
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2075

 

 

  
Abstract—Segmenting the lungs in medical images is a 

challenging and important task for many applications. In particular, 
automatic segmentation of lung cavities from multiple magnetic 
resonance (MR) images is very useful for oncological applications 
such as radiotherapy treatment planning. However, distinguishing of 
the lung areas is not trivial due to largely changing lung shapes, low 
contrast and poorly defined boundaries. In this paper, we address 
lung segmentation problem from pulmonary magnetic resonance 
images and propose an automated method based on a robust region-
aided geometric snake with a modified diffused region force into the 
standard geometric model definition. The extra region force gives the 
snake a global complementary view of the lung boundary 
information within the image which along with the local gradient 
flow, helps detect fuzzy boundaries. The proposed method has been 
successful in segmenting the lungs in every slice of 30 magnetic 
resonance images with 80 consecutive slices in each image. We 
present results by comparing our automatic method to manually 
segmented lung cavities provided by an expert radiologist and with 
those of previous works, showing encouraging results and high 
robustness of our approach. 

 
Keywords—Active contours, breast cancer, fuzzy c-means 

segmentation, treatment planning.  

I. INTRODUCTION 
TANDARD radiotherapy after surgery for breast cancer is 
a challenging process because of the complex geometry of 

the target volume, which includes the breast, the adjacent 
lymph nodes, and the presence of critical organs such as the 
lungs [1]. In recent years, great advances have been made in 
the delivery of breast cancer radiotherapy planning, with 
intensity modulated radiation therapy (IMRT) being among 
the most promising new techniques [2-3]. Advanced 
radiotherapy treatments with IMRT can deliver dose 
distributions that are more conformal to the tumor targets and 
that simultaneously minimize radiation damage to the 
surrounding normal tissues [4]. An essential part of a 
successful IMRT system for breast cancer treatment is the 
accurate segmentation of target volumes and organs at risk 
such as lungs in all images. There are different challenges as 
the objects of interest are commonly irregular, structures often 
overlap one another, and pathological abnormalities (e.g. 
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cancerous tissues) often skew the normal characteristics of the 
objects of interest. Indeed, manual slice-by-slice segmentation 
of organs needing to be irradiated (cancerous tumors) or 
protected (e.g. lungs) during radiotherapy is time-consuming 
and can take several hours of physician time for a single plan 
[5]. Furthermore, it is not a trivial task to accurately define 
structures of interest on the images by visual inspection alone 
without using dedicated systems to complement visual 
diagnosis. 

Instead, an automated segmentation process allows the 
planner to take critical anatomical structures explicitly into 
account through volume rendering, and therefore shape the 
blocks such that the critical organs are avoided as far as 
possible, while ensuring adequate coverage of the target 
structures. 

Various methods have been proposed for the segmentation 
of lungs from computed tomography (CT) images [6, 7, 8]. 
Most algorithms utilize grey level thresholding operation 
followed by model-based active contour segmentation [6, 7]. 
In [6] a method for segmenting the lung regions in CT images 
based on a combination of thresholding and active contours 
was proposed. The initial active contour points were 
initialized by a threshold-based global segmentation 
algorithm. A lung segmentation technique in thoracic CT 
images was introduced in [7] that used multiple active 
contours. As on other methods, this approach initiated by grey 
level thresholding of the images followed by edge detection. 
The obtained edge points were organized in strokes and a set 
of weights was assigned to each stroke. These weights then 
represented the soft assignment of the stroke to each of the 
active contour models. In [8] a knowledge-based, automatic 
method to segment CT images was presented. In this method, 
anatomic knowledge stored in a semantic network was utilized 
to guide low-level image processing routines.  

Previous works have shown that MR images cannot be 
segmented as accurately as CT images due to different reasons 
such as non-uniform nature of the data [9]. Indeed in these 
images, optimal segmentation may not be achieved by using 
grey level information alone and a priori knowledge has to be 
incorporated in the process. Few investigations in the past 
have segmented the lung cavities from pulmonary MR images. 
Middleton and Damper [10] addressed MR image lung 
segmentation by using a combination of supervised neural 
network classifiers and parametric active contour models to 
delineate the lungs from multiple MR slices. The method was 
mainly comprised of two steps. Each individual image pixel 
was first classified as either a lung boundary or non-boundary 
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point based on a neural network classifier. Then, the obtained 
edge-point image was processed by a deformable model to 
obtain the final lung boundaries.  

Ray et al. [11] tackled the same problem by using a 
parametric active contour which could merge multiple 
contours for segmenting the total lung air. This method 
utilized an external force field based on partial differential 
equations with boundary condition which was defined by the 
initial positions of the evolving contours. 

The work presented here is part of a larger effort to develop 
automated organ segmentation methods that speed up, 
optimize and improve the accuracy of the breast cancer 
treatment planning process. In this way, it is crucially 
important to accurately segment different organs such as lungs 
to facilitate the quantitative analysis and visualization of the 
clinically significant features toward the diagnosis, treatment 
planning and follow-up evaluation. Among several different 
segmentation methods, those that are deformation-based are 
especially appealing for our application because they can 
provide smooth boundary and accurately capture the high-
curvature features of the lung regions of different patients. 
This is due to the active contour models' ability to segment 
anatomical structures by exploiting mixed image data 
constraints together with a priori knowledge about the 
location, size, and shape of the structures. 

On the other hand, the energy function used by classical 
active contours (snakes) is normally based on the intensity 
gradients in the image so the snake will lock onto strong 
edges. Our MR images, however, are often too complex for 
gradient information alone to be reliable. Intensities often vary 
non-uniformly throughout a single structure and the boundary 
between neighboring structures may be noisy. Thus, the 
appropriate active contour model has to be very carefully 
chosen and initialized to avoid it getting trapped at non-target 
boundaries. This is where a less local-based (edge-based) 
snake i.e. moving toward a global-based (region-based) 
approach is of great benefit.  

