE OF B-VIS MIDDLEWARE
The proposed B-VIS middleware architecture serves the

needs of our distributed RFID sensor network for vehicle fleet
monitoring and control as well as the travel time estimation
systems in Bangkok road network using RFID-vehicle probe
data. We also present an incorporated programming model to
the interested developers to retrieve the real-time data
generated from RFID sensor stations directly and to reduce
the complexities of the heterogeneous communication layers
and data sources.

Fig. 1 The B-VIS middleware architecture

Fig. 1 shows B-VIS middleware architecture consisting of

four layers: B-Base (RFID Reader) Gateway, B-Enterprise
Core Engine, B-Enterprise Application Server, and B-
Presentation Application.

Fig. 2, B-Base is installed inside the public telephone
booths along the roadside, and a small active RFID tag is
installed on a vehicle. When moving into the coverage beacon
area, the tag will transmit vehicle ID to B-Base. All the data
from B-Base are in subsequent sent to B-Base Gateway layer
and then moved up to upper layers.

Fig. 2 B-Base (RFID Reader) Infrastructure

The B-Base Gateway is able to communicate and control
each RFID B-Base station via VPN-based ADSL connection.
In this layer, B-Base Gateway aggregates real-time data, e.g.
vehicle identification, timestamp, and vehicle’s passing time

period. The B-Base Gateway will then filter out unnecessary
data and send the data to B-Enterprise Core Engine layer.
After that the B-Enterprise Core Engine layer will take the
data into the business application processes, e.g. vehicle fleet
monitoring and control. In this layer, the B-Enterprise Core
Engine acts as an intermediary between the B-Base Gateway
and B-Enterprise Application Server.

Having received the data from B-Enterprise Core Engine,
the B-Enterprise Application Server processes the data and
translates it into meaningful business events, which are
defined by the users, such as vehicle routes, vehicle location,
bus departure, and link travel time between two RFID reader
stations. At the top layer, B-Presentation Application Server
represents a specific business application, such as online web-
based bus fleet monitoring, shown in Fig. 3.

Fig. 3 Online web-based bus fleet monitoring

IV. PROPOSE OF SERVICE-ORIENTED MIDDLEWARE
According to the proposed B-VIS middleware, we present

the exchangeable information services from each layer to meet
the service-oriented concept.

To follow a service-based framework, we present it based
on open architecture methods, loose coupling between
software components and hardware components that leverage
existing hardware and communication media. This is shown in
Fig. 4.

Fig. 4 B-VIS Middleware’s Service Interface

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1964

The B-Base Gateway layer and Enterprise Application
Server layer will be selected to add more Service Interface
(SI) as the exchangeable information services. Firstly, we
propose the SI at B-Base Gateway layer by using the RMI
(Remote Method Invocation) technology [7], shown in Fig. 5.

Fig. 5 RMI Interface

From technical viewpoint, RMI allows applications to call
object methods located remotely, sharing resources and
processing load across systems. Unlike other systems for
remote execution, which require that only simple data types or
defined structures be passed to and from methods, RMI allows
any Java object type to be used - even if the client or server
has never encountered it before. RMI allows both client and
server to dynamically load new object types as required.
Therefore, if a business application requests a real-time
vehicle information, such as vehicle identification and
timestamp, our proposed SI at B-Base Gateway layer could
provide those data. See Fig. 6, the snapped codes of RMI
Service Interface and RMI client.

// RMI Service Interface
import java.rmi.Remote;
import java.rmi.RemoteException;
...

public interface GatewayServiceInterface extends Remote {
....
public String getTimeStamp(String tagNo)throws RemoteException;
public String getPassingTime(String tagNo)throws RemoteException;
....
}

// RMI Client
import java.rmi.Naming;
import java.rmi.RMISecurityManager;
import ballabs.rmi.gateway.common.GatewayServiceInterface;
public class ApplicationClient {
public static void main(String[] args) {
 try {
 System.setSecurityManager(new RMISecurityManager());
 GatewayServiceInterface inventory =(GatewayServiceInterface)
 Naming.lookup("rmi://www.its-thailand.org/BVIS_Service");

 RecordTimeStamp(gateway.getTimeStamp("MO4"));
 AverageSpeed(gateway.getPassingTime("M04"));

 } catch (Exception e)
 {
 e.printStackTrace();
 }
 }

Fig. 6 Service Interface and RMI Client

Secondly, we propose the SI at Enterprise Application
Server layer by using the set of standards of communications
called Simple Object Access Protocol (SOAP). It is a
lightweight protocol for exchanging of information in a
decentralized, distributed environment. It is also an XML-
based protocol and is able to potentially be used in
combination with a variety of other protocols. However, what
is standardized and most commonly implemented of SOAP
has been in combination with HTTP and the HTTP Extension
Framework. As shown in Fig. 7 below, we provide the
application services with SOAP request message.

POST /url HTTP/1.1
Host: HostServerName
Content-type: text/xml; charset=utf-8
Content-length: 350
SoapAction: http://www.its-thailand.org/GetBusArrivalTime
...

