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Abstract—Public health is one of the most critical issues today;
therefore, there is great interest to improve technologies in the area
of diseases detection. With machine learning and feature selection,
it has been possible to aid the diagnosis of several diseases such
as cancer. In this work, we present an extension to the Heat Map
Based Feature Selection algorithm, this modification allows automatic
threshold parameter selection that helps to improve the generalization
performance of high dimensional data such as mass spectrometry.
We have performed a comparison analysis using multiple cancer
datasets and compare against the well known Recursive Feature
Elimination algorithm and our original proposal, the results show
improved classification performance that is very competitive against
current techniques.

Keywords—Feature selection, mass spectrometry, biomarker
discovery, cancer.

1. INTRODUCTION

ITH the emerge of new technologies, the ability to
Wgenerate more data has been increased, causing that
big data is now present in many areas of research, including
text mining, information retrieval and bioinformatics [1], [2].
From the machine learning point of view, this increase in
the data resolution (i.e., dimensions), causes that in order to
produce reliable models, an exponential growth of samples
need to be fed into the algorithms, if such amount of samples
are not reached, we fall under the “curse of dimensionality”
[3], this is the case of biomedical data such as microarrays
where there is very little amount of samples but the features
for each of those can be as high as 450,000, which implies
high computational costs and prone to overfitting [2]. In order
to deal with high dimensional data, it is required to reduce the
number of features as usually most of them are not relevant to
the target [4], more important, in areas such as bioinformatics
a reduced subspace of features can help biologists to discover
important insights about the disease under study [5].

According to the World Health Organization, cancer
is among the leading causes of morbidity and mortality
worldwide. In the World Cancer Report 2014 it is reported that
in 2012, the worldwide burden of cancer rose to an estimated
14 million new cases per year, a figure expected to rise to 22
million annually within the next two decades. Over the same
period, cancer deaths are predicted to rise from an estimated
8.2 million annually to 13 million per year. Globally, in 2012
the most common cancers diagnosed were those of the lung
(1.8 million cases, 13.0% of the total), breast (1.7 million,
11.9%), and large bowel (1.4 million, 9.7%). Public health is
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a critical issue, therefore there is a need to find faster and
more accurate methods to detect diseases as early as possible,
since late detection usually leads to high death rate [6].

With the development of technologies such as mass
spectrometry, it has been possible to improve detection and
understand diseases in a better way [7]. The idea behind the
analysis of mass spectrometry data is to find biomarkers (e.g.
features in the data) that help scientist to differentiate between
normal and abnormal samples [8]. In a typical dataset built
upon mass spectrometry, we have values of the abundance of
a specific mass-to-charge (m/z) interval, therefore, we have
as much features as intervals measured with the spectrometer,
as resolution increases, so does the noise and the presence
of irrelevant intervals in the data; nonetheless, the usage of
mass spectrometry has greatly accelerated the discovery of
biomarkers [9], although some studies have reported that very
few biomarkers appear when a new set of data is used [10],
which leads to the conclusion that there is some sort of
overfitting and still a long road to go in the improvement of
feature selection for biomarker discovery.

Due to the nature of mass spectrometry, a reduction in the
dimensionality of the data is a very important processing step
before building models, and a long number of techniques have
been proposed since 2000 [11], [12]. The two main approaches
to achieve a reduction of data dimensionality are [13], [14]:
1) Feature extraction, where the key idea is to transform the
high dimensional features into a whole new space of lower
dimensionality, e.g. Principal Component Analysis (PCA)
[15], and 2) Feature selection, which main goal is to find the
smallest number of features that still describes the data in a
reasonable way [16]. In this work we focus in feature selection,
these algorithms are divided in three groups [17], [18]: 1)
Filters: perform an analysis of the data without the need of
any external classifier to perform the selection. 2) Wrappers:
using a classifier as evaluator, the selection is guided by the
performance of the classifier. 3) Embedded: which can be seen
as a combination of a filter approach and a second step of
classifier performance analysis.