Geometric-based active contours [12-13] have shown 
several advantages over parametric-based models [10, 11, 13], 
such as computational simplicity and the ability to change 
curve topology during deformation. Indeed, geometric-based 
models avoid the need to reparameterize the curves and are 
based on the theory of curve evolution in time according to 
intrinsic geometric measures of the image. Moreover, these 
models can have much larger capture areas than parametric 
snakes and their implementation by level-set methods 
provides accuracy and stability. Nevertheless, geometric-
based models still suffer from two shortcomings. First, they 
allow leakage into neighboring image regions when 
confronted with weak edges, and second, they may rest at 
local maximums in noisy images.  

To take advantage of geometric-based model capabilities 
and also handle both these problems, here, we utilize a robust 
region-aided geometric snake (RAGS) which introduces an 
additional diffused region force into the standard geometric 
model definition [14]. This extra region force gives the snake 
a global complementary view of the lung boundary 
information within the image. However, as the RAGS 
performance depends on the quality of the region produced, 

here, we utilized the RAGS in conjunction with Fuzzy C-
Means (FCM) segmentation algorithm instead of Comaniciu 
and Meer [15] technique which was used in [14] to cope with 
difficulties such as lung weak edges, fuzzy boundaries and 
noisy regions in our MR images. To examine the effectiveness 
of the proposed segmentation algorithm and show 
improvements over the standard RAGS, we demonstrate our 
results on region maps obtained from both the FCM and 
Comaniciu and Meer segmentation algorithms.       

To obtain a region of interest for lung segmentation, the 
heart is first located. Then, this located region and the 
anatomical knowledge are both exploited to automatically 
initialize active contours. Following a Gaussian image 
smoothing, the snake’s forces are then computed to evolve the 
initial snakes toward desired lung boundaries. At the end of 
snake evolution, the obtained contours are used to initialize 
both the contiguous previous and next slices. This step is 
successively repeated by moving forward and backward until 
all MR slices can be segmented. 

In the next sections, details of our method are explained and 
then we compare our geometric-based method's efficiency 
with some of the previous approaches [10, 11] which used 
parametric-based models. 

II. MATERIAL AND METHODS 

A. Dataset 
Our automated lung segmentation algorithm has been 

developed using 30 MR images obtained from a 0.35_T open 
MR imaging system. Each image consists of 80 grey-scale 
slices, each with resolution 256 × 256, taken in the transverse 
plane using T1_weighted spin echo [16]. The slices are 
numbered from slice 1 upwards, i.e. slice 1 is the lowermost 
slice. Fig. 1 shows three slices from one of our images which 
correspond to the three pulmonary regions, i.e. lower, medium 
and upper. As the lung is essentially a bag of air in the body, it 
shows up as a low-intensity region in MR images. The lungs 
are clearly visible in Fig. 1(b) and (c) as two large, low-
intensity regions.  

As is evident from Fig. 1, there are different challenges that 
an automated segmentation algorithm has to deal with. The 
lung boundaries can be either poorly defined or obscured by 
surrounding tissues with almost similar grey values. In these 
cases, there is a possibility to compensate missing or occluded 
lung boundaries by extracting the relevant information from 
the adjacent slices. Indeed, as is usually the case in medical 
imaging applications, the large variability of lung shapes and 
sizes across MR slices itself and different MR images make 
the boundaries difficult to be readily distinguished even in the 
absence of strong edges from neighboring structures. Another 
challenge is that most lung boundaries have weak edges. 
Thus, the segmentation algorithm requires having the ability 
to cope with weak edge leakage problem as well.  

To assess the accuracy of our automatic segmentation 
technique, we require some indication of ground truth in the 
form of already segmented images. Thus, an experienced 
radiologist manually segmented the left and right lung borders 
on every slice of our 30 MR images in the dataset. Fig. 1(d) 
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illustrates the corresponding manually segmented result for 
the upper lung region slice shown in Fig. 1(c). 
 

  
     (a) lower lung region slice                     (b) middle lung region slice 
 

  
       (c) upper lung region slice            (d) manually segmented lung outlines 
 

Fig. 1 Typical lung region slices and the ground-truth for the lower lung 
region slice 

 

B. Active Contours-based Image Segmentation 
The active contour is an energy-minimizing spline guided 

by external constraint forces and influenced by image forces, 
which pull it toward features such as edges and lines [13]. The 
energy is composed by terms that control its smoothness and 
attract it to the object edges, such as lung boundary. This work 
uses the framework of geometric active contours (geodesic 
snake) as in [18].  

Let C(x,t) be a two dimensional active contour. The 
Euclidean curve shortening flow is given by: 
 
                                       NCt

r
κ=                                          (1) 

    
 where t denotes the time, κ is the Euclidean curvature, and N

r
 

is the inward unit normal of the contour. Now, let I : 
[ ] [ ] +→× Rba ,0,0  be an input image in which the task of 
extracting an object contour is considered. The Euclidean 
length of a curve C is then given by [14]: 
 
                          ( ) ∫∫ =′= dsdqqCL                                   (2) 

    
where ds is the Euclidean arc-length. The standard Euclidean 
Metric ds2 = dx2 + dy2 of the underlying space over which the 
evolution takes place is modified to a conformal metric 

( )( )( ) ( )2222 dydxqCIgdsg +∇=  where the term g(.) represents a 
decreasing function such that ( ) ∞→→ rasrg 0 . Using this 
metric, a new length definition in Riemannian space is given 
by [14]: 

                         ( )( )( ) ( )dqqCqCIgLR ′∇= ∫
1

0

                        (3) 

The steady state of the active contour is then achieved by 
searching for the minimum length curve in the modified 
Euclidean metric: 

                        ( )( )( ) ( )dqqCqCIg ′∇∫
1

0

min                            (4) 