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetBusArrivalTime xmlns="http://www.its-thailand.org/">
<BusID>0454</BusID>
<OutputParam />
 </GetBusArrivalTime>
</soap:Body>
</soap:Envelope>

Fig. 7 SOAP Message

V. ECLIPSE PLUG-IN FOR OPEN MIDDLEWARE
 We develop SDK open middleware for interested
developers, implemented in JAVA Enterprise Application
using Eclipse IDE [9]. The Eclipse IDE is an open
development platform which is designed to be easily and
infinitely extensible by third parties. It provides an open
source platform for creating an extensible integrated
development environment and allows anyone to build tools
that integrate seamlessly with the environment and other tools.
For the above reasons, we develop our SDK as the Eclipse
plug-in (RFID Agent plug-in) for generating the JAVA code.
Interested developer could compile as the enterprise java bean
(EJB) which is able to communicate with our RFID B-Base
Gateway and is able to modify the functionalities and define
the type of data regarding to the user’s requirements. The
RFID Agent Plug-in is shown in Fig. 8.

Fig. 8 RFID Agent Eclipse Plug-in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1965

Once the application codes using RFID Agent on Eclipse
have been created, we can compile and export war format file.
This file will be deployed to Glassfish Open Enterprise
Application Server. When a new B-Base Gateway is activated,
we can monitor the status log, which is shown in Fig. 9.

Fig. 9 Working Status on Enterprise Application Server

VI. RFID SENSOR NETWORK EVALUATION
As the presented RFID sensor network infrastructure, we

are now on process of extending B-Base stations in Bangkok
city, and all B-Base stations are connected to the control
center, which is shown in Fig. 10 below.

Fig. 10 RFID Sensor Network Infrastructure

We measure the end-to-end delay between RFID B-Base
stations and the control center considering the latency time
from transmitting the data packet (10 Bytes), which is
received from passing vehicle tags. By logging thousand
transactions from 20 B-Base stations, the end-to-end delay is
reported in Fig. 11.

Fig. 11 End-to-End Delay Result

In Fig. 11, the average end-to-end delay time logged for
two months (~50,000 transactions) between 20 B-Base
stations and B-Gateway server is 26.9694 milliseconds, which
can be considered as a cost of data transmission. Particularly,
when applying to real-time vehicle fleet control or real-time
travel time estimation system, the minimum transaction update
rate is 20-30 milliseconds. This makes our testbed RFID
sensor network and other real-time ITS applications more
viable.

Fig. 12 Data Processing Time

Moreover, from Fig. 10 above, we measure the spent time
of B-Base gateway layer for decapsulating the real-time
vehicle data packet received from B-Base until that filtered
data is inserted into the database server (DB2 IBM platform)
completely. The result has shown that the average data
processing time is around 5-6 milliseconds.

VII. CONCLUSION
 From our RFID sensor testbed implementation presented in
this paper, we address two main aspects. First, the B-VIS
middleware which is specifically customized for our
distributed RFID sensor system; it also simplifies the intricate
details of the several communication standards. Second,
providing the data sources via two simple standardized
services, we implement the RMI interface that allows
application developers to retrieve the data generated from
RFID stations directly and SOAP interface that delivers a
reliable real-time vehicle information, such as vehicle
location, bus arrival time and road traffic information.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1966

ACKNOWLEDGMENT
This research has been supported in part by a grant from the

National Innovation Agency and the National Electronics and
Computer Technology Center. The authors are also grateful to
the Southeast Asia Technology company for help and support.

REFERENCES
[1] BAL-Labs. Burapha Advanced Logistics Labs, Burapha University

2009. http://www.bal-labs.com.
[2] CVIS. CVISProject.org. 2009. http://www.cvisproject.org
[3] Manasseh, C., Sengupta, R.: Middleware for Cooperative Vehicle-

Infrastructure Systems, UCB-ITS-PRR-2008-2, California PATH
Research Report, University of California, Berkeley (2008).

[4] Reding, V. "Speech delivered at the Intelligent Car Launching Event."
The Intelligent Car Initiative: raising awareness of ICT for Smarter,
Safer and Cleaner vehicle. Brussels (2006).

[5] Setsuo, Hirai. "Smartway project towards the next generation ITS."
COM Safety: Newsletter for European ITS Related Research Projects
(2007).

[6] Sriborrirux, W., Danklang P., Indra-Payoong, N.: The Design of RFID
Sensor Network for Bus Fleet Monitoring, ITST2008, Phuket Thailand
(2008).

[7] Tindale-Biscoe, Sandy: RM-ODP Enterprise Language (ISO/IEC 15414
| | ITU-T X.911), ITU-T/SG17 Meeting, Geneva (2002)

[8] Raj, Gopalan Suresh.: A Detailed Comparison of CORBA, DCOM and
Java/RMI (1998).

[9] Eclipse Project. 2009. http://www.eclipse.org

