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Abstract—The present work faces the problem of automatic 

enumeration and recognition of an unknown and time-varying 

number of environmental sound sources while using a single 

microphone. The assumption that is made is that the sound recorded 

is a realization of sound sources belonging to a group of audio 

classes which is known a-priori. We describe two variations of the 

same principle which is to calculate the distance between the current 

unknown audio frame and all possible combinations of the classes 

that are assumed to span the soundscene. We concentrate on 

categorizing environmental sound sources, such as birds, insects etc. 

in the task of monitoring the biodiversity of a specific habitat. 

 

Keywords—automatic recognition of multiple sound sources, 

enumeration of sound sources, computational ecology.  

I. INTRODUCTION 

HE technology of generalized sound recognition as a 

branch of computational auditory scene analysis [1] can 

offer reliable solutions to a wide range of applications 

such as acoustic surveillance [2], context recognition [3], as 

well as memory aid [4]. Lately, the particular scientific domain 

has gained the attention of many researchers while the two 

main problems that need special care are:  

a) as the number of the sound classes increases, the recognition 

performance rapidly decreases and,  

b) composite real-life soundscenes can be very difficult to 

analyze due to the unbounded and time varying number of co-

existing audio classes. Most of the previous work in the area is 

more or less laboratory-based and focus on classifying a single 

dominating audio source that belongs to a fixed, predefined set 

of audio classes.  

 In this work we report results towards expanding sound 

recognition to field applications which consist of simultaneous, 

spectrally overlapping sound sources that their number and 

combination may vary in time (e.g. a bird is singing while rain 

is falling and a wind is present). We try our approach on a 

biodiversity monitoring task that involves sound sources 
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encountered in nature such as animal vocalizations, insects, 

rain and wind sounds etc. Acoustic monitoring can be used to 

provide baseline information about specific groups of 

acoustically active biota and automatically construct an 

inventory of species taxa based on their vocalizations. 

 The task of enumeration and recognition of audio sources as 

described above can be characterized by a high degree of 

difficulty since it is usual for the sound sources to have similar 

statistical properties while their spectral content usually 

overlaps significantly. With respect to our work a soundscene 

is considered to be an audio mixture which is a result of a 

process that switches in time between distinct sound sources 

while a random combination of them is selected. We assume 

that these sources belong to a-priori known set of classes. In 

our classification approach, the number of sound sources as 

well as their identities are allowed to vary in time. Our 

approach is based on having an inventory of audio classes that 

are assumed to span the acoustic scene and testing each 

unknown recorded audio segment against all possible 

combinations of the audio classes. We present two variations 

that differ in how an audio class is represented and how the 

distance is calculated (see also Fig. 1): 

a) in the first approach we derive the spectral signatures of the 

set of known classes. Each class is simply represented by the 

mean power spectrum of available recordings. All possible 

combinations are produced by adding the corresponding mean 

power spectrums. A simple distance metric is used to assign 

unknown frames to classes. 

b) The second approach is an elaboration of [5] and requires 

the construction of GMMs fitted to the power spectrum of 

each class in order to represent the audio classes that are 

assumed to span the soundscene. As all combinations are 

additive in the power domain the likelihood of every possible 

combination having realized the unknown recording is shown 

that can be expressed in closed form. 

 The rest of the paper is organized as follows: Section 2 

analyses the two different methods that have been employed 

on the specific task while Section 3 presents our experiments. 

Finally our conclusions are drawn in the last Section of the 

present paper. 

II. ANALYSIS OF THE RECOGNITION METHODOLOGY 

This section presents the mathematical formulation as 

regards to the problem of enumeration and recognition of an 

audio mixture composed of M audio sources.  
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A. Modeling of the Audio Mixture 

Let kX denote the complex domain of the STFT of the audio 

mixture and k the frequency-bin index for a fixed-length time 

window. Let
,i kS , where [ ]1,..,i M∈  be an independent signal 

source and t is the time-frame index. Then 

 

, , ,

( )  sources

..t t t t
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where ( ) ,  M t M t≤ ∀ . One should note that at t+1 sources 

may appear or disappear thus changing the cardinality of the 

set of sources composing the mixture as well as the identity of 

the set of sources that are needed to construct the mixture. 

Even if the cardinality does not change over time the 

composition of the mixture set under the same cardinality may 

change (e.g. from [s1, s3, s5] to [s2, s4, s5]). 