The steady state is now reached by solving the following 
equation, showing how each point in the active contour should 
move in order to decrease the length. The Euler-Lagrange of 
(4) gives the right-hand side of (5): 

                      ( ) ( )( )NNIgNIgCt

rrr
.∇∇−∇= κ                (5) 

Equation (5) has two terms. The first is the curvature term 
multiplied by the weighting function g(.). Since (5) is slow, 
Caselles et al. [12] added a constant inflation term to speed up 
the convergence. The constant flow is given by NCt

r
=  

showing each point on the contour moves in the direction of 
its normal at a constant speed and on its own can cause a 
smooth curve to evolve to a singular one. However, 
integrating this constant term into the geometric snake model 
lets the curvature flow remain regular as follows: 

                  ( ) ( )( )NNIgNcIgCt

rrr
.)( ∇∇−+∇= κ                 (6) 

where c is a real constant making the contour shrink or expand 
to the object boundaries at a constant speed in the normal 
direction. The second term of (6) depends on the gradient of 
the conformal factor g(.) and acts like a doublet, which attracts 
the active contour closer to the feature of interest since the 
vectors of - g∇  point toward the valleys of g(.), the middle of 
the boundaries.  

Despite their significant advantages, geometric snakes only 
use local features and suffer from sensitivity to local 
minimums. Thus, they can be affected by noisy pixels and 
also fail to recognize weaker edges for lack of a better global 
view of the image. The constant flow term can speed up 
convergence and push the snake into concavities easily when 
gradient values at object boundaries are large. But when the 
object boundary is indistinct or has gaps, it can also force the 
snake to pass through the boundary. As it was mentioned 
above, the second term in Eq. (5) attracts the contour closer to 
the object boundary and also pulls back the contour if it leaks 
through, yet the force may just not be strong enough since it 
still depends on the gradient values. It can not always prevent 
weak edge leakage. 

C. Region-aided Geometric Active Contours 
According to our prior knowledge of the data, to make the 

geometric snake much more tolerant toward lung weak edges 
and MR image noise, we have been inspired by [14] to 
accurately segment our MR images based on the region-aided 
geometric snake model. This model integrates gradient flow 
forces with region constraints, composed of image region 
vector flow forces obtained through the diffusion of the region 
segmentation map. The extra region force gives the snake a 
global complementary view of the boundary information 
within the image which, along with the local gradient flow, 
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helps detect fuzzy lung boundaries and overcome noisy 
regions. The resulting partial differential equation evolves the 
initial contour toward final boundaries under the influence of 
both internal forces and boundary-regional image forces, and 
is implemented via level sets. 

Here, the gradient flow force is acquired as in other active 
contour formulations, e.g. [17, 18]. The region force can be 
generated by an image segmentation technique, e.g. [15, 19]. 
In fact, the segmentation splits the image into several regions 
and the gradient of this segmentation map gives region 
constraints in the vicinity of the region boundary map R. The 
magnitude of this region boundary map is then proportional to 
the distance between any two adjacent regions. Then, we 
compute the gradient of the region boundary map R∇ , giving 
region constraints in the vicinity of the region boundaries.  

While the snake evolves in a homogeneous region, it does 
so mainly base on the gradient flow force. If the snake tries to 
step from one region into another, it must concur with the 
region force since it breaks the region criteria, which probably 
indicates a leakage. The capture area of the pure region force 
is quite small. A gradient vector diffusion method was 
proposed in [18] to extend the gradient map further away from 
the edges for a larger capture field. We use this same concept 
to diffuse the region boundary gradient map resulting in 
region forces with a larger capture area along the region 
boundaries. Thus, we obtain a two dimensional vector field 

( ) ( ) ( )( ) ( )[ ]yxzzvzuzR ,,,~ ==  by solving the equilibrium state of 
the following equations:  
 

                  ( ) ( )( )
( ) ( )( )⎪⎩

⎪
⎨
⎧

=∇−∇−∇∇

=∇−∇−∇∇

0

0
2

2

v

u

RvRqvRp

RuRquRp             (7) 

 
where 2∇ is the Laplacian operator with dimensions u and v, 
and p(.) and q(.) are weighting functions that control the 
amount of diffusion, and uR∇ and vR∇ are the components of 
vector field R∇  along the u and v directions. These are 
selected so that p(.) gets smaller as q(.) becomes larger with 
the desirable property of little smoothing in the proximity of 
large gradients and the vector field will be nearly equal to the 
gradient of region map. The following functions are used for 
diffusing the region gradient vectors: 
 

                         ( )
( ) ( )⎪⎩

⎪
⎨
⎧

∇−=∇

=∇
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
−

RpRq

eRp M
R

1

                              (8)                                                   

 
where M is a constant which acts as a tradeoff between field 
smoothness and gradient conformity. The RAGS definition is 
obtained by considering the diffused region force as an extra 
external force of the snake [14]. In this way, the original 
internal and external forces of Eq. (6) can be defined as:  

                            ( )
( ) ( )⎪⎩

⎪
⎨
⎧

∇∇−∇=

∇=

IgNcIgF

NIgF

ex

in
r

r
κ                  (9) 

 

where g(.) is the stopping function as before. Now, we can 
add the diffused region force R~  obtained in Eq. (7) to the 
external term as follows: 
 
                         ( ) ( )IgRNIgFex ∇∇−+∇= ~βα

r
               (10) 

 
where α is a new constant incorporating c and causes behavior 
that is similar to c in [20]. Constants α and β control a tradeoff 
between gradient and region forces. As only the forces in the 
normal direction deform the curve, the evolving curve is 
represented as follows: 

                                 ( )[ ]NNFFC exint

rr
.+=                              (11) 

Therefore, the final RAGS formulation becomes: 

             ( )( ) ( )[ ]NNRNIgIgCt

rrr
.~. βακ +∇∇−+∇=          (12) 

