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Abstract—Axisymmetric vibration of an infinite Pyrocomposite 
circular hollow cylinder made of inner and outer pyroelectric layer of 
6mm-class bonded together by a Linear Elastic Material with Voids 
(LEMV) layer is studied.  The exact frequency equation is obtained 
for the traction free surfaces with continuity condition at the 
interfaces.  Numerical results in the form of data and dispersion 
curves for the first and second mode of the axisymmetric vibration of 
the cylinder BaTio3 / Adhesive / BaTio3 by taking the Adhesive layer 
as an existing Carbon Fibre Reinforced Polymer (CFRP) are 
compared with a hypothetical LEMV layer with and without voids 
and as well with a pyroelectric hollow cylinder.  The damping is 
analyzed through the imaginary parts of the complex frequencies. 

Keywords—Axisymmetric vibration, CFRP, hollow cylinders, 
LEMV, pyrocomposite

I. INTRODUCTION

ERAMIC materials and single crystals showing 
pyroelectric behavior are being used in many applications 
in electronics and optics. A huge leap in the research on 

smart materials came in the 1950's, leading to the widespread 
use of barium titanate (BaTiO3) based ceramics in capacitor 
applications and pyroelectric transducer devices. 
Measurement of X-ray intensity in the medical diagnostic 
range by pyroelectric detector is analyzed by Carvalho and 
Alter [1].  The pyroelectric vidicon camera can be used as a 
medical thermograph [2].  Black et al [3] have studied that the 
pyroelectric thermal imaging system for use in medical 
diagnosis.   In the Past, the propagation of wave in a 
pyroelectric cylinder of arbitrary cross section with a circular 
cylindrical cavity, a pyroelectric circular cylinder of crystal 
class 6  and a pyroelectric cylinder of inner and outer arbitrary 
shape  are studied [4]-[6].  Paul and Nelson [7] have extended 
the study of Vasudeva and Govinda Rao [8]-[9] on the 
influence of distributed voids in the interfacial LEMV 
adhesive zones of the isotropic Sandwich plate to the 
axisymmetric vibration of Piezo composite hollow cylinder.  
A continuum theory of LEMV with distinct properties has 
been developed by Cowin and Nunziato [10]. In layered 
composites pores or voids are found in the interface region 
and it is known to affect the estimation of physical and 
mechanical properties of the composites [11].  Voorhees and 
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Green [12] have studied the mechanical behavior of sandwich 
composites made of thin porous core and denser face 
materials. Damage detection and vibration control of a new 
smart board designed by mounting piezoelectric fibers with 
metal cores on the surface of a CFRP composite was studied 
by Takagikiyoshi [13]. 

In the present analysis axisymmetric free vibration of 
pyrocomposite circular hollow cylinder of crystal class 6mm 
with LEMV as a bonding layer is considered as in figure (1).  
The frequency equation for axisymmetric vibration has been 
derived for traction free shorted inner and outer surfaces with 
interface continuity conditions on both sides of the LEMV 
layer.  Numerical work is carried out for the axisymmetric 
vibration of the cylinder with equal thickness of the material 
BaTio3 combined by a thin LEMV/CFRP layer.  Dispersion 
curves have been drawn for propagation of waves along the 
axis of the composite cylinder with LEMV (with and without 
voids) is compared on replacing LEMV by CFRP and a 
pyroelectric hollow cylinder. 

Fig. 1   Pyrocomposite hollow cylinder of thickness h = h3 – h0 with 
inner and outer Pyroelectric layers (h0, h3 are inner and outer radius 
of the cylinders) connected together by LEMV as a bonding layer 

II. GOVERNING EQUATIONS

The equations governing elastic, electric and thermal 
behavior are given by Mindlin [14] - [15] 
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where, lll
kj

ll
lkij

l andEDST 1,,,, are stresses, strains, 
electric displacements, electric fields, entropy and 
temperature.  Temperature field is assumed to be uniform 
throughout the cylinder. Here,  l

vC  is the specific heat 

capacity, 0  is the reference temperature, and l  is the 
density.  Here, m

l
j

l
kl

l
mn

l
ij

l pandeC ,,, are elastic, 
piezoelectric, dielectric, thermal stress coefficients and 
pyroelectric constants respectively. The comma followed by 
an independent variable denotes partial differentiation of that 
coefficient with respect to that independent variable. 
And i

l
i

lE , . The superscript 2,1l  is to denote the 
constants and variables of inner and outer pyroelectric 
materials of hexagonal (class 6 mm).   