Our work is mainly focused on the filter approach, in a
previous work [19], we presented the Heat Map Based Feature
Selection (HmbFS) algorithm and performed a comparison
with other filter algorithms such as Chi2 [20], Fcbf [21] and
Relief-F [22]. One of the potential weakness of HmbFS is
that the selection threshold although very intuitive, it can
be dataset dependent, in this work we present an automatic
approach to determine the best threshold for a dataset through
an efficient embedding approach, we discuss the overall design
of HmbFS as well as how the automatic selection of threshold
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is applied and perform experimental comparison to find out
how our proposed search methodology improves over the
original HmbFS with default threshold and vs the Recursive
Feature Elimination (RFE) algorithm as well.

The remaining of this paper is structured as follows: In
Section II, we review some of the related works. In Section III,
we analyze the original HmbFS algorithm and how the new
embedding architecture helps to find the optimal threshold. In
Section IV, the testing protocol is discussed and we report our
results. In Section V, we review our conclusions and future
work. Finally the list of references for further review are
provided.

II. RELATED WORKS

Since 2000 [11], [12], we have seen the development
of new techniques to tackle the inherent increase in data
dimensionality, for bioinformatics, and specially for mass
spectrometry data, Support Vector Machines (SVM), has been
successfully employed not only as a classification method but
as a feature selection as well with prominent results.

In 2009, Liu [23] showed a proposal to use wavelet
feature extraction that in conjunction with SVM could be
used for biomarker detection and therefore improve disease
classification. Although this particular work focus more in
feature extraction than feature selection, it is a relevant work
because it presents early works that confirm that the usage of
SVM its a viable option for these problems.

In 2010, Abeel et al. [24] presented an approach that uses
multiple runs of SVM in combination with Recursive Feature
Elimination (RFE), the idea behind this work is to use multiple
subsamples of the data to create a set of candidates features,
later the results are assembled and a final set of features is
reported. In this work we perform a direct comparison with
RFE, but since it is computationally demanding, we did not
split the data as this work proposes.

In 2011, Kim et al. [25] presented a work which tackles
the common issue of univariate analysis where no interaction
between features is considered; to handle this, each feature is
evaluated against a series of significance tests, then the features
that managed to successfully pass the tests are considered
for further interaction. In their experiments they reported an
improvement over RFE with SVM, but since the number of
features to be selected need to be set in advance it may be a
drawback in most datasets.

In 2014, Gonzalez and Belanche [26] proposed an algorithm
called eTAFS that combines a simulated annealing and
incremental joint entropy to select subsets of features.
According to the authors, the proposed combination of
techniques is more accurate than competing methods while
being fast, effective and requires no critical parameters to tune.
Although we do not have access for this algorithm for direct
comparison, we have included similar datasets to have some
degree of comparison.

In 2016, Lei et al. [27] presented a very interesting approach
focused in high-dimensional data, where the main idea was to
develop a model-free selection mechanism via the a gradient
function, selecting those features with a gradient substantially

non-zero. However, the real life examples evaluated by authors
suggests their approach is more focus on number of instances
than number of features.

In summary, we can see that the problem of dimensionality
reduction has not been solved and it is still in research interest,
multiple proposals have reached successful performance, but
there is still many open problems to be solved, one of those
particular problems is the parameter tuning stage, in some
scenarios, a good algorithm can lead to disastrous results if
executed with the wrong parameters, although HmbFS does
not require critical parameter tuning, it is important to ensure
maximum possible performance with fewer user interaction.

In the following section we discuss particular details about
HmbFS and our proposed search scheme for optimal threshold.