A common approximation of the power spectrum of the mix 

can be obtained from (1) by ignoring the cross-terms:  
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Subsequently, a Mel-scale filter-bank is applied to the audio 

mix observation. The Mel-scale filters apply a linear 

transformation on the power spectrum by multiplying the 

power spectral coefficients with positive weights 
l

kW  [6] and 

then (2) becomes: 
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where, l = 1,2,..,L denotes the filter bank channel and  
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Let ,  ix s  be the Mel-scale filterbank power vectors. Then, 
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and (3) becomes 
  

( )M t
t t

i

i

= ∑x s         (4) 

 

B. Modeling the known audio classes with the mean 

spectrum 

The general principle of content-based sound recognition is 

based on the fact that a sound source emits consistent acoustic 

patterns with a very distinctive and characteristic way to 

distribute its energy over time on its composing frequencies.  

 
 

Fig. 1 The unknown recording is a realization of a combination of a set of prototypes. All combinations of audio prototypes are tested of having 

produced the unknown realization. The combination that produces the lowest distance (method A) and the highest likelihood (method B) is selected 
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This constitutes the so-called spectral signature of the 

specific sound source and can be used as the fingerprint of a 

specific source [7-10]. The first approach models the spectral 

signature of each sound class by using the mean-power of all 

available recordings of each audio class. Subsequently, the 

Mel-scale spectrum of each sound class is derived according to 

(3). The filterbank is essential for reducing the variability of 

the spectrum of each source. The next step is to derive the 

spectral signature for every possible combination in the power 

domain according to (4). For example if [s1, s2, s3] are the a-

priori classes assumed to span the audio scene the possible 

combinations are [s1, s2, s3, s1+s2, s1+s3, s2+s3, s1+s2+s3]. 

Unknown content can then be identified by comparing its 

signature to the signature of each member of the set of 

combinations. The distance metric essentially is the absolute 

difference between the unknown power frame and the power 

frame of each combination. Finally, the combination achieving 

the lowest distance is the one that is assigned by the system to 

the specific frame of the signal. The derivation of the best 

combination in terms of the distance metric solves the problem 

of sources enumeration as well as the recognition problem. 

E.g. if the s1+s3 combination is selected the number of sources 

is 2 and the sources composing the unknown frame are s1, and 

s3. 

C. Modeling the classes with GMMs 

 The second variation employs the Bayesian statistical 

framework and incorporates the a-priori information we have 

for the sources in the form of probability density functions of 

mixture models for each  si. Therefore: 

 

( ) ( ), , ,; ,i i m i i m i m

m

p w N µ= Σ∑s s ,  

where
,

1
i m

m

w =∑  and the subscripts i, m are indices running 

over the sources (i = 1,..,M) and the mixtures (m=1,..,mi) of 

each source respectively.  

Let { }1 ( ),..,t

M t=S s s be the set of sources that compose the 

observation vector at time t according to (4) (e.g. at frame 

t=10, { }10

1 4 5, ,t= =S s s s ) and { }
( )1, 1 ( ),,..,

M t

t

m m M t m=S s s  

the set of mixtures of the corresponding set of sources that 

compose the observation vector at time t (e.g. at frame 

t=10, { }1,12 4,6 5,2, ,t

m =S s s s where the second index is the 

Gaussian mixture index of the corresponding source). If 
t

mS was known, then from (4): 
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Initially, the observed power vector (where the following 

cardinality restriction applies: ( ) ,  M t M t≤ ∀ ) is assumed to 

be composed of a source si. This source is selected with 

uniform probability out of M sources and a mixture 

( ), ,; ,i i m i mN µ Σs (for method A) or a Mel-spectrum (for 

method B) with probability ,i mw . The same procedure is 

followed for the rest of the sources up to M(t) and the 

produced observations are added according to (4) to produce 

the observed audio mix. In order to predict which and how 

many sound sources are combined and create the specific 

mixture, the following approach is adopted: we evaluate a 

number of H hypotheses where H includes every possible 

combination of M classes, that is H=∑kM!/(k!(M-k)!).  

The combination achieving the highest likelihood according 

to (5) is selected and the sources enumeration and recognition 

is solved. Please note – and that holds for methods A and B – 

that enumeration and recognition of multiple sources does not 

require separation, that is, it not necessary to separate sources 

by any single-channel technique and then carry out the process 

of recognition as it is usually the case in literature. 

III. EXPERIMENTS 

 This section presents the evaluation of the recognition 

performance of the two methodologies. Due to the unknown 

cardinality of the set of sources that produces the observed 

audio mixture there can be two sources of error. There can be 

errors in the estimated cardinality (e.g. the true set composing 

the mixture is dog+bird call and the estimated set is dog) and 

errors in the estimated composition of the set (e.g. sets 

[bird+rain] and [dog+rain] have the same cardinality but 

different composition).  