For crystal class 6 mm, the material constants are 
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ll
l CCC  The stress components jiT , electric 

displacements mD  and the entropy satisfy the following 
equations for axisymmetric vibration of hexagonal symmetry 
when the uniform temperature field throughout the cylinder, 
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The equations of axisymmetric motion, Gauss’s equation 
and the entropy equation in cylindrical polar coordinates r, , z 
for class 6 are

l l 1 l 2 l l l l l l
11 , rr 44r zz 44 13 r z

l l l l l l l
31 15 1r z r t t
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where iik is heat conduction coefficient,
0T

C
d v , u and w 

are the displacements along r, z direction,  is the electric 
potential,  is the mass density and t is the time. The solutions 
of Eqn. (3) is considered in the form 
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 where, llll WU ,,,  are functions of r, k is the wave 
number, p is the angular frequency and 1i .  We 
introduce the non dimensional quantities x  and  such that 

kh
h
rx ,  and h = h3 – h0 (h0, h3 are inner and outer 

radius of the cylinders) thickness of the composite hollow 
cylinder. 
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Using the above solution in Eqn (3) can be rewritten as 
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The solutions of the Eqn (5) are taken as
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And 2xl
j  are the four roots of the Eqn (5) when 

replacing 22 xl
j .

The constants l
j

l
j

l
j handed ,  can be evaluated using the 

following relations:
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In the context of the theory of LEMV, the equations of 
motion and balance of equilibrated force are given by [10] 
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where wvu ,, are displacements in r,  and z directions 
kand,,, (equilibrated inertia) are material 

constants characterizing the core of LEMV,  is the density 
and ,  are the Lame’s constants and  is the new 
kinematical variable associated with a material with voids 
comes into contact with another material without voids.  The 
displacement equations of motion and balance of equilibrated 
force for an isotropic LEMV as in [17] are 
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The solution for Eqn. (9) is taken as
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Substituting Eqn. (10)   in Eqn (9) and using the 

dimensionless variables x and ,  the Eqn. (10) becomes 
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2xj  are the three roots of the equation (11) when 

replacing 22 xl
j  .   The constants l

j
l
j eandd  can be 

evaluated using the following relations:
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The governing equation for CFRP core material can be 
deduced from Eqn. (9) by taking the void volume fraction 

0 , and the Lame’s constants as 
2

, 1211
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III. FREQUENCY EQUATIONS

The frequency equation has been derived by using the 
following boundary and interface conditions 
(i)  Since the inner and outer surfaces are traction free and 
coated with electrodes which are shorted, the boundary 
conditions becomes 
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continuity conditions are  
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0, r  due to void volume fraction field. 

The interface condition 0, r  on the void volume 

fraction field  is suggested by Atkin et al [18]. (When a 
material with voids comes into contact with another material 
without voids). The frequency equation is obtained as 22 x 22 
determinantal equation, on substituting the solutions in the 
boundary- interface conditions. It is written in symbolic form 
as
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and the other nonzero element at the interfaces x = x1 can be 
obtained on replacing J0 by J1 and Y0 by Y1 in the above 
elements.  They are 

)8,7,6,5(,14,,11,,8,,4, ijiEjiEjiEjiE
and

)4,11(,4,10,4,9 jEjEjE .
At the interface x = x2, nonzero elements along the 

following rows )20..,,9,818...,,13,12(,, jandijiE
are obtained on replacing x1 by x2 and superscript 1 by 2 in 
order.

Similarly, at the outer surface x = x3, the nonzero elements 
)22,..,15,1422,21,20,19(,, jandijiE  can be had from 

the nonzero elements of first four rows by assigning x3 for x0
and superscript 2 for 1. 