1II. HMBFS AND THRESHOLD SEARCH

In order to build a model in a supervised approach, we
use data in form of a dataset which includes instances and
features, these features are used by a classifier to fit the training
data and make further predictions for unknown instances to
discriminate among classes (e.g., normal vs cancer). Since the
features are the input to the classifier, it is obvious that the
classifier performance is dependent on the features quality.
In theory, Yu [28] proposed that the more features we have,
the more discriminative power among classes we achieve, this
statement is certainly true, as long as all those features are
good features, this is exactly where the problem lies, not all
features are good, especially in high dimensional scenarios.

A potential ambiguity issue arises regarding what a “good
Seature” is, we use John et al. [29]’s proposal to identify three
types of features as strongly relevant, relevant and irrelevant,
the formal representation is shown below:

Let F be the full set of features, F; a particular feature
and S; = F — {F;} a subset of features where F; has been
removed, given this we have three groups as follows:

A feature Fj; is strongly relevant iff:

A feature F; is weakly relevant iff:

Pr(C|F;,S;)=Pr(C|S;) and 35, C S;

2
such as Pr(C' | F;, S}) # Pr(C | S}) @

A feature F; is irrelevant iff:
vSicS; Pr(C|F;,S)=Pr(C|S) 3)

Given these definitions, we now can define HmbFS main
objective which is to find as much irrelevant features as
possible in order to reduce the dimensionality of the data in
the seek for optimal classifier performance. Our Heat Map
Based Feature Selection (HmbFS) algorithm was presented in
detail for a previous work [19], in this section we provide a
summary about its design.

In order to achieve feature selection, HmbFS uses a two
stage process: a) compression and b) selection.
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A. Compression Stage

This stage is responsible of building a compressed version of
the original dataset that is used for the actual feature selection
stage, the key idea is to group continuous features (e.g., feature
1, feature 2 and feature 3) to build a RGB color pattern, the
interaction between features produces different colors that are
used to build a full heat map that represents a generalized
version of the dataset. Since this process is scale sensitive,
all features are first scaled to a 0-255 interval, using the
Scikit-learn [30] library this can be achieved as follows:

#HmbFS 0-255 Feature Normalization

mms = preprocessing.MinMaxScaler (
feature_range=(0, 255))

new_feats = mms.fit_transform(

original_feats,
dataset_classes)

Once each feature has been normalized, they can be used
to build colors for the heatmap, e.g., features values F; =
242, F» = 20 and F3 = 35 will create a bright red color
(in RGB format), while the values F} = 12, F5, = 5 and
F3 = 55 would create a very dark blue. In order to build a
generalized representation, the heatmap is not built with the
raw generated colors, but with a quantized version, reduced
to 16 basic colors. This can be easily achieved by a distance
search to find the basic color that most likely represents the
real color. The following code assigns red and black for the
feature-values examples we provided above.

#Color quantization, from real to 16 colors
def getBaseColor(self, R, G, B):
distance=[768]*16

for x in range(0,16):

bC = self.baseColors[x]
distance[x]= ( abs(bC[0]-R) + abs(bC[1]-G) +

abs (bC[2]-B) )
return distance.index (min (distance))

Once the color quantization is completed, the new
compressed dataset is ready for feature selection analysis
which is described in the next step.

B. Feature Selection Stage

Since the data is already grouped as the new compressed
dataset has one third (%) of the original features, a multivariate
analysis is inherent even when only single features (as a single
feature now is represented by three of the original features)
are analyzed. The main idea is that different classes must be
represented by different color patterns, and the probability of a
given color pattern must be greater for some class than another
in order to be selected as useful. The resultant selection
formula is presented below:

Useful F; ift:
NG, Gy C O
[Pr(Cj | Mo(Cj | Fy))] > [Pr(Cr | Mo(Cj | Fy)) *Th](4)
In order to mark a feature as useful, we first find the mode
(Mo), i.e., the most common color that a particular feature
F; exhibits for a given class C}, then we compare if this
color pattern belongs more likely to the class C; than for

a class Cy. In order to decide if the difference is significant,
we use a threshold T'h (default 1.5) that prevents selection of
features with minimal difference. The following code shows
the selection process:
#Search useful features
for Cj in range (0, number_of_classes):
for Ck in range (0, number_of_classes):
if Cj != Ck:
if ( (max(data[Cj])/sum(data[C]I]) ) >
( Th x (datalCk][datal[Cj].argmax ()]
/ sum(datal[Ck]))) ):