Here, we utilize the level set implementation of RAGS. 
Level sets explain a moving front and are the basis for the 
numerical algorithm for curve evolution according to 
functions of curvature [21]. Let C be a level set of a function 
of: φ: [ ] [ ] ,,0,0 Rba →× i.e. C is embedded into the zero level 
set with φ an implicit, intrinsic, and parameter-free 
representation of curve C. Given a planar curve that evolves 
as follows: 
                                              NfCt

r
=                                  (13)                   

where f is computed on the level sets. By embedding the 
evolution of C in that of φ, topological changes of C are 
handled automatically and accuracy and stability are achieved 
using the proper numerical algorithm. The internal curvature 
and external pressure terms of the RAGS formulation in Eq. 
(12) can be easily transferred to a level set representation: 

                                   ( )
( )⎪⎩

⎪
⎨
⎧

∇∇=

∇∇=

ϕϕ

ϕκϕ

cIg

Ig

t

t                           (14)                   

 
The external forces in Eq. (12) are static vector fields 

derived from image data which do not change as the active 
contour deforms. Static force fields are defined on the spatial 
positions rather than the active contour itself. Since N

r
is the 

inward normal, the level set representation of the inward unit 
normal is given by 

ϕ
ϕ

∇
∇

−=N . Then we have: 

                                ( )ϕ
ϕ

∇
∇

−= .1. fNf
r                                (15)                   

    This leads to the level set representation of RAGS as: 
 
        ( )( ) ( ) ϕβϕϕακϕ ∇−∇∇∇+∇+∇= .~. RIgIgt     (16) 

     
where g(.) is the stopping function as before. We should point 
out that, the theory of boundary detection by the geometric or 
geodesic snake can be applied to any general edge detector 
function, with a stopping function g tending to zero when 
reaching edges. Let f be an edge detector. Then, the 
decreasing function g can be any decreasing function of f such 
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that .0 ∞→→ fasg  In this work, as our images are gray 
level images, f and g are defined as: 
 
                    ( )IGaussf *∇=  and ( ) 11 −+= fg                        (17) 

     
where Gauss denotes a Gaussian smoothing filter. 

D. MR Image Segmentation Based on FCM  
The ideal segmentation of an image is usually application-

dependent. Unlike hard segmentation methods, which force 
pixels to belong exclusively to one class, soft segmentations 
such FCM allow pixels to belong to multiple classes with 
varying degrees of membership [21, 22]. FCM has been used 
with some success in the soft or fuzzy segmentation of MR 
images [22, 23]. It clusters data by computing a measure of 
membership, called the fuzzy membership at each pixel for a 
specified number of classes. The fuzzy membership function 
reflects the degree of similarity between the data value at that 
location and the prototypical data value or centroid of its 
class. 

FCM is formulated as the minimization of the following 
objective function with respect to the membership functions u 
and the centroids v [24]: 

                    2

1
kj

j

C

k

q
jkFCM vyJ −= ∑∑

Ω∈ =

μ                        (18)                                               

    Here, Ω is the set of pixel locations in the image domain, q 
is a parameter that is constrained to be greater than one, ujk is 
the membership value at pixel location j for class k. The 
observed image intensity at location j is shown by yj, vk is the 
centroid of the class k, and the total number of classes is 
represented by C. The parameter q is the weighting exponent 
which controls the fuzziness of the resulting clusters. For q = 
1, JFCM reduces to the classical within-group sum of the 
squared errors objective function and FCM becomes 
equivalent to the K-means clustering algorithm [23]. A 
commonly used value is q = 2.  
     The FCM objective function in Eq. (18) is minimized when 
high membership values are assigned to pixels whose 
intensities are close to the centroid for its particular class and 
low membership values are assigned when the pixel intensity 
is far from the centroid. 

E. Snake Initialization using Template Matching  
The deformable nature of most human internal structures 

such as lungs might suggest that a carefully chosen active 
contour model, i.e. the RAGS, would be more appropriate for 
identification of lung boundaries. However, as there are many 
non-target boundaries in a typical MR slice, a careful 
initialization is necessary to avoid snakes getting trapped at 
non-target boundaries. Generally, the initial contours should 
be defined so that they are close enough to the desired outlines 
to avoid having snakes trapped in local minima of the energy 
that do not correspond to the actual boundaries of the lungs.  

Here, the snake's performance is optimal when the initial 
contour is placed inside the lung region. This is due to the fact 
that much less distinct features exist in the more homogeneous 
inner region of the lungs than in the outside region. As lung 
contours are often similar from one slice to the next, we can 

alleviate the difficult task of separate initialization of each 
slice by using the final obtained contours in one slice as the 
initial snakes of the adjacent one. However, prior to the 
segmentation algorithm, a matching process is employed to 
choose a middle lung region slice named best matched slice 
with clear lung regions and the heart. Having found this slice, 
suitable initial (starting) contours can be adjusted and refined 
using active contour model to rapidly find the lungs cavities.  

Template Matching is a technique used to isolate certain 
features in an image [25]. This can be implemented as a 
correlation of the original image and a suitable template. 
According to the size of the heart region in our MR images, 
we generated a 70 × 70 pixel template image by averaging the 
heart region in 80 middle lung region slices selected from our 
image dataset. To have a robust method against the changes in 
image amplitude such as those caused by changing lighting 
conditions, the normalized correlation coefficient is utilized 
[25]. We measured the normalized correlation coefficients for 
each MR slice to present an indication of the match between 
the template image and each individual pixel in the slice under 
consideration. 

Fig. 2(a) illustrates the best matched slice of one of our MR 
images where the point with the highest CC value is also 
marked. Here, we consider this point’s coordinate as potential 
location of the heart centre. Having found the best matched 
slice for each MR image, the initial snakes can be defined as 
arbitrary oval contours within the lung regions using the 
obtained heart location and our prior anatomical knowledge of 
the lungs. Fig. 2(b) shows the initial snakes placed inside the 
lung cavities for the best matched slice illustrates in Fig. 2(a). 
 

