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Autonomous Vehicle Navigation Using Harmonic
Functions via Modified Arithmetic Mean Iterative

Method
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Abstract—Harmonic functions are solutions to Laplace’s equation
that are known to have an advantage as a global approach in providing
the potential values for autonomous vehicle navigation. However,
the computation for obtaining harmonic functions is often too slow
particularly when it involves very large environment. This paper
presents a two-stage iterative method namely Modified Arithmetic
Mean (MAM) method for solving 2D Laplace’s equation. Once
the harmonic functions are obtained, the standard Gradient Descent
Search (GDS) is performed for path finding of an autonomous vehicle
from arbitrary initial position to the specified goal position. Details
of the MAM method are discussed. Several simulations of vehicle
navigation with path planning in a static known indoor environment
were conducted to verify the efficiency of the MAM method. The
generated paths obtained from the simulations are presented. The
performance of the MAM method in computing harmonic functions
in 2D environment to solve path planning problem for an autonomous
vehicle navigation is also provided.

Keywords—Modified Arithmetic Mean method, Harmonic
functions, Laplace’s equation, path planning.

I. INTRODUCTION

MANY scientific problems often require immense

amount of computing resources for solving large linear

system. It is also well known that iterative methods are

suitable for such large scale computations of linear system

problem. In the literature, the existing two-stage iterative

method namely Arithmetic Mean (AM) method and its

variants have been extensively applied for solving various

types of linear systems. The AM method was first introduced

by Galligani and Ruggiero [10] for solving linear system

on a vector computer. After that, Sulaiman et al. [11]

developed a new variant of AM method known as Half-Sweep

Arithmetic Mean (HSAM) method. Later, another AM variant

namely Quarter-Sweep Arithmetic Mean (QSAM) method was

developed to solve diffusion equations [12]. In [14], HSAM

was successfully applied for solving linear Fredholm integral

equations. Furthermore, a block variant of AM method was

also applied for solving first kind linear Fredholm integral

equations [15]. In this paper, we propose a variant of AM

method known as MAM method for computing the solutions

of Laplace’s equation. Then, its application in autonomous

vehicle navigation in indoor environment is demonstrated to
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verify its efficiency to solve path planning problem. The

performance of the proposed MAM method will be compared

with the standard Gauss-Seidel (GS) and existing AM iterative

methods.

The details of harmonic functions are described in Section

II. The finite difference method and the proposed MAM

method is explained in Sections III and IV, respectively.

Section V discusses the path planning algorithm. Results are

presented in Section VI. Finally, the conclusion are discussed

in Section VII.

II. HARMONIC FUNCTIONS

A harmonic function on a domain Ω ⊂ Rn is a function

which satisfies Laplace’s equation

∇2u =
n∑

i=1

∂2u

∂x2
i

= 0 (1)

where xi is the i-th Cartesian coordinate and n is the

dimension. In the case of path construction for an autonomous

vehicle navigation, the boundary of Ω (denoted by ∂ Ω)

consists of all obstacles and goals in a configuration

space representation. The solutions to Laplace’s equation are

computed with Dirichlet boundary conditions:

∂ Ω = c (2)

where c is constant. Harmonic functions satisfy the min-max

principle [5], therefore spontaneous creation of a false local

minimum inside the region is avoided if Laplace’s equation

is imposed as a constraint on the functions used.

Harmonic functions are known to have a number of

properties useful in robotics [6]. They offer a complete path

planning algorithm and paths derived from them are generally

smooth. When applied to path planning of robots, they have

the advantage over simple potential field based approach, as

they exhibit no spurious local minima. The use of potential

functions for robot path planning, as introduced by Khatib

[16], views every obstacle to be exerting a repelling force

on an end effector, while the goal exerts an attractive force.

Koditschek [7], using geometrical arguments, showed that,

at least in certain types of domains there exists potential

functions which can guide the effector from almost any point

to a given point. The usual formulation of potential fields for

path planning does not prevent the spontaneous creation of

local minima other than the goal. This may cause the robot
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to terminate its path at such a minimum and achieve a stable

configuration short of goal.

Connolly et al. [5] and Akishita et al. [19] independently

developed a global method using solutions to Laplace’s

equations for path planning to generate a smooth, collision-free

path. After that, several studied were conducted using

similar idea. Garrido et al. [20] used harmonic functions

obtained through finite elements method for robotic motion.

Szulczynski et al. [17] demonstrated the application of

harmonic potential functions for real-time obstacle avoidance.

