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Abstract— Purpose: To develop a method for automatic 

segmentation of adipose and muscular tissue in thighs from magnetic 
resonance images. 

Materials and methods: Thirty obese women were scanned on a 
Siemens Impact Expert 1T resonance machine. 1500 images were 
finally used in the tests. The developed segmentation method is a 
recursive and multilevel process that makes use of several concepts 
such as shaped histograms, adaptative thresholding and connectivity. 
The segmentation process was implemented in Matlab and operates 
without the need of any user interaction. The whole set of images 
were segmented with the developed method. An expert radiologist 
segmented the same set of images following a manual procedure with 
the aid of the SliceOmatic software (Tomovision). These constituted 
our ‘goal standard’. 

Results: The number of coincidental pixels of the automatic and 
manual segmentation procedures was measured. The average results 
were above 90 % of success in most of the images. 

Conclusions: The proposed approach allows effective automatic 
segmentation of MRIs from thighs, comparable to expert manual 
performance. 

 
Keywords—segmentation, thigh, magnetic resonance image, fat, 

muscle  

I. INTRODUCTION 
BESITY is considered to be a factor of risk in diverse 
chronic pathologies in the developed world, such as 

Type n diabetes, hypertension, arteriosclerosis, 
cardiovascular diseases, etc. Magnetic resonance images 
(MRI) may be used to measure the volumes of fat and 
muscle from these patients in order to evaluate therapies to 
reduce fat and increase muscular mass. The high spatial 
resolution and harmless behaviour that offers MRI compared to 
other technologies based on ionizing radiation are determinant 
in its daily use. It is therefore of interest to develop 
techniques to identify and quantify these tissues from the 
images. 

A number of software packages and methodologies that 
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segment thigh images can be found [1]. They exhibit varied 
complexity and degree of automation. Manual and semi-
automated segmentation [2-5] are not very helpful in dealing 
with large amounts of images. So, from the user’s point of 
view, one of the objectives is to find a segmentation method 
that needs the minor degree of intervention. In this respect, 
two almost automatic tools have been recently proposed by 
Positano et al. [6-7] and by Liou et al. [8], which are based on 
active contours and adapted threshold algorithms, 
respectively. However, these approaches seem to suffer some 
limitations due to the lack of contrast in the border of the 
tissues. The progressive variation of the intensity levels in the 
image induces segmentation errors, making it necessary the 
intervention of an expert to ensure a correct segmentation. 

The objective of the work presented here is to develop a 
reliable automatic tool of segmentation of MRI, in order to 
separate and to determine the volume and distribution of 
adipose and muscular tissue of the thigh. The results are 
compared to images manually marked by an expert radiologist 
with the aid of the SliceOmatic (Tomovision Inc.) image 
processing tool. 

 

II. MATERIAL AND METHODS 

A. Materials 
The study was carried out with thigh images of 30 obese 

women of medium age (34-47) using a Siemens Impact 
Expert 1T resonance machine. From each subject, 30 slices 
were taken from the hip down to the knee with a 1 cm 
separation. Each one undertook the experiment twice. In each 
acquisition, 30 slices were taken, form hip to knee, the last 5 
of this were discarded due to the presence of tendons and the 
reduced gray level contrast of muscle and fat tissue. 

The Matlab (Mathworks Inc) programming environment, 
including the Image Processing Toolbox was used to 
develop the programs for this study. As already mentioned, 
SliceOmatic (Tomovision Inc.) image processing tool was 
also employed to help the expert in the manual marking of 
the images. 

 

B. Methods 
Fat tissue usually presents higher intensity level than 

muscle tissue in thigh MRIs, while background is supposed to 
be darker, almo st black. Thus, intensity thresholding seems the 
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most reasonable approach to perform this segmentation. 
However, the intensity source in resonance images is not 
uniform and the pixels corresponding to the same tissue 
suffer significant variations of intensity. 

The main technique used in our approach is adapted 
thresholding [9], where the image is divided in smaller 
subimages and basic thresholding is applied independently to 
each subimage. Finally the results of the different 
segmentations have to be joined in an overall segmentation. 
Bones are also present in thigh images occupying central 
position in the limbs, surrounded by muscles. Bone tissue has 
usually lighter intensity levels than muscle tissue, and 
comparable to that of fat. So a particular procedure has to be 
included to isolate the image region corresponding to the 
bone. The overall method is implemented in four stages, 
explained thereafter: 

1) Image division and segmentation of subimages 
2) Creation of templates 
3) Bone extraction 
4) Final segmentation 
 
1) Image division and segmentation of subimages 

 
This stage is an iterative and recursive process that 

comprises four iterations or levels of depth where the 
following actions are carried out: 