When the if-condition is met, that feature is marked as
useful, and the process continues until all features have been
evaluated. After the process is completed, the selected features
are mapped to the original feature space, e.g., if features 3, 8
and 56 are selected, that means that in the original space, the
selected features will be 7,8,9 (because compressed F3 = F7,
Fy and Fy), 22,23,24 and 166,167,168.

C. Finding Th Automatically

It is clear that the threshold T'h plays a very important
role in the selection process, although very intuitive to tune
(higher T'h = more aggressive reduction), it is still the user
responsibility to select a proper value, in order to fix this
inconvenient, we propose a sequential stratified-cross validated
search, where different threshold are analyzed with automated
cross validation in a similar fashion as RFE does, with the
main difference that with HmbFS, the steps in selection are
not arbitrary reductions as it happens with RFEcv, where we
are required to select a number of features to reduce in each
step, e.g., we could try reducing 10 features each iteration,
or 15, or 50, or 100, while in HmbFScv the steps are more
intuitive, e.g., a Th = 3.0 is twice as rigorous in the selection
than a Th = 1.5, however, if the features are good enough,
changing the threshold would not lead to different selections
which helps to provide more stable results. Fig. 1 shows the
proposed architecture.

<
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s
\‘_,_,_/ o i

Validation
Method

Classifier
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Reduced [ Th Evaluation ]
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S

Fig. 1 Proposed architecture for optimal threshold selection

In order to find an optimal threshold 7'h, we included two
key components in the process, a classifier that its responsible
of building models with the subset of features that HmbFS
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selected, and a validation method that tests the built models to
ensure that the selected threshold is the optimal for the dataset.
Other techniques such as RFE uses an arbitrary reduction step,
such as 10% of features reduced each step, this greatly differs
from HmbFS because the number of features is never required.
In the following section we present some of the validation tests
we performed to see how the proposed methodology improves
over the default HmbFS with a fixed threshold.

IV. TESTS AND RESULTS

In order to test our proposal, we have selected datasets that
covers multiple types of cancer, specifically, we have selected
a dataset from Alon [31] for colon cancer, Chowdary [32]
for breast cancer, Gravier [33] for central nervous system
tumors and, finally a dataset from Tian [34] for myeloma
classification. All our experiments can be replicated using our
provided code and data from a Github account'.

We have performed a classification experiment using
a stratified 10-fold approach, the idea behind stratified
splits is to penalize the algorithms if results are biased
towards the majority class. We evaluated an online classifier:
Passive Aggressive (PA) [35], a classifier with built-in
feature selection: Random Forest (RF) [36], and a classifier
commonly used in related literature: Support Vector Machines
(SVM) with linear kernel [37]. The feature selection stage
was accomplished by HmbFS (the original version, with
Th = 1.5), HmbFS with automatic threshold selection and
cross-validation (this work, HmbFScv) and comparison with
a popular approach Recursive Feature Elimination with
cross-validation (RFEcv), the cross-validation stage was
carried out by Logistic Regression, which is not included
in the evaluation results to avoid overfitting, every classifier
was executed without feature selection, and later with the
3 different approaches to evaluate the usefulness of each
approach, the mean accuracy for every experiment is reported
in Tables I-IV.