Saudi and Sulaiman [1], [2] applied block iteration procedure

to compute the harmonic functions for solving path planning

problem. Similar approaches were also successfully employed

to behaviour-based robot [3], [4]. Harmonic functions via

potential flow were also used for marine vessel path planning

[13]. Also, 3D path planning for Unmanned Aerial Vehicles

(UAV) based on fluid flow of harmonic functions was reported

in [21].

Essentially, in the above approaches, the potential field is

computed in a global manner and the harmonic solutions

to Laplace’s equation are used to find the path lines for an

autonomous vehicle to move from the start point to the goal

point. Obstacles are considered as current sources and the goal

is considered to be the sink, with the lowest assigned potential

value. This amounts to using Dirichlet boundary conditions.

Then, by performing the GDS, a succession of points with

lower potential values leading to the point with the least

potential value (i.e. goal point) is found out. It was observed

by Connolly et al. [5] that this process guarantees a path to

the goal without encountering local minima and successfully

avoiding any obstacle, as a harmonic function cannot possess

an extremum value except at the domain boundary.

This study follows the above paradigm for path planning, by

using the analogy of temperature and heat flux for the potential

and path line, respectively. The experiments are carried out on

two-dimensional domains having various shapes of obstacles

and boundary walls.

III. FINITE DIFFERENCE METHOD

Numerical solutions for Laplace’s equation are readily

obtained from finite difference methods. Based on (1), the 2D

Laplace’s equation can be stated as

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= 0. (3)

Although this system can be solved using direct method,

the more efficient iterative methods are used to compute

the solutions, since its application in path planning problem

often resulting in large linear system with sparse coefficient

matrix. The main advantage of iterative solution is that

the storing of large matrices is unnecessary. However, one

of the disadvantages of iterative methods compared with

direct methods is slow convergence or even divergence. Thus,

iterative method in practice requires an appropriate stopping

criterion. The simplest finite difference formula to approximate

(2) is the five-point difference approximation:

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = 0 (4)

Essentially, for Laplace’s equation (3), this iterative method

simply consists of repeatedly replacing each node value with

the average of its four neighbours. Those node values which

represent the inner and outer boundaries, obstacles and goal

point are held fixed.

IV. THE MAM METHOD

A. Formulation of MAM Method

Application of finite difference approximation (4) to

problem (3) will result in a large and sparse linear system

that can be stated in matrix form as

Au = b (5)

where both matrix A and the column vector b are known and

the column vector u is unknown. The matrix A has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

T I
I T I

I T

. . .
. . .

. . .

I T I
I T

⎤
⎥⎥⎥⎥⎥⎥⎦
(N−1)×(N−1)

. (6)

In which A is an (N − 1)× (N − 1) block tridiagonal matrix,

where each block T is an (N − 1)× (N − 1) matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4 1
1 −4 1

1 −4 1

. . .
. . .

. . .

1 −4 1
1 −4

⎤
⎥⎥⎥⎥⎥⎥⎦
(N−1)×(N−1)

(7)

and each block I is the (N − 1)× (N − 1) identity matrix

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1 0

0 1 0

. . .
. . .

. . .

0 1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
(N−1)×(N−1)

. (8)

Matrix u and b may be defined as

u =

⎡
⎢⎢⎢⎢⎢⎣

u1,1

u2,1

...

uN−2,N−1

uN−1,N−1

⎤
⎥⎥⎥⎥⎥⎦

(9)

and

b =

⎡
⎢⎢⎢⎢⎢⎣

b1,1
b2,1

...

bN−2,N−1

bN−1,N−1

⎤
⎥⎥⎥⎥⎥⎦
. (10)

As stated in the previous section, AM method is a two-stage

iterative method and its iterative process involves of solving

two independent systems such as u(1) and u(2). Now, let the

coefficient matrix A be decomposed into

A = D − L− T (11)
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where D, L and T are diagonal, strictly lower and strictly

upper triangular matrices, respectively. Thus, by adding

positive acceleration parameter, ω, the general iterative scheme

for AM method can be defined as [10]

(D − ωL)u(1) = ((1− ω)D + ωT )u(k) + ωb

(D − ωT )u(2) = ((1− ω)D + ωL)u(k) + ωb

u(k+1) =
1

2

(
u(1) + u(2)

)

⎫⎪⎬
⎪⎭

(12)

where the optimal weighted parameter is in the range 1 ≤
ω < 2 as given in [18], [8]. The AM method requires

a slight additional computational effort of the sum of two

matrices at each iteration k, but its rate of convergence is

relatively insensitive to the exact choice of the parameter ω
[10]. Several runs of simulations are required to be carried

out to find the optimal value of ω, where it give the smallest

number of iterations. The general conditions which guarantee

the convergence of AM method (12) are described in [18], [8].