- Division of the image 
- Histogram modeling 
- Calculation of ideal threshold from the modeled histogram 
- Segment the subimages according to these thresholds. 
At every iteration, images are split in four subimages 

squared of equal size (splitting them in the horizontal and 
vertical axes). Hereby, the process begins with an image of 
512x512 pixels (in the first iteration) and can reach 256 
subimages of 32x32 pixels (in the fourth iteration). For 
each subimage, histograms are computed and modeled as 
we will explain later. Different modes may be present in the 
histogram models and for each modeling two parameters are 
calculated: the number of modes and the modeling error. At 
every iteration, these values are compared to the ones 
obtained in the segmentation of the subimages of the 
previous iteration (that is, both values of one of the four 
images of any iteration  are compared with the appropriate 
subimage of the previous iteration of which division these 
four subimages have appeared) If only one mode results and 
the modeling error is lower than the error of the subimage 
from previous iteration, the process finishes and the image 
is not split any more. However, if this mistake is higher, the 
division of the image continues. Independently of the number 
of modes of the histogram, the segmentation (previous or 
current iteration) that produces lowest modeling error is 
chosen. This modeling error is measured as the mean square 
error between the histogram and the histogram model, relative 
to the histogram itself: 
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b being the histogram, f the histogram model and z the 
grey level, (z=1 to 256). 

Every subimage is then associated to the model which 
has adapted best to its histogram. At every level of iterative 
process, the first task is to divide the input image, shape its 
histogram and calculate the thresholds. Histogram modeling 
begins with the determination of the maximum and minimum 
more significant peaks present in the histogram profile. The 
objective is to associate each maximum to a different mode. 

Firstly, the modes can be represented by gaussian functions. 
The gradient method is used to find the parameters (weight, 
mean and variance) of the combination of gaussian 
functions that best match the histogram (Fig. 1.a).  

Statistical uncertainty due to a big and imprecise number of 
sources (electronic noise, variability in the tissue magnetic 
characteristics, etc.) claims for Gaussian models for the 
histograms. Besides many of the computed histograms had 
typical bell-shaped profiles. Some other observed profiles 
rather resembled those of the exponential (very steep slope) or 
uniform (constant) functions and they are relationed to regions 
of intensity saturation and to noisy fragment of histogram 
respectively. In this situation, it is necessary to add two new 
modes: exponential (in the first case, Fig. 1 .b) and uniform 
functions (in the second case, Fig. 1 .c). 
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Fig. 1: Modelling the histogram. (a) Combination of three gaussian functions, 
corresponding to the three main regions of the image (background, muscle and 
fat. (b) Image with saturated piexels, medelled with an exponential function. 
(c) Noise part of the histogram modeled with a uniform function. 

 
 
An exponential mode is included when, due to intensity 

saturation, a narrow and high peak appears at the right 
extreme of the interval (level 255). However, to distinguish 
gaussian and uniform modes, subgaussianity measures are 
obtained from two higher order statistics: kurtosis and 
negentropy [10]. These statistics are calculated with the values 
of the pieces of the histogram obtained from the gradient 
method. Each mode from this method  represents one 
fragment of the histogram, which allows to identify the set 
of values and to calculate kurtosis and  negentropy. Modes 
are considered uniform when (Kur <-1.135 and 
Negen>1.55 E-3) or when (Kur <-1 and Negen>1.65 E-3). 
These values were obtained empirically. From 7 to 10 
images were used to develop the method (training set). 
These were not removed from the evaluation set (1500 
images). Being the training set such a small percentage of 
the whole evaluation set, overall results should not be 
noticeably affected by their presence. 

Therefore, up to three different modes can exist in a 
histogram and they are represented by:  

 
- Gaussian functions with parameters of weigth, mean 

and variance calculated from gradient method.  
- Exponential functions of the form exp(ax+b). The 

coefficients will be determined by applying a log 
function to the measured histogram and then 
obtaining the a and b values by linear regression 

- Uniform functions. They correspond to an interval of 
the histogram and are just obtained as the average 
value in that interval. 

 
When the histogram is approximated by a model composed 

of one or several modes, thresholds are obtained to separate 
these modes. The threshold that separates two gaussian 
modes and minimize the modeling error can be obtained 
analytically [9]. When a pair of modes are present in the 
model which contain at least an exponential or a uniform 

mode, the threshold between them is taken at the intensity 
point where these two modes intersect. 

Once the thresholds of each subimage are calculated, the 
pixels that form each connected region segmented on the 
image are represented graphically by the average of their 
intensities levels (Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 2. Image obtained from the division and subimage segmentation stage 
 

 
2) Creation of templates 

 
Due to the division of the image, it is necessary to 

group the results of the segmentation of the different 
subimages in only three sets of pixels, corresponding to fat, 
muscle and rest of the image (background mainly). This 
second stage of the process is aimed to provide binary 
templates that will facilitate the grouping process, which is 
the last stage of the method and will be explained later 
(Part d of this section). 