TABLE I
ALON DATASET ACCURACY (%)

Methods No FS  HmbFS  HmbFScv  RFEcv
Features 2,000 2,000 1,733 1,800
PA 77.1 77.1 77.1 77.1
RF 74.0 74.0 81.9 74.8
SVM 82.1 82.1 82.1 82.1
Average 77.1 77.7 80.4 78.0

Uhttps://github.com/nxgtr/ICMLPR2016

Best models for Alon dataset

NoFS+SVM

HmbFS+SVM HmbFScv+SVM RFE+SWVM
Models

Il Features(%s) M Accuracy(36)

Fig. 2 Comparison of best models for the Alon dataset

The Alon dataset, being the lowest dimensionality of
the datasets reviewed presented a great challenge for the
feature selection algorithms. For instance our original proposal
HmbFS was unable to remove any feature, leaving all the
original 2,000 features and therefore producing the exact same
results as if no feature selection (No FS) would have been
employed; however, with the modified version (HmbFScv),
it was possible to reduce over 10% of the features, not
only without loss of precision, but with a huge improvement
in stability, as the Random Forest (RF) performance was
increased from 74.0% to 81.9%. In the case of RFEcv, the
reduction of features is very similar to HmbFScv but the
improvement is less stable as the RF performance did not
improve as much. However, as an overall overview as it can
be seen in Fig. 2, for the Alon dataset, feature selection did
not improve the best possible score, which was achieved by
Support Vector Machines (SVM) without any feature selection,
however, it is worth noting that a reduced set of features
helps to understand the data as an added benefit, even if no
classification performance is achieved.

TABLE II
GRAVIER DATASET ACCURACY (%)

Methods No FS  HmbFS  HmbFScv  RFEcv
Features 2,905 171 171 1
PA 70.8 73.8 73.8 75.0
RF 68.9 70.9 70.9 63.6
SVM 75.2 73.2 73.2 74.5
Average 71.6 72.6 72.6 71.0
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Best models for Gravier dataset

MNoFS+SVM

HmbFS+PA HmbFScv+PA RFE+RF
Models

Bl Features(dt) [l Accuracy(%6)

Fig. 3 Comparison of best models for the Gravier dataset

Although the Gravier dataset presents a similar
dimensionality as Alon, the results are indeed data-dependent
as in this case, we got very big reductions, HmbFS in its
original fixed threshold version or the automatic approach,
both converged to the same selection, 171 features (over 90%
reduction) even though RFEcv managed to find a golden
feature capable of getting an average accuracy of 71.0%
only 0.6% below the NoFS benchmark. However, in terms
of better selection stability and classification performance
HmbFS achieved the highest averaged accuracy achieving
improvements up to 3% when using the online classifier.

TABLE III
CHOWDARY DATASET ACCURACY (%)

Methods No FS HmbFS HmbFScv  RFEcv

Features 22,283 234 57 2222

PA 94.3 97.3 91.3 943

RF 88.5 97.2 94.3 97.1

SVM 95.3 96.3 97.3 97.3

Average 92.7 96.9 94.3 96.2

Best models for Chowdary dataset
100

97.3 97.3
80
60
40
20
11 0.3
0

NoFS+SVM HmMbFS+PA HmMbFScv+SVM

RFE+SVM
Models
Bl Features(%6) [ Accuracy(%h)

Fig. 4 Comparison of best models for the Chowdary dataset

The Chowdary dataset presented two main challenges, first
its high dimensionality suggest a lot of potential noisy features,

second, its relative high performance classification without
the need of feature selection, using SVM it was possible to
achieve 95.3% accuracy even with all the features. The RFEcv
achieved at 90% reduction in features, with only 2,222 it
achieved improvements as big as 8.6% when paired with RF,
however using HmbFS we can notice that there is still a lot
of noise left in the dataset, as with only 1.05% of features,
it got the highest average at 96.9% achieving also the highest
overall model performance of 97.3% with the simple PA. On
the other hand, HmbFScv produced an outstanding reduction,
as 99.74% of features were removed, still, it was possible
to match the best model performance with SVM, as well as
improve overall performance over the NoFS benchmark.

