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Abstract—The stereophotogrammetry modality is gaining more 

widespread use in the clinical setting. Registration and visualization 

of this data, in conjunction with conventional 3D volumetric image 

modalities, provides virtual human data with textured soft tissue and 

internal anatomical and structural information. In this investigation 

computed tomography (CT) and stereophotogrammetry data is 

acquired from 4 anatomical phantoms and registered using the 

trimmed iterative closest point (TrICP) algorithm.  

 This paper fully addresses the issue of imaging artifacts around the 

stereophotogrammetry surface edge using the registered CT data as a 

reference. Several iterative algorithms are implemented to 

automatically identify and remove stereophotogrammetry surface 

edge outliers, improving the overall visualization of the combined 

stereophotogrammetry and CT data. This paper shows that outliers at 

the surface edge of stereophotogrammetry data can be successfully 

removed automatically.  

 

Keywords—Data cleansing, stereophotogrammetry.  

I. INTRODUCTION 

HE diagnosis and treatment planning of patients with 

specific diseases requires image data acquisition from a 

range of volumetric modalities including computed 

tomography (CT), magnetic resonance (MR), single photon 

emission tomography (SPECT) and positron-emission 

tomography (PET) [1]. Image registration is used to spatially 

align multi-modal image data, combining both anatomical and 

functional information, whilst reducing