The purpose of these templates is distinguish roughly dark 
pixels (muscular tissue and background) from ligth pixels 
(adipose tissue). To increase the difference between these 
intensities, original image is squared. The result (image 
squared) is the beginning of a process which is carried out in 
several steps: 

- Initial segmentation. The image squared is segmented 
with de lowest (darkest) threshold obtained from the 
histogram modeling of initial undivided image. (Fig 3.a).  

- Initial binary template. The dark and connected pixels 
of the background are grouped. This result is a binary 
image (Fig. 3.b), which roughly distinguishes between the 
thighs and the background, and still has some important 
deficiencies as the rightmost and leftmost parts of the thigh, 
which have erroneously been considered as part of the 
background due to the effects of a poor illumination. 

- Extracting the deficient white parts. It is necessary to 
include the pixels of adipose tissue affected by the poor 
illumination. With a more restrictive thresholding, this set of 
pixels can be extracted (Fig. 3.c). This new threshold is the 
first minimum from the histogram of the image squared (it 
proporciona un límite burdo entre pixels muy oscuros –
background- del resto). From the image of second step (Fig. 
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3.b.) and applying connectivity operations on white pixels, 
the deficients white parts are obtained (Fig. 3.c.) 

- Filling of the binary template. The white region of the 
second step (Fig 3.b) can be enlarged with the deficient white 
parts obtained in the previous step (Fig 3.d). 

- Filling of the initial segmented image. The segmented 
image obtained in the first step is also filled with the 
deficient white parts obtained in the third step (Fig 3.e). 

The results are two binary images: the first one 
identifies the region of the background of the image (Fig 
3.d), whereas the second one will be used as guide to place 
the most important elements of adipose and muscular tissue 
(Fig.3.e). 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3. a) Initial thresholded binary image. b) Initial binary template; c) 
Deficiency white image d) Enlarged binary template; e) Binary image of 
muscle and fat distribution. 
 
 

3) Bone extraction 
 
The dark region of the bone is detected by segmenting 

the original image and labeling with black colour (zero 
intensity level) the sets of pixels with intensity levels 
lower than the first threshold obtained from the modeling 
histogram of the original image (Fig 4.a). It allows 
identifying the biggest connected regions within the 
thighs, which completely surround higher intensity 
pixels of the bone. The results is a binary mask to extract 
the bone.(Fig 4.b.) 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Bone extraction a) Initial image after segmentation (the dark periphery 
of the bone appears in black) b) Bones already detected; c) Segmented image 
after bone extraction. 
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It is not possible to apply this technique to the images of 

the low part of the thigh. In this case, the information of 
the internal region of the bone of the previous image is 
used. From its contour, an iterative process of dilation 
operations is applied that includes new pixels up to the 
external border of the bone. In all the cases, a binary image 
(Fig. 4.b.) is obtained to extract the bone (Fig 4.c). 

 
 
4) Final segmentation 

 
At the beginning of the last stage, the image obtained from 

the previous steps is formed by different connected regions 
segmented in each subimage, with the bone extracted and with 
the contour of the thighs defined (Fig 4.c.). 

The purpose of this step is grouping this result in an overall 
segmentation (Fig. 5.e). This is achieved with the information 
taken from three different results of the previous analyses: 

 
-The segmentation by adaptative thresholding, resulting 

from the first stage of the process (Fig.5.a). It indicates the 
regions in which the image has been divided and the common 
intensity level assigned to all the pixels within that region. 

- The image obtained after grouping of the different regions 
of Fig.2, but using the thresholds corresponding to the initial 
undivided image. It provides a grouping of the regions 
obtained in the adaptative segmentation according to the 
global information of the image (Fig. 5.c). 

-The enlarged binary template, obtained in the last step of 
the stage 2) of the process (Fig. 3.e). It roughly indicates the 
presence of muscular (black) tissue and adipose (white) tissue 
in each of the regions of the segmentation (Fig.5.b). 

 
The reason of the need to use these three results is 

explained here.The adaptive segmentation (AS) produces in 
each subimage one or several connected regions with similar 
intensity levels (in fact, pixels within a certain region belong 
to the same mode). Each of these AS regions is considered a 
singular part of the image, in the sense that all its pixels are 
represented with the same intensity level (the average of these 
pixels in the original image) and at the end of the processes 
they will be collectively assigned to the same class of tissue, 
either fat or muscle. The complete set of AS regions contain 
detail and local information about how and where different 
intensity levels appear in the image. This information can be 
very useful for the segmentation, but these regions need to be 
associated to muscle or fat tissue. This is the reason why other 
sources of information should be used for this purpose, 
basically: 

- the image obtained after grouping of the different regions 
of Fig.2, using the thresholds corresponding to the 
initial undivided image. (Fig. 5.c), 

- enlarged binary template (Fig. 3.e = Fig5.b). 
 