TABLE IV
TIAN DATASET ACCURACY (%)
Methods No FS  HmbFS  HmbFScv  RFEcv
Features 12,625 3,609 2,931 1
PA 64.4 71.1 68.6 60.5
RF 75.9 78.7 79.8 68.3
SVM 72.6 77.6 77.0 50.1
Average 71.0 75.8 75.1 59.6
Best models for Tian dataset
100 T
80
= 78.7 79.8
(K]
60
40
28.6
20 23.2

NoFS+RF HmbFS+RF HmbFScv+RF RFE+RF
Models
I Features(%) M Accuracy(%)

Fig. 5 Comparison of best models for the Tian dataset

The Tian dataset with high dimensionality allowed great
reductions to be performed, starting with a reference
benchmark of 75.9% accuracy with RF and no feature
selection, it presented a considerable challenge, however
HmbFS managed to outperformed that benchmark for every
algorithm reaching a maximum of 77.5% with SVM with less
than 30% of the original features, following the same path,
with the improved HmbFScv it was possible to reduce even
more to around 23% of the original features and producing
an even better model at 79.7% with RF. In the case of RFEcv,
the over-reduce effect seems to be recurrent behavior in very
noisy datasets, in some cases it produce very good results, but
for the Tian dataset it impacted too much to the classifiers,
getting as low as 50.1% in the case of SVM.

We completed a total of 48 experiments to test HmbFS
and HmbFScv (automatic Th selection), each dataset was
tested under 12 different setups with combinations of feature
and learning algorithms. Among the results, we can see that
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as the dimension increases, so does the potential noise, the
Alon dataset with 2,000 features was very difficult to reduce,
however, Chowdary dataset with over 22,000 lead us to huge
reductions overall, for instance RFEcv reduced the data to
only 10% and still improved over the 22,283 of the original
space, and the other impressive reduction goes for HmbFScv
with a reduction to only 57 features. In terms of predictive
power improvement, HmbFS and HmbFScv produced very
competitive results vs RFEcv, for Alon dataset although best
model remained at 82.1%, the smaller subset of features goes
for HmbFScv. For Gravier dataset, overall best average goes
for HmbFS/HmbFScv although notable best model is achieved
with RFEcv and PA. For Chowdary dataset HmbFS and RFEcv
achieved similar performance, with a slight advantage for
HmbFS at much lower features, and HmbFScv pushed the
reduction even more while still maintaining the best overall
model at 97.3%. Finally, for the Tian dataset, HmbFScv got
the most overall model at 79.8% while RFEcv exhibit issues
with the selection.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented HmbFScv, an automatic
search to select the optimal threshold for the original HmbFS
algorithm, the results have been satisfactory although not
decisive. Using automatic threshold selection it was possible
to reduce even more the feature space, sometimes by a huge
margin as happened with Chowdary dataset, in all cases the
new approach selected less or at least the same amount of
features as the original proposal. There seems to be a special
case for RFEcv for noisy datasets where it over-reduce it as
it happened with Gravier and Tian datasets, this behavior is
worth additional research.

The proposed HmbFScv modification is competitive with
the original HmbFS algorithm achieving similar classification
performance and small subset of features as well, however this
gain is currently achieved by a more computation expensive
process, if the dataset is too big, a fixed threshold selection
may be more suitable and still provide competitive results.

As part of future work it can be divided in two areas:

A. Improved Experimentation

We need to collect more datasets and include more scenarios
to test HmbFS, we are currently gathering datasets as well as
including more feature selection algorithms, more classifiers to
benchmark results, and the addition of multiple metric analysis
that can help understand better the outcomes than the simpler
accuracy measure

B. Visualization

Since HmbFS works by building a heatmap representation
of the data, it is possible to generate datasets visual images
that are mapped to the original space, this can help in the seek
of regions of interest, not only from the feature point of view,
but for instance selection as well.
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