 During the experimental phase, we employed a great variety 

of environmental audio signals the sampling rate of which was 

 
 

Fig. 2 Top: A test signal that progressively increases its number of 

sources from 1 to 3 after a marked change-point (bird, bird+dog, 

bird+dog+cricket). Middle and Bottom: The response of Methods A and 

B are depicted respectively where white spaces correspond to active 

sound sources 
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16KHz with 16bit analysis. The parameters for extracting the 

spectral signature out of each signal were the same for method 

A and B. More specifically, the FFT size was 512, the number 

of filterbanks was 23, the window size was 25ms and the hop 

size 12.5ms.  With respect to Method B, each source is 

modeled with a Gaussian mixture of 8 components while the 

respective parameters (weights, variances and means) were 

computed using a standard version of the Estimation 

Maximization algorithm.  

 The experiments were divided into three categories based 

on the number of sources: Category A included test signals 

with one source, Category B signals with two sources and 

Category C signals with three sources. The audio classes were 

the following: bird call, cricket call, dog bark, wind and rain 

noise. The signals were drawn out of professional sound 

effects collections (e.g. BBC Sound Effects Library [12]). 

Signals which contain multiple sources were artificially 

created by merging equal segments of different sounds at the 

same energy ratio. The train files which were utilized were the 

same for both recognition methods so as to have a reliable 

comparison. Half of the data comprised the train set while the 

rest served the testing process. Test files were created at a 

random manner: for example when we wanted to create a 

mixture with cricket and rain sound events we first selected a 

cricket sound and subsequently we merged this signal with a 

portion of a rain sound event of the same size which was 

chosen randomly. However the files which were used to feed 

both methodologies were the same. 

 In Figure 2 we depict the experimental results which were 

derived using both methodologies. On the top we can see a test 

sequence which contains test signals from all three categories: 

initially only a bird call is present. After the first change point 

a dog barking is added while the last part of the signal is 

composed of a bird call, a dog barking and a cricket sound 

event. The recognition results of Methods A and B are 

demonstrated at the middle and bottom of the figure. The y-

axis shows the involved sound sources while a sound source is 

thought to be active at a given time interval when the 

particular space on the figure is white. Thorough recognition 

results will be presented in an enlarged version of the paper as 

the sources of error are the cardinality as well as the identity of 

sources themselves; therefore a large number of recognition 

tests are carried out that due to space limitation are not 

presented here. 

We observe that the segmentation results are very promising 

as the correct cardinality as well as composition of the mixture 

is predicted correctly most of the times. The segments which 

confuse both methods are the onsets and offsets of the sound 

sources. However, this only shows that a finer portioning of 

the acoustic signals is needed during the training stage in order 

to derive more representative spectral signatures (for method 

A) and models (for method B). There are no algorithms, at 

least to the knowledge of the authors that can be applied to a 

relevant task so as to perform comparative experiments. We 

infer that the statistical modeling technique which is based on 

GMM is superior to the one which is based on the spectral 

signature. The GMM approach approximates the patterns of all 

the involved audio mixtures in a manner which concentrates on 

the global characteristics of a particular sound class towards 

limiting the intra-class variability. Thus the trained models 

have the ability to recognize the novel audio composition 

accurately and demonstrate robustness in small variations of 

the spectral content (e.g. different calls of the same bird). 

IV. CONCLUSIONS 

In this work we address the problem of enumeration and 

recognition of complex sound mixtures using a single 

microphone. The whole framework is based on the assumption 

that the audio mix is produced by a subset of sound sources 

which belong to a known set of classes. Two methods were 

tested. The first is deterministic and the second probabilistic, 

that is: a) the first derives the mean power of all possible 

combinations and b) the second one uses a GMM to fit the 

power spectrum of every possible combination of the sound 

sources. Both approaches are based on forming multiple 

hypotheses on the cardinality and composition of the set of 

sound sources that is propagated through time. The process 

acts like a switch and chooses amongst different combinations 

of sound sources which are a-priori known. We concluded that 

the GMM modeling technique provides a finer segmentation of 

the audio sources that exist at a particular soundscene. Our 

application can be used for the automatic acoustic monitoring 

of biodiversity and we obtained some quite encouraging 

recognition results. Future work includes the utilization of 

these methods on real world data recorded at the Hymettus 

Mountain for the needs of the AMIBIO project
1
. Furthermore 

another interesting direction to follow would be the 

exploitation of temporal information either at feature 

extraction (e.g. delta coefficients) or during the pattern 

modeling stage (e.g. hidden Markov models and other 

Bayesian networks in general). 
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