The proposed MAM method is very much inspired by

the work of Kincaid and Young [9] for their study on

Modified Successive Overrelaxation (MSOR) method, where

two acceleration parameters ω and r were employed. By

following similar idea, two parameters ω and r are imposed

into the first and second part of the original AM [10] equation

(12), respectively. Thus, the MAM method can be defined as

(D − ωL)u(1) = ((1− ω)D + ωT )u(k) + ωb

(D − rT )u(2) = ((1− r)D + rL)u(k) + rb

u(k+1) =
1

2

(
u(1) + u(2)

)

⎫⎪⎬
⎪⎭

(13)

where the optimal value of both weighted parameters are in

the range 1 ≤ ω < 2 and 1 ≤ r < 2 as given in [9]. The exact

optimal parameter values are determined by running several

simulations using different values of ω and r until they give

the least number of iterations. In the case of ω = r, the MAM

method simplifies to the standard AM method. From (13), the

MAM method can be stated as follows

u(k+1) = SMu(k) + cMf (14)

whereas

SM =
1

2

(
u(1) + u(2)

)
(15)

where
u(1) = (D − ωL)−1((1− ω)D − ωT )

u(2) = (D − rT )−1((1− r)D − rL)

and

cM =
1

2

[
ω(D − ωL)−1 + r(D − rT )−1

]
. (16)

The general conditions which guarantee the convergence of

MAM method (13) are described in the following theorems:

Theorem 1. Let SM be (N − 1) × (N − 1) matrix and the
successive approximation (14) for k = 0, 1, 2, ... converges for
each cM ⊆ �(N−1). Each u(0) ∈ C(N−1) if and only if the
spectral radius of the iteration matrix i.e. SM is less than 1,
that is ρ(SM ) < 1.

Theorem 2. The necessary conditions for the MAM method
to be convergent are that 0 < ω < 2 and 0 < r < 2. The
standard proof is given in [18], [8].

By determining values of matrices D, L and T (11), the

algorithm for MAM iterative method to solve problem (3) is

given below:

INPUT:
Set value for parameters ω and r
Set value for convergence criterion, ε

COMPUTATION:
k = 0
t1 = startclock
repeat

Level 1
Compute all non-occupied nodes with 1st part (13)
for i, j = 0, 1, 2, ..., N − 1, N do
u
(1)
i,j ← ω

4

(
u
(1)
i−1,j + u

(k)
i+1,j + u

(1)
i,j−1 + u

(k)
i,j+1

)
+ (1− ω)u

(k)
i,j

Level 2
Compute all non-occupied nodes with 2nd part (13)
for i, j = N,N − 1, N − 2, ..., 1, 0 do
u
(2)
i,j ← r

4

(
u
(k)
i−1,j + u

(2)
i+1,j + u

(k)
i,j−1 + u

(2)
i,j+1

)
+ (1− r)u

(k)
i,j

Level 3
Compute all non-occupied nodes at (k + 1)-th iteration
using the third part of Eq. (13)

for i, j = 0, 1, 2, ..., N − 1, N do
u
(k+1)
i,j ← 1

2

(
u
(1)
i,j + u

(2)
i,j

)

until ||u(k+1) − u(k)|| < ε
t2 = stopclock

OUTPUT:
Capture the updated matrix, u(k+1)

Capture number of iterations, k
Capture elapsed time, te = t2 − t1

The algorithm is explicitly performed until the convergence

criterion is satisfied, where it is set to a very small value

to avoid the occurrence of flat areas as further discussed in

Section 5.

B. Optimal Parameter Value of MAM Method

In the previous study [10], it was shown that the AM method

converged with parameter value in the range 0 < ω < 2.

However, the optimal value of this acceleration parameter, ω
was in the range 1 ≤ ω < 2 [18], [8]. Similarly, the MAM

method also converged with the two parameter values in the

range 0 < ω < 2 and 0 < r < 2. The optimal values for both

acceleration parameters, however, were in the range 1 ≤ ω < 2
and 1 ≤ r < 2, as described in [9], [18], [8]. In order to

determine the exact optimal parameter values, several runs of

simulation are carried out to find the optimal values of ω and

r that give the least number of iterations. Based on previous

studies [18], [8], the good acceleration parameter candidates

were in the range 1.5 to 2. Hence, these ranges are used in

computing the solutions to Laplace’s equation (1) to obtain

harmonic functions of the environment.