   
        (a) the best matched slice           (b) initial snakes defined by the CC point  
 
Fig. 2 Snake initialization using template matching technique           

 
An outline of our proposed algorithm can be summarized in 

the following four steps: 
1- The MR image’s best matching slice, i.e. a middle 

lung region slice with clearly detectable heart and the 
lungs regions is first located using template 
matching. 

2- Initial snakes are then automatically placed inside the 
matched slice's lung regions that are to be segmented.  

3- Following a Gaussian image smoothing, the snake’s 
forces are computed to evolve the initial snakes 
toward desired lung boundaries. 

4- At the end of snakes' evolution, the obtained contours 
are used to initialize both the contiguous previous 
and next slices. This step is successively repeated by 
moving forward and backward until all MR slices 
can be segmented.  
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It is worth nothing that, during first iteration the final 
obtained contours from segmenting the best matched slice are 
used to initialize both previous and next MR slices while from 
second iteration onward, each new slice is initialized solely 
based on its either previous or next slice's identified contours. 

III. RESULTS 
We have applied the proposed segmentation algorithm to 

capture lung cavities in each slice of our 30 MR images. As it 
was mentioned before, each MR image consists of 80 two-
dimensional (2D) grey level slices. Having found the best 
matched slice for each MR image, the same initial contours 
were automatically defined within the lungs. The RAGS 
propagate under the influence of one internal and three 
external forces, i.e. the internal curvature flow force, the 
pressure force generated by the constant gradient flow, the 
gradient of the edge stopping force and the diffused region 
vector force derived from region constraints. These latter 
constraints are derived from any region segmentation 
approaches.  

Following a Gaussian smoothing pre-processing step, the 
map of stopping function g(.) and gradient magnitude map of 
this stopping function �g are obtained. The term �g attracts 
the contours further to the boundary and also presents a 
backward force when the contours step through the edge. 

Now we need to compute the region forces, which are 
generated from segmented images. The segmentation 
algorithm provides an extra region force which gives the 
snake a global complementary view of the lung boundary 
information within the image. In fact, the segmentation 
algorithm define a region map to help the snake speed up the 
convergence while evolving in a homogenous area, or pull 
back the snake while it attempts to step across lung 
boundaries. In this work, we exploited FCM segmentation 
algorithm with fixed q = 2 parameter for all experiments. The 
reasonable value of this parameter was tuned experimentally 
and according to our prior knowledge of MR image 
characteristics. The pixels of the input MR images were 
divided into four clusters. The first cluster includes pixels in 
the background and inside lung cavities, whereas the 
remaining three clusters represent the other existent structures 
in each image. 

Figs. 3(a-c) illustrate a typical medium MR slice, its 
Gaussian smoothed image (σ=1) and the FCM segmentation 
result, respectively. Having segmented this slice into a set of 
regions, a region identification technique was followed to 
assign a unique label to each segmented region. Here, we used 
an 8-neighborhood connected component labeling region 
identification technique [25]. The connected component 
labeling provides the ability to assign a unique label to each 
segmented region and thus measure various features for each 
individual region. To avoid potential interference from non-
target small minor segmented regions, i.e. the isolated regions 
which were obtained due to the noise and other artifacts, a 
cleaning operator was used. This cleaning filter was 
implemented as an experimentally adjusted connected region 
size threshold of 1000 pixels which removed all regions with a 
size under this threshold value. Fig. 3(d) shows the segmented 

image (Fig. 3(c)) after this post-processing stage was applied, 
and the correspondent region map is illustrated in Fig. 3(e).  
    After generating all the external forces, we could build up 
the initial level set function based on the initial contours and 
evolve the level set according the underlying forces till the 
zero level set reach the steady state. Fig. 3(f) displays the final 
identified lung boundaries using the RAGS snake.  
 

 
      (a) original slice      (b) Gaussian smoothed result   (c) FCM Segmentation 

 
(d) post-processing result          (e) region map    (f) extracted lung boundaries 
 
Fig. 3 Region aided segmentation results for a typical middle lung region slice 
 
    The excellent performance and versatility of our proposed 
method is shown in Figs. 4 and 5, which display typical 
examples of the segmentation that can be achieved. In all 
cases, the algorithm could successfully detect lung boundaries 
without user interaction and parameter modification with fixed 
initial contours used for the best matched slice. Most 
segmentations required approximately 200 iterations for 
convergence, dependent primarily on the size of the lungs in 
the image. 
    Fig. 4(a) illustrates the selected best matched slice, initial 
contours and the extracted lung boundaries superimposed on 
the original image. Figs. 4(b-h) show the segmented slices 
when moving forward from the best matched slice (Fig. 4(a)) 
toward upper lung regions. As was already mentioned, the 
final converged snakes in each slice are used as the initial 
snakes of the next slice. Similarly, Fig. 5(b-h) illustrate the 
final segmented slices when moving backward from the best 
matched slice (Fig. 5(a)) toward lower lung regions. 
    As it can be seen from Figs. 4 and 5, the proposed method 
achieved a good segmentation in the lower, middle and upper 
pulmonary regions. However in a few instances, in slices from 
the middle lung region, where lung superposition or visual 
merging of the lungs occurred (Fig. 5(e)), the method failed to 
distinguish the two separate lungs and a global contour was 
obtained. This erroneous result did not however interfere with 
segmentation of the subsequent slices and the desired 
boundaries were accurately located in the following slices 
(Fig. 5(f)). On the other hand, there were a couple of lower 
lung region slices at the bottom of lungs that could not be 
segmented as accurate as the other slices (Figs. 4(h, i)). This 
problem was mainly due to the fact that the lung cavities tend 
to be poorly represented in these more extreme slices. 
  Overall, as is evident from Figs. 3, 4 and 5, the proposed 
segmentation method is robust enough to efficiently deal with 
pronounced cavities and different shapes for each lung.  
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Fig. 4 Experimental results of automatic lung segmentation for 8 medium and 
lower lung region slices, with final identified boundaries shown in white: (a) 

initial snakes overlaid on the best matched slice (slice no. 23), (b) final 
boundaries (slice no. 23), (c) final boundaries (slice no. 20), (d) final 
boundaries (slice no. 17), (e) final boundaries (slice no. 14), (f) final 

boundaries (slice no. 11),  (g) final boundaries (slice no. 8), and (h) final 
boundaries (slice no. 5), and (i), final boundaries (slice no. 2) 