 
 
The first one provides a global threshold that permits 

differentiating between muscle and fat and comparing the 
results obtained from adaptative segmentation. It is good 
enough when the “obscuring effect” of the sides of the thighs 
is not present and when the. To deal with the “obscuring 
effect” of the sides of the thighs and to distinguish cases when 
the results of adaptive and global segmentation do not agree, 
the enlarged binary template is used. This template has been 
carefully built in order to preserve the thigh contour without 
being affected by the “obscuring effect”. Regard the white 
connected region in the outer part of the thigh (Fig. 3.c) that is 
added to Fig. 3.a to form the binary template (Fig 3.e). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 (a-c): Final segmentation. a) Image segmented with adaptative 
thresholding and bone excluded; b) Final binary template; c) Original image 
segmented without applying division. 
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The process applied here (to combine the three sources of 

information) is an heuristic set of rules that assign for each of 
the regions obtained in the adaptive segmentation, one of the 
tissue types (fat, muscle or background). This will be decided 
regarding which of the histogram modes of the undivided 
image corresponds to the intensity level of the analysed 
region, and also regarding the proportion of black pixels in the 
enlarged binary template corresponding to that region. For 
instance, when an adaptative segmentation region 
corresponding to fat is under analysis and it suffers from the 
“obscuring effect”, then their pixels will tend to be rather 
dark. In this case, the proportion of white pixels in the 
enlarged binary template is very high and, therefore, the 
region is labelled as fat tissue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 (d-e): Final segmentation. d) Original image; e)Final segmentation 
 

III. RESULTS 
 
The first 25 images (starting frorm the hip) and excluding 

the knee of the 30 subjects were taken for the analysis. The 
results of the segmentation with our method were compared to 
the results from the automatic approach. The number of 
coincidental pixels in both approaches was measured for each 
group (fat, muscle and rest of image). This number was 
normalized dividing by the number of pixels for each group 
obtained with the automatic approach. Mean and standard 
deviation of these figures are given in Fig. 6, where the 
abscissa axis corresponds to the number of the slice (1 being 

upper image, close to the hip, and 25 being the lower image, 
closer to the knee). 

We can see that the results from the proposed method come 
very close to the manual technique. In the adipose tissue the 
rate of coincidential pixels is around 96% for all the slices. In 
the muscle tissue, this rate is above 90% for the first 20 slices 
and decreases steadily for the rest of lower slices. Finally, the 
background is very well detected, as the rate of coincidential 
pixels with the manual approach ranges from 98 to 99%. 
 
 
 
Fig.6: Relative number of coincidental pixels in automatic and manual 

approaches. (a)Adipose tissue. (b) Muscle tissue. (c) Background 
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IV. DISCUSSION 
 
Different studies have approached the topic of the 

segmentation of fat and muscle of the thigh from MRIs. 
Although the majority of the developments are semiautomatic, 
recent approaches have been presented with low processing 
times and small external intervention [7]. Our method is fully 
automatic in the sense that specialist intervention is not 
required. 

In this work, a set of 1500 images have been analysed: the 
first 25 images of each thigh of the 30 obese patients. The 
remaining 5 are near the knee. Here the intensity levels from 
muscular and adipose tissue are very similar and there is not a 
clear contrast of their edges, causing erroneous results. In 
addition, the presence of tendons in this area is more notorious 
and they cannot be segmented adequately without external 
intervention. This is the reason why they have been excluded 
from our analysis. This may also be the reason of the increase 
in the segmentation errors of muscle tissue in the slices 21 to 
25. 

Another aspect that limits the automatic processing is the 
darkening of the right and left parts of the images. In most 
cases (>96%), the enlarged binary template has managed to 
overcome this problem. 

Finally, we have visually compared the results obtained 
with our method and with the manual technique, observing 
slightly greater detail in our results. 

The average execution time of our method is about 5 
minutes per image in our Matlab implementation. Obtaining 
the binary template is the most time consuming. This aspect 
could probably be improved using the similarity of 
consecutive slices. 

V. CONCLUSION 
 

A segmentation method that permits to separate and 
measure fat and mucle tissue in thigh images from MRI has 
been presented. The method needs no external intervention 
and yields results very close to those obtained by a specialist 
doctor following a manual procedure with the aid of the Slice-
Omatic software. 
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