V. PATH PLANNING

Once the harmonic functions under the boundary conditions

are established using Algorithm 1, the required path can be

traced by the standard GDS. Starting from initial position, the
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Fig. 1 The self developed Robot 2D Simulator

path searching algorithm through GDS simply moves to the

next lowest neighbourhood point. This step continues until the

lowest point that represents the goal point is found.

The simulations of an autonomous vehicle navigation by

employing the path planning algorithm are run in a static

known indoor environment. In the initial setup, the obstacles,

inner and outer walls are fixed with high potential values,

whilst the goal point is set to a fixed lowest potential value,

and no initial values are assigned to all other free spaces. The

computations are carried out on Intel machine running at 3.4

GHz speed with 16GB RAM. The codes are written in Pascal,

and the generation of paths are simulated in the self-developed

software namely Robot 2D Simulator, as shown in Figure 1.

The simulator is developed in Lazarus.

The numerical representation used for these experiments is

important. The iteration is terminated when the convergence

criterion is satisfied. A very high precision is required, thus

the implementation uses an 8 bytes variable storage of type

Double for storing each potential value. The range value

for Double is 5.0 × 10−324 to 1.7 × 10−308, and it can

store up to 15 significant digits. The convergence criterion

is set to a very small error tolerance i.e. 1.0−15, since lower

precision is not sufficient to avoid flat areas in the resulting

potential values. The path planning algorithm is described

below:

INPUT:
Load map of the environment
Setup matrices u(k), u(k+1), u(1), u(2)

Set the goal position
Set potential values for nodes occupied by boundaries and
obstacles
Set potential values for nodes occupied by goal

COMPUTATION:
Compute harmonic functions using GS, AM or

MAM (refer Algorithm 1) methods

Perform GDS on the obtained harmonic functions
to find path from initial position to goal position

Draw the generated path

OUTPUT:
Save the generated path

VI. RESULTS

The path planning simulations were carried out in area of

330 × 270 with several different start points and goal points.

In all of those simulations, the path planning algorithm had

successfully generated smooth path from start point to the

specified goal point. Figs. 2 and 3 illustrate the generated

paths obtained from the path planning simulations. The solid

square in green colour denotes start point, whilst the solid

circle in red colour denotes goal point. In Figs. 2 (a) and

(b), the autonomous vehicle has successfully moves from

different start position to the same goal position. Figs. 3

(a)-(f) demonstrate the effectiveness of the path planning

algorithm, where the vehicle has successfully moves from

several different start and goal positions.

The performance of the considered iterative methods in

terms of number of iterations and execution time are tabulated

in Table I. As stated in the previous study [8], the good

candidate value for the weighted parameter was in the range

1 ≤ ω < 2, where value greater than 1.5 gave better

performance. Hence, the tested weighted parameter, ω for the

AM method was in the range 1.50 to 1.99, where it was found

that the optimal value for the parameter was in the range

1.95 ≤ ω ≤ 1.975 (see Table I). Consequently, this optimal

value (i.e. 1.95 ≤ ω ≤ 1.975) obtained in the AM method

were then used to find the optimal parameter values of ω and
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(a) (b)

Fig. 2 The generated paths from two different start positions and same goal position

(a) (b)

(c) (d)

(e) (f)

Fig. 3 The generated paths from several different start and goal positions

r for the MAM method. Hence, based on the finding shown

in Table I (i.e. the optimum value of r was closed to ω), the

tested weighted parameters of ω and r for the MAM method

were set in the range 1.95 ≤ ω ≤ 1.975 and 1.91 ≤ r ≤ 1.99,
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TABLE I
NUMBER OF ITERATIONS (k) AND EXECUTION RIME (t) FOR THE CONSIDERED METHODS ON GRID SIZE OF 330× 270

GS k 51454
t 77.12

AM ω 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90
k 18020 15784 13696 11715 9838 8059 6366 4771 3263
t 68.95 61.37 53.59 45.42 38.23 31.09 25.00 18.72 13.01

