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 
Abstract—This paper presents an automatic normal and 

abnormal heart sound classification model developed based on deep 
learning algorithm. MITHSDB heart sounds datasets obtained from 
the 2016 PhysioNet/Computing in Cardiology Challenge database 
were used in this research with the assumption that the 
electrocardiograms (ECG) were recorded simultaneously with the 
heart sounds (phonocardiogram, PCG). The PCG time series are 
segmented per heart beat, and each sub-segment is converted to form 
a square intensity matrix, and classified using convolutional neural 
network (CNN) models. This approach removes the need to provide 
classification features for the supervised machine learning algorithm. 
Instead, the features are determined automatically through training, 
from the time series provided. The result proves that the prediction 
model is able to provide reasonable and comparable classification 
accuracy despite simple implementation. This approach can be used 
for real-time classification of heart sounds in Internet of Medical 
Things (IoMT), e.g. remote monitoring applications of PCG signal.  
 

Keywords—Convolutional neural network, discrete wavelet 
transform, deep learning, heart sound classification.  

I. INTRODUCTION 

HE recent advancement in field of Artificial Intelligence 
(AI) has made previously impossible tasks become a 

reality. In particular, the use of Deep Learning (DL) 
algorithms such as the CNN, Long-Short Term Memory 
(LSTM), Recursive Neural Network (RNN), has created 
impactful applications in the biomedical fields. For instance, 
applications on skin cancer classification [1], cardiac 
arrhythmia detection [2], lung sound classification [3], and 
many others have been reported over the last two years due to 
the emerging of AI algorithms which have outperformed the 
traditional methods.  

In this research, the Deep Learning approach is proposed 
for early heart disease detection. Heart disease has been the 
leading cause of death globally. Early detection and 
intervention of heart disease will help to mitigate the situation. 
Automatic recording of PCG and ECG signals beyond hospital 
or clinics, such as at home or care centre, serves as a useful 
diagnostic tool to detect early sign of heart disease. In this 
scenario, individual could be referred to medical doctor for 
further investigation once abnormalities are detected in their 
PCG or ECG during their daily lives.     
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II. RELATED WORK 

There are several studies reported on heart sounds 
classification. Typical challenges faced are the selection of 
meaningful features and good training and validation datasets. 
Along with the advancement in deep learning algorithms, 
findings with improved heart sounds classification accuracy 
have been published. These approaches usually require a deep 
learning neural network to classify heart sounds, which works 
with both clear signals and noisy signals. The features used 
include Short Time Fourier Transform [3], Mel-frequency 
cepstral coefficient [4], and a few others time-frequency based 
features. These existing feature-base approaches require few 
segments of the heart sounds to be processed at any one time. 
However, our proposed approach is able to process every 
single segment of heart sounds per heartbeat. This 
significantly increases the resolution of the prediction and is 
able to pin-point exactly which heart beat has produced an 
erratic heart sounds cycle. In addition, as deep learning 
algorithms are capable to learn from the datasets provided and 
identify good features automatically, this research aims to feed 
the heart sounds time series input as raw as possible into a 
novel CNN prediction models and push the limits of models 
for better accuracy.    

III. METHODS 

The heart sounds datasets that are used in our work 
belonged to the Massachusetts Institute of Technology heart 
sounds database (MITHSDB). The ECG and PCG datasets 
were extracted from the publicly available database, the 2016 
PhysioNet/Computing in Cardiology Challenge database [5]. 
These signals are noisy and are classified into either normal or 
abnormal. The training datasets are downloaded from the 
dataset; a total of 180 unique datasets were used in our 
classification model development. Since our model requires 
ECG as the pre-condition for automatic heart sound 
segmentation, only datasets with detectable ECG were used, 
regardless of the quality of the heart sounds. 80% of the 
database serves as the training set for CNN prediction model 
development; while the remaining 20% is used as the testing 
set for model validation. The performance of the model is then 
compared using the classification accuracy.    

A. Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is a technique which is 
widely used in signal processing due to its great time and 
frequency localization ability. It can also be used to extract the 
local characteristics of the ECG signal. It is defined as: 
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for j ≥݆଴ and the Inverse DWT (IDWT) is defined as: 
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where f(x), ߮௝బ,௞ሺݔሻ, and ߰୨,௞ሺݔሻ are the functions of the 
discrete variable x = 0,1,2,…,M−1. Normally we let ݆଴ = 0 and 
select M be a power of 2 (i.e., M = 2	௃ ) so that the 

summations in (1)-(3) are performed over x = 0,1,2,…,M−1,  j 
= 0,1,2,…, J−1, and k = 0,1,2,…,2	௝− 1. The coefficients 
defined in (1) and (2) are usually called approximation and 
detail coefficients, respectively.߮௝బ,௞ሺݔሻ is a member of the set 
of expansion functions derived from a scaling function ϕ(x), 
by translation and scaling using: 
 

߮୨,௞ሺݔሻ ൌ 	2௝ ଶ⁄ ߮ሺ2௝ݔ െ ݇	ሻ	                     (4) 
 
߰୨,௞ሺݔሻ is a member of the set of wavelets derived from a 
wavelet function Ψ(x), by translation and scaling using: 
 

ሻݔ୨,௞ሺߖ ൌ 	2௝ ଶ⁄ ߰ሺ2௝ݔ െ ݇	ሻ                      (5) 

 

 

Fig. 1 A 6th level DWT decomposition model used for QRS peaks detection from the ECG signals 
 

In this research, the ECG signal is decomposed up to 6th 
level (Fig. 1) using the 'sym4' wavelet as it resembles the QRS 
complex (shown in Fig. 2), which makes it a good choice for 
QRS detection. All coefficients are then set to zero except the 
6th level DWT coefficients, which are used to reconstruct the 
ECG signal.  

 

 

(a) 

 

(b) 

Fig. 2 Diagram of (a) sym4 wavelet, (b) QRS complex 

B. Preprocessing of Recorded Signal 

In the preprocessing stage, ECG signals were filtered by a 
bandpass FIR filter between 20 Hz and 200 Hz. High pass FIR 
filter with 20 Hz cut off frequencies is applied to heart sound 
datasets. Next, the ECG signals are decomposed and 
reconstructed into time-frequency representations using DWT 
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technique as described. By taking the square values and 
applying peak detection algorithm, the QRS peaks are detected 
from the ECG signals. 

Based on the detected QRS peaks location, the periodic 
heart sounds containing S1 and S2 are segmented and 
extracted from the respective PCG signals. Fig. 3 shows a 
typical periodic heart sounds segment extracted from this 
process. Due to interpersonal and intrapersonal heart rate 
variability, the total number of sample within each segment 
varies significantly. A resampling process is applied to 
normalize the signals in the following section to address this. 
 

 

Fig. 3 A heard sound (PCG) segment recorded concurrently with 
ECG, indicating the S1 and S2 heart sounds within cycle of ECG – 

periodic heart sounds 
 

 

Fig. 4 A typical intensity map constructed from a healthy periodic 
S1S2 heart sound segment 

C. Transformation to Intensity Map 

The preprocessed signal, which is a one-dimensional time 
series, is normalized by re-sampling into a standard 2304-
element vector. The objective of this process is to remove 
variation between heart sounds segments, either between 
individuals, or within the same PCG recording. Each time-

series segment was then transformed into a 48x48 square 
matrix, forming a new two-dimensional intensity map, as 
shown in Fig. 4. Distinctive feature is then observable through 
the peak values contributed by typical healthy S1 and S2 
signals. However, when systole murmur is present in between 
S1 and S2, which is classified as abnormal heart signal, the 
distinct feature described earlier vanishes. More peaks can be 
observed in between S1 and S2, and the intensity map of such 
signal is shown in Fig. 5. It serves as a recognizable feature 
that could be fed into our DL prediction model, for normal and 
abnormal heart sounds classification. It is understood that 
through training, the model will be able to learn, analyze, 
classify different types of abnormalities, and differentiate 
them from the normal ones.   