 

 
 
Fig. 5 Experimental results of automatic lung segmentation for 8 medium and 
upper lung region slices, with final identified boundaries shown in white: (a) 

initial snakes overlaid on the best matched slice (slice no. 23), (b) final 
boundaries (slice no. 29), (c) final boundaries (slice no. 35), (d) final 
boundaries (slice no. 41), (e) final boundaries (slice no. 47), (f) final 

boundaries (slice no. 53),  (g) final boundaries (slice no. 59), and (h) final 
boundaries (slice no. 65), and (i), final boundaries (slice no. 72) 

    

To emphasize the effectiveness of the proposed technique 
and to perform a quantitative evaluation, the well known 
Pratt's Figure of Merit (FOM) [26] was utilized. The FOM is a 
dimensionless number between zero and one which attempts 
to balance three types of errors that can produce erroneous 
edge maps, i.e. missing valid edge points, failure to localize 
edge points and classification of noise fluctuations as edge 
points. Here, the edge means the boundary of segmented lung 
regions. In fact, FOM quantifies the comparison between ideal 
edges and detected edges of an image, and its maximum 
attainable value will be one for an ideal segmentation. The 
FOM is defined as follows: 
                                ∑

= +
=

AreaI

iMax adI
R

1
21

11                               (19)                   

where IMax is the maximum of IArea and IIdeal. IArea represents 
the total number of actual edge pixels, i.e. those edge pixels 
that were found. IIdeal denotes the total number of ideal pixels 
in the image, i.e. the number of edge pixels in the reference 
image. The parameter a is a scaling constant while d is the 
distance from an actual edge point to the nearest ideal edge 
point (in this paper a=0.9). The scaling factor is used to 
penalize edges that are localized but offset from the true 
position. The FOM is normalized with the maximum of the 
actual IIdeal < IArea and ideal number of edge pixels in order to 
ensure a penalty for smeared (i.e. IIdeal < IArea) or fragmented 
edges (i.e IArea < IIdeal). 

The FOM of the proposed segmentation method was 
measured based on the provided ground truth set and the 
automated segmentation results of our 30 MR images. Table I 
summarizes these results by showing the mean FOMs 
obtained on each MR image separately where the maximum 
and minimum FOM values were acquired equal to 0.950 and 
0.787 for MR images 13 and 23 respectively. 

As is evident, the similarity between our automatic lung 
segmentation and the manual lung outlines is very high, best 
on middle and upper slices, and dropping on the beginning 
lower slices. 
 

TABLE I 
 FOM VALUES OBTAINED AGAINST OUR 30 MR IMAGES 

     

MR Image FOM MR 
Image FOM 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.891 
0.943 
0.923 
0.869 
0.828 
0.931 
0.835 
0.884 
0.872 
0.920 
0.844 
0.897 
0.950 
0.875 
0.881 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.796 
0.895 
0.922 
0.877 
0.865 
0.937 
0.880 
0.787 
0.834 
0.856 
0.913 
0.921 
0.834 
0.892 
0.876 
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    Another potential quantitative measure of performance 
would be to use the rates of the two possible types of 
classification errors. Taking a positive example to be a lung 
boundary pixel and a negative example as a non lung 
boundary pixel, these two measures can be defined as the ratio 
of false positives/negatives to the total number of 
negative/positive examples. There was, however, a problem 
with these measures in this work as there were usually many 
fewer lung boundary pixels than non lung boundary pixels in 
each image slice. Thus the sensitivity of these two measures is 
incommensurate and a small change in the false positive error 
rate is relatively more important than a comparable change in 
the false negative error rate. To cope with this problem, we 
have used precision and recall [27] as other performance 
measures to assess the quality of our proposed segmentation 
method. These measures are defined as: 
 
Precision=True Positives/True Positives + False Positives (20)                            
Recall= True Positives/True Positives + False Negatives   (21)                                  

 
    Table II shows the accuracy of the segmentation achieved 
using the proposed method for each of the 30 MR images in 
terms of mean precision and recall values. The precision and 
recall values are calculated from the region enclosed by the 
snake. That is, in (20) and (21), a pixel which is inside the 
contour for both the automated proposed method and the 
ground truth is counted as a true positive. False positive pixels 
are inside the lung boundary found by the snake but outside 
the ground truth boundary. False negative pixels are outside 
the lung boundary found be the snake but inside the ground 
truth boundary.  
    

TABLE II 
 COMPARISON OF MANUAL AND AUTOMATED LUNG SEGMENTATION IN 
TERMS OF PRECISION AND RECALL MEASURES FOR EACH MR IMAGE 

 
    This method of quantifying the results can be regarded as 
the complement of the FOM measure and seems to be a fair 
indication of performance as sometimes a snake could give a 
very good segmentation of the lungs without being located 
precisely along the boundary indicated by the ground truth 
segmentation (it could miss by one pixel at all points). 
conclusions 