In the case of without voids in the interface region, the 
frequency equation is obtained by taking 0 in Eqn. (9) 
which reduces to a 20 x 20 determinantal equation.  The 
frequency equations derived above are valid for different 
inner and outer materials of 6mm class and arbitrary thickness 
of layers. 

IV. NUMERICAL RESULTS

Zeros of the frequency equations are evaluated using 
Muller’s method [19].  The elastic, piezoelectric, dielectric 
and pyroelectric constants for BaTio3 are taken from Ref. 
[20]-[21].  The material constants of LEMV bonding layer are 
taken as the hypothetical material no.2, in Table III of Puri 
and Cowin [16].  The value of dimensionless number N, 
which is void volume measure factor, defined in eq. (3.4) of 
Ref [16], and the value of N is found to be 0  N  0.66. The 
material constants of CFRP bonding layer are taken from [22]. 
The frequencies are calculated by fixing real wave numbers 
for the thin core of thickness 0.002m and the inner and outer 
shell of thickness 0.03m.  The complex frequencies for the 
axisymmetric waves in the first and second modes are given in 
Tables (1) and (2).  The imaginary parts of the frequencies of 
the axisymmetric vibration of pyrocomposite LEMV cylinder 

are compared with pyrocomposite CFRP and pyroelectric 
cylinders. Due to the thermal effect of the pyroelectric shells 
when combined with porous nature of the interfacial layers 
LEMV/CFRP shows a poor variation in the attenuation of the 
complex frequencies when compared to Piezocomposite 
hollow cylinder [7]. The dispersion curves of the 
Pyrocomposite hollow cylinder in the first and second axial 
modes are plotted in figs. (2) and (3) respectively.  In both the 
figs (2) and (3), the bold, dotted, continuous and 
discontinuous lines indicates the Pyrocomposite with 
interfacial layers LEMV with N=0, N=0.33, CFRP and a 
single layered pyroelectric cylinder respectively. The 
limitations of Higher-order Mindlin Plate Theory are 
discussed by Ji Wang [23]. 

TABLE I DIMENSIONLESS COMPLEX FREQUENCIES FOR 
DIFFERENT VALUES OF REAL WAVE NUMBERS IN  THE FIRST AXIAL 

MODE
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Fig. 2 Comparison of dispersion curves of composite hollow cylinder 
BaTio3 / CFRP / BaTio3 (Thin line), hollow cylinder BaTio3 / 
LEMV (N=0) / BaTio3 (bold line), hollow cylinder BaTio3 / LEMV 
(N=0.33) / BaTio3 (dotted line) and Pyroelectric cylinder 
(discontinuous line) in the first axial Mode
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TABLEII  DIMENSIONLESS COMPLEX FREQUENCIES FOR DIFFERENT VALUES OF 
REAL WAVE NUMBERS IN THE SECOND AXIAL MODE
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Fig. 3 Comparison of dispersion curves of composite hollow cylinder 
BaTio3 / CFRP / BaTio3 (Thin line), hollow cylinder BaTio3 / 
LEMV (N=0) / BaTio3 (bold line), hollow cylinder BaTio3 / LEMV 
(N=0.33) / BaTio3 (dotted line) and Pyroelectric cylinder 
(discontinuous line) in the second axial Mode 

V. CONCLUSION

The frequency equation for free axisymmetric vibration of 
pyrocomposite hollow cylinder with LEMV as core material is 
derived.  Dispersion curves in the first and second axial modes 
of the pyrocomposite hollow cylinders with a hypothetical 
LEMV core and an existing CFRP core are compared with a 

single layered pyroelectric cylinder.  The damping observed is 
not significant due to the thermal effect of the pyroelectric 
layers and the presence of voids in the interfacial 
LEMV/CFRP layers.  However an increase in damping often 
results in corresponding decrease in mechanical property.  The 
present model with CFRP core may be modified suitably to 
have a similar practical application discussed in [24]-[25].
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