       

 

Fig. 5 An intensity map constructed from a periodic S1S2 heart 
sound segment with systole murmur 

D. CNN Classification  

CNN classifier is known to have the capability to 
automatically adjust its coefficients to improve classification 
of the input data. The transformation of the heart sound time-
series into intensity map fits nicely into a typical architecture 
of CNN model. This type of neural network is typically 
trained using supervised learning. The number of hidden layer 
depends largely on the availability of large datasets. Having 
deeper layers of network would increase the number of weighs 
and biases to be updated, as well as the training time. Another 
disadvantage of deeper network is the tendency for the model 
to be biased towards the training data, making it challenging 
for generalized datasets. In our work, two and three 
convolutional layers CNN models are chosen, with feature 
maps of varying dimensions, ranging from 32 to 64 and 256 
respectively in each convolutional layer.  

For our CNN architecture, it is first started with a 
convolutional layer of 11x11 as kernel size, producing a 
hidden layer of (48x48x32) feature maps. After the first 
convolutional layer, a 2x2 pooling is imposed to summarize 
the information extracted from the feature maps into a hidden 
layer of (24x24) matrix. Then, a second convolutional layer of 
the 3x3 kernel size is applied to produce a hidden layer of 
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(24x24x64) feature maps. Another 2x2 pooling is imposed 
after the second convolutional layer, to summarize the 
information extracted from these feature maps into a hidden 
layer of (12x12) matrix. In the last step, a densely connected 
layer of dimension 1024 is built, before a softmax activation 
function is applied to generate the output data. A drop-out 
feature is introduced to avoid overfitting [6] of input dataset 
by the CNN model. This forms the first basic 2 convolutional 
layers CNN model (referred to as Model 1) for our supervised 
learning algorithm. The proposed models are built using 
Python Tensorflow API [7]. Our models are trained using 
stochastic gradient descent based on Adam optimizer [8]. The 
architecture is shown in Fig. 6, generated using the 
TensorBoard library provided by Tensorflow.  
 

 

Fig. 6 The architecture of the heart sound classification using the 
intensity map 

 

To evaluate the CNN performance further, a second model 
is created (referred to as Model 2), where two more hidden 
layers are added; one convolutional and one max-pooling 
layer to evaluate the effect of additional hidden layers on the 
prediction accuracy. To evaluate the model performance, the 
kernel and feature maps dimensions are also experimented. It 
is known that adding more layers would increase computing 
resources and time required to complete classification, which 
would affect the practicality of such system to be put on 
Internet-of-Medical Things, such as running the model from a 
smart phone, or an embedded wearable medical device.  

E. Converting Segment-Level Classification into Record-
Level Classification  

A simple scheme used to combine periodic heart sound 
segment-level classifications is deployed into recording level 
classification. It is done by computing the number of abnormal 
and normal periodic heart sounds within a single recording. 
Then, the ratio of abnormal/normal number is computed. 
When the ratio is larger than 0.5 (as threshold), the PCG 
recording is considered to be abnormal, otherwise it is normal. 
The process is depicted in Fig. 7. The recordings with ratio 
lesser than 0.5 can be further analyzed as these are the 
potential candidates for early stage heart problem detection. 
 

 

Fig. 7 Simple majority voting scheme for PCG classification 

F. Experimental Design 

The entire training dataset “a” was downloaded for the 
research. The first 230 datasets (60% of the dataset) with 
reasonable ECG signals quality are processed, ensuring that 
heart sounds could be extracted between two ECG pulses 
using the wavelet-based segmentation algorithm. Among these 
datasets, 66 are marked as normal and another 164 are marked 
as abnormal. Each of these datasets has a different recording 
duration, and hence the number of periodic heart sounds per 
recording varies. After careful consideration, 1918 normal and 
1812 abnormal periodic heart sounds segments are extracted 
from PCG signals. 80% of these extracted segments are used 
as input to the CNN classifier for training, and the remaining 
20% are used for validation. This cross-validation step was 
repeated 4 rounds to reduce variability and over fitting. After 
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the model is fine-tuned and finalized, it is used to test the 
remaining 40% of the dataset (a total of 180), to prove that it 
could be generalized to classify independent signals.  