    In this paper, a new approach, for fully automatic 
segmentation of lung regions in pulmonary MR images is 
proposed. MR image segmentation is an important but 
inherently difficult problem in medical image processing and 
usually it can not be solved using conventional techniques. 
The solution proposed here is to use a modified geometric-
based snake for simultaneously segmentation of both lungs.  
    Our proposed method starts by choosing the MR image’s 
best matched slice using template matching approach followed 
by snake initialization. No user intervention is required to 
initialize the contours since the initialization is fully 
automatic. Following a Gaussian image pre-processing, the 
snakes' forces are computed to evolve the initial snakes 
toward desired lung boundaries. At the end of snakes' 
evolution, the obtained contours are used to initialize the both 
contiguous previous and next slices. This step is successively 
repeated by moving forward and backward until all MR slices 
can be segmented. 
     To evaluate the effectiveness of our proposed technique 
and compare the results with those of the standard RAGS and 
most related previous works, two set of quantitative measures, 
i.e. precision-recall and FOM values were calculated. We 
applied the standard RAGS algorithm on region maps 
obtained from both the under-segmentation and over-
segmentation options of the Comaniciu and Meer algorithm 
[15].  
     The method proposed by Middleton and Damper [10] was 
mainly comprised of two steps i.e. a supervised pixel 
classification using neural networks and a parametric-based 
active contour model to outline the lung regions. In this way, a 
set of images was used as training set to build and tune the 
classification algorithm. To be truly effective, supervised 
training algorithms require a representative samples covering 
most of the cases (ideally all) in order to perform well in 
practice.   
     Table III illustrates an overall perspective of the Middleton 
and Damper [10] results which were reported in terms of 
precision and recall criteria for 13 MR images. Each of these 
MR images was composed of approximately 35 slices. This 
table also summarizes maximum, minimum and average 
values of precision and recall criteria against our MR dataset 
and the corresponding values reported in [10]. It is evident 
that in terms of precision all three methods represent almost 
similar results, although our method significantly outperforms 
both the Middleton and Damper and standard RAGS 
approaches in terms of recall criterion. It should be noted that 
in contrast to Middleton and Damper's work, the standard 
RAGS and our method were assessed against a larger MR 
image dataset comprising 30 images with 80 slices in each 
image and they do not require any training. 
    To segment the lung cavities, Ray et al. [11] exploited 
another parametric-based model which could merge multiple 
contours for segmenting the total lung air. This method 
utilized an external force field based on partial differential 
equations with boundary condition which was defined by the 
initial positions of the evolving contours.  This work was 
validated in terms of FOM values against an image dataset of 
10 MR images with 118 slices in each image and the author 
reported a mean FOM value of 0.691 against their 10 MR 

MR 
image Precision Recall MR 

image Precision Recall 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0.937 
0.901 
0.923 
0.960 
0.914 
0.943 
0.925 
0.883 
0.940 
0.929 
0.947 
0.891 
0.955 
0.932 
0.949 

0.922 
0.893 
0.896 
0.903 
0.891 
0.933 
0.917 
0.860 
0.925 
0.851 
0.920 
0.873 
0.941 
0.917 
0.921 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.893 
0.960 
0.934 
0.899 
0.945 
0.937 
0.896 
0.938 
0.934 
0.947 
0.940 
0.898 
0.953 
0.891 
0.962 

0.843 
0.945 
0.947 
0.880 
0.922 
0.918 
0.927 
0.900 
0.923 
0.936 
0.923 
0.937 
0.950 
0.884 
0.976 
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images. On the other hand, the standard RAGS and our 
method could achieve mean FOM values of 0.754 and 0.880 
respectively which are highly superior to the reported value in 
[11].  
 

TABLE III 
 COMPARISON OF OUR LUNG SEGMENTATION RESULTS WITH THOSE OF 
MIDDLETON AND DAMPER [10] METHOD AND THE STANDARD RAGS 

Precision Recall  
Method 

 Min Max Average Min Max Average 

Middleton 
and 

Damper 
0.838 0.987 0.916 0.598 0.906 0.804 

Standard 
RAGS 0.844 0.953 0.920 0.710 0.927 0.865 

Our 
Method 0.883 0.962 0.928 0.843 0.976 0.912 

 
The lung cavities can be obscured by surrounding tissue of 

similar gray value, and some neighboring structures may 
induce strong edges in close proximity to the lung boundaries. 
Indeed, largely changing lung shapes and the lung’s weak or 
fuzzy edges make the boundaries hard to be distinguished, 
even in the absence of prominent neighboring structures. 
Although, some correct boundary information can be partially 
extracted from the adjacent slices, but the segmentation 
algorithm must be selected carefully to prevent the weak-edge 
leakage problem.  

Therefore, in contrast to both previous methods i.e. [10] 
and [11] which used parametric active contours, our proposed 
algorithm exploited a geometric based active contour model. 
Geometric active contours have shown several advantages 
over parametric active contours, such as computational 
simplicity and the ability to change curve topology during 
deformation. On the other hand, although, geometric based 
deformable models had brought tremendous impacts on shape 
representation and analysis in medical image analysis, some 
problems remain including the handling of boundary leakage 
and the lack of global understanding of boundaries. 

Thus, in this paper, we utilized a robust geometric-based 
active contour which could significantly improve the active 
contour performance in capturing complex geometries and 
dealing with difficult initialization, weak edges and broken 
boundaries. This model integrates the gradient flow forces 
with region constraints provided by FCM region generation 
algorithm. The FCM approach was straightforward to 
implement and had fixed parameters, but most importantly it 
allowed us to segment the images. 

Experimental results show that the proposed model not only 
is much more robust toward the lung weak edges, but also has 
better convergence quality. This can be clearly seen from our 
results, which are superior to those of previous works [10] and 
[11]. There were, however, a couple of lower lung region 
slices being at the bottom of lungs that could not be 
segmented as accurately as could be the other slices. This 
problem was mainly due to the fact that the lung cavities tend 
to be poorly represented in these extreme slices. Overall, as is 
evident from Figs. 3, 4 and 5, the proposed method is robust 

enough to efficiently deal with pronounced lung cavities and 
different shapes for each lung.  