ω 1.91 1.92 1.93 1.94 1.95 1.955 1.96 1.965 1.97
k 2987 2709 2444 2192 1972 1873 1794 1743 1728
t 11.56 10.52 9.58 8.74 7.84 7.53 7.00 6.70 6.70

ω 1.975 1.98 1.985 1.99
k 1936 2445 3302 4904
t 7.61 9.55 13.03 19.08

MAM ω 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90
r 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
k 16830 14656 12617 10687 8846 7105 5427 3824 2220
t 67.81 57.45 49.39 42.59 35.50 27.86 21.23 15.16 8.78

TABLE II
NUMBER OF ITERATIONS (k) AND EXECUTION TIME (t) FOR MAM METHOD ON GRID SIZE OF 330× 270 WITH OPTIMAL VALUE OF 1.95 ≤ ω ≤ 1.975

MAM ω 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 2211 2175 2125 2061 1972 1836 1513 1513 1713
t 8.75 8.67 8.37 8.12 7.86 7.28 5.97 6.64 6.84

ω 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955 1.955
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 2059 2045 2015 1970 1971 1819 1589 1584 1752
t 8.03 8.58 7.89 7.89 7.97 7.17 6.24 6.84 6.92

ω 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 1878 1881 1879 1871 1846 1794 1648 1626 1919
t 7.45 7.39 7.37 7.31 7.20 7.05 6.50 6.34 7.52

ω 1.965 1.965 1.965 1.965 1.965 1.965 1.965 1.965 1.965
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 1604 1655 1695 1729 1754 1756 1697 1763 2149
t 6.30 6.42 6.59 6.83 6.89 6.89 6.64 6.90 8.28

ω 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 1469 1437 1492 1430 1595 1686 1729 1939 2417
t 5.78 5.70 5.86 5.33 6.17 6.50 6.61 7.47 9.41

ω 1.975 1.975 1.975 1.975 1.975 1.975 1.975 1.975 1.975
r 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
k 1508 1429 1482 1480 1529 1500 1766 2160 2784
t 5.89 5.58 5.84 5.75 5.94 5.86 6.91 8.45 2784

respectively.

Based on Table II, the optimal value of the MAM method

for parameters ω and r were in the range 1.97 ≤ ω1.975 and

1.92 ≤ r ≤ 1.94, respectively. With these optimal parameter

values, the number of iterations (k) and execution time (t)
for the MAM method were less than 1500 and 6 seconds,

respectively. Thus, the selection of parameter values for MAM

method was much wider than AM method. In comparison

to the standard GS method, both AM and MAM methods

drastically reduced the number of iterations. Both AM and

MAM methods also clearly outperformed GS method in terms

of execution time. Overall, the proposed MAM method gave

the best performance among the considered methods.

Table III shows the reduction percentage in terms of

number of iterations and execution time between the currently

suggested method and the previous methods. Compared to

the standard GS method, AM method reduced the iteration

numbers and execution time by 64.99% to 96.64% and 10.59%

to 91.31%, respectively. Against the standard GS, the optimal

AM (with ω = 1.97) reduced the number of iterations and

execution time approximately by 96% and 91%, respectively.

Against AM method (with 1.50 ≤ ω ≤ 1.90), the proposed

MAM method gave better performance, where the iteration

numbers and execution time were further reduced by 6.60%

to 31.96% and 1.65% to 32.51%, respectively. Hence, the

proposed MAM method gave the best overall performance

among the considered iterative methods.

VII. CONCLUSION

The effectiveness of computing the harmonic functions

using the proposed MAM method was demonstrated in this

study, where it significantly improved the overall performance
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TABLE III
REDUCTION PERCENTAGES OF NUMBER OF ITERATIONS AND EXECUTION

TIME

Number of iterations Execution time
Methods % %

AM against GS 64.99 - 96.64 10.59 - 91.31

MAM against AM 6.60 - 31.96 1.65 - 32.51

of the path planning algorithm. The calculations at Level 1 and

Level 2 of (13) and (14) can be carried out independently.

Therefore, AM and MAM methods are very suitable for

parallel implementation.

For future work, the application of the proposed MAM

method in space of higher dimensions may be examined. The

combination of half-sweep iteration concepts with the existing

AM and the proposed MAM methods, as demonstrated in

Sulaiman et al. [11] and Muthuvalu and Sulaiman [14], are

also an interesting ideas to explore for solving navigation

problem of an autonomous vehicle. Also, investigations

in more difficult domains such as cluttered and dynamic

environments may be carried out.
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