During the testing phase, ECG signals from these 180 
datasets go through the same DWT segmentation process and 
the periodic heart sounds segments are fed into the CNN 
classifier. 1437 normal and 3555 abnormal periodic heart 
sounds segments have been extracted to form the testing 
datasets. The percentage of the periodic heart sound segments 
classified as abnormal versus the total number of heart sound 
segment within each dataset is recorded. If high percentage 
(>50%) of the heart sound segments is classified as abnormal, 
this dataset is marked as abnormal, and vice versa. Finally, the 
accuracy is computed for the PCG recording classification 
outcomes.       

IV. RESULTS 

There are a number of hyper-parameters that have been 
fine-tuned in our research while identifying the best prediction 
model and the two key parameters are the dimension of 
feature maps and the convolutional filter kernel size. Table I 
shows that the kernel dimension of the first convolutional 
layer is very critical for the algorithm to pick up the necessary 
features in order to differentiate between the normal segments 
from the abnormal ones. Our conclusion is that a size of 11x11 
work best for the model.  

 
TABLE I 

EFFECT OF KERNEL DIMENSION ON CNN MODELS 

Kernel 2x2 5x2 10x10 11x11 12x12 

Accuracy (Model 1) 0.60 0.66 0.79 0.82 0.66 

Accuracy (Model 2) 0.69 0.71 0.82 0.86 0.71 

 
Besides, the prediction model is evaluated with varying 

drop-out values from 0.5 to 1.0. As our data size is not large, it 
did not show any significant change in prediction as the value 
varies. As a result, the drop-out value is kept at 1.0. The first 
model built with two convolutional layers performs very well 
in the training and validation phase, achieving accuracy as 
high as 0.82, and is able to generalize in the testing phase, 
achieving an accuracy of 0.71 (shown in Table II). As 
predicted, its performance will be affected when the heart 
sound quality is poor. This is likely due to the limited size of 
the training data.  

Our second model with three convolutional layers is able to 
produce better classification accuracy of 0.86, and is able to 
generalize in the testing phase, achieving an accuracy of 0.75, 
which out-performs the model 1 as anticipated. 

 
TABLE II 

ACCURACY OF MODEL 1 & 2 AT TRAINING/TESTING PHASE 
Optimal Kernel 

(11x11) 
Training & 

Validation Phase 
Generalize 

Testing Phase 
Accuracy (Model 1) 0.82 0.71 

Accuracy (Model 2) 0.86 0.75 

V. CONCLUSION 

Two Convolutional Neural Network (CNN) models that are 

capable of performing automatic abnormal heart sounds 
classification at the resolution of every heartbeat have been 
developed and evaluated. This approach uses DWT for PCG 
segmentation and 2 & 3 Convolutional layers CNN taking in 
intensity maps as its inputs. Our approach allows one to 
analyze every single heart sounds segments between two 
heartbeats, allowing the system to pick up potential abnormal 
heart sounds from a stream of normal heart sounds. This 
feature is particularly important for early stage heart disease 
diagnose. Although a very promising accuracy is achieved, 
there are much more work to be done to fine tune the models. 
Several hyper-parameters such as the kernel size, number of 
feature maps and the normal / abnormality thresholds can be 
adjusted to achieve higher classification accuracy. The 
performance of the ECG segmentation also highly depends on 
the recorded signal quality. The automatic classification would 
be affected if the segmentation of the periodic heart sounds 
fails. Alternative methods will be explored to extract the 
periodic heart sounds even when ECG signal quality is poor. 
Our future work might also involve exploring other advanced 
neural networks, such as the LSTM and RNN, not limited to 
normal/abnormal heart sounds classification, but also various 
murmur types detection within the heart sounds. 

It is concluded that CNN models can be applied to heart 
sounds classifications down to each heart beat resolution in the 
case where ECG and PCG are acquired concurrently. This 
ability allows future development of an automatics diagnostic 
tool, either as a dedicated device or wearables, where early 
sign of heart disease can be detected for early intervention. 
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