We consider our proposed method's results to be highly 
encouraging. Efforts were made to reduce the amount of a 
priori knowledge used, so as to keep the method as generic as 
possible. This makes our method worth serious consideration 
for further development as an automated tool for image 
segmentation in medicine. Since, after the segmentation step, 
several 2D shapes representing the lung regions at different 
levels (slices) are available, the future work will include the 
extension of the proposed method to 3D for the analysis of the 
complete MR data set toward a more efficient treatment 
planning system. 

REFERENCES   
[1] Early Breast Cancer Trialists' Collaborative Group. Radiotherapy for 

early breast cancer. Cochrane Database of Systematic Reviews 2002, 
Issue 2. 

[2] P. Evans, E. Donovan, M. Partridge, “The delivery of intensity 
modulated radiotherapy to the breast using multiple static fields,” 
Radiotherapy Oncology, vol. 57, pp. 79-89, 2000. 

[3] B. Cho, C. Hurkmans, E. Damen, L. Zijp, “Intensity modulated versus 
non-intensity modulated radiotherapy in the treatment of left breast and 
upper internal mammary lympth node chauin: a comparative planning 
study, ” Radiotherapy Oncology, vol. 62, pp. 127-136, 2002. 

[4] R. Kinhikar, S. Deshpande, U. Mahantshetty, R. Sarin, “HDR 
brachytherapy combined with 3D conformal versus IMRT in left-sided 
breast cancer patients including internal mammary chain: comparative 
analysis of dosimetric and technical parameters,” Journal of Applied 
Clinical Medical Physics, vol. 6, pp. 1-12, 2005. 

[5] S. Hu, E. Hoffman, J. Reinhardt, “Automatic lung segmentation for 
accurate quantitation of volumetric X-ray CT images,” IEEE 
Transactions on Medical Imaging, vol. 20, pp. 490-498, 2001. 

[6] Y. Itai, H. Kim and S. Ishikawa, “A segmentation method of lung areas 
by using snakes and automatic detection of abnormal shadow on the 
areas,” Int. J. Inov. Comput. Info. Control, vol. 3, pp. 277-284, 2007. 

[7] M. Silveria and J. Marques, “Automatic segmentation of the lungs using 
multiple active contours and outlier model,” Proc. International 
Conference of the IEEE Engineering in Medicine and Biology, 3122-
3125, 2006. 

[8] M. Brown, M. McNitt-Gray and N. Mankovich, “Method for segmenting 
chest CT image data using an anatomical model: preliminary results,” 
IEEE Trans. Medical Imaging, vol. 16, pp. 828-839, 1997. 

[9] P. A. Yushkevich, J. Piven, H. C. Hazlett, “User-guided 3D active 
contour segmentation of anatomical structures: significantly improved 
efficiency and reliability,” Neuroimage, vol. 31, pp.1116-1128, 2006.  

[10] I. Middleton and R. Damper, “Segmentation of magnetic resonance 
images using a combination of neural networks and active contour 
models,” Medical Engineering and Physics, vol. 26, pp. 71-86, 2004. 

[11] N. Ray, S. Acton, T. Altes, E. Lange, J. Brookeman, “Merging 
parametric active contours within homogeneous image regions for MRI-
Based lung segmentation,” IEEE Trans. Medical Imaging, vol. 22, pp. 
189-199, 2003. 

[12] V. Caselles, F. Catte, T. Coll, F. Dibos, “A geometric model for active 
contours,” Numerische Mathematik, vol. 66, pp. 1-31, 1993. 

[13] M. Kass, A. Witkin, D. Terzopoulos, “Snakes: active contour models,” 
International Journal of Computer Vision, vol. 1, pp. 321-331, 1988. 

[14] X. Xie, M. Mirmehdi, “RAGS: Region-aided geometric snake”, IEEE 
Trans. Image Processing, vol. 13, pp. 640-652, 2004. 

[15] D. Comaniciu, P. Meer, “Mean shift: A robust approach toward feature 
space analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 24, pp. 603-619, 2002. 

[16] S. Webb, The Physics of Medical Imaging, Adam Hilger, Bristol, UK, 
1988. 

[17] K. Siddiqi, Y. Lauziere, A. Tannenbaum, and S. Zucker, “Area and 
length minimizing flows for shape segmentation,” IEEE Trans. Image 
Processing, vol. 7, pp. 433-443, 1998. 

[18] C. Xu, J. Prince, “Generalized gradient vector flow external forces for 
active contours,” Signal Processing, vol. 71, pp. 131-139, 1998. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2084

 

 

[19] D. Pham, J. Prince, “Adaptive fuzzy segmentation of magnetic 
resonance images,” IEEE Trans. Medical Imaging, vol. 18, pp. 737-752, 
1999. 

[20] G. Sapiro, “Color snakes,” Computer Vision and Image Understanding, 
vol. 68, pp. 247-253, 1997. 

[21] J. Bezdek, J. Keller, R. Krisnapuram, N. Pal, Fuzzy Models and 
Algorithms for Pattern Recognition and Image Processing, Kluwer 
Academic, Boston, 1999. 

[22] D. Pham, J. Prince, A. Dagher, C. Xu, “An automated technique for 
statistical characterization of brain tissues in magnetic resonance 
imaging,” International Journal of Pattern Recognition, Artificial 
Intelligence, vol. 11, pp. 1189-1211, 1997. 

[23] L. Hall, A. Bensaid, L. Clarke, P. Velthuizen, M. Silbiger, J. Bezdek, “A 
comparison of neural networks and fuzzy clustering techniques in 
segmenting magnetic resonance images of the brain,” IEEE Trans. 
Neural Networks, vol. 3, pp. 672-682, 1992. 

[24] J. Bezdek, “A convergence theorem for the fuzzy ISODATA clustering 
algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 2, pp. 1-8, 1980. 

[25] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and 
Machine Vision, PWS Publishing, 1999. 

[26] W. Pratt, Digital Image Processing, Wiley, New York, 1991. 
[27] V. Rijsbergen, Information retrieval, Butterworth, London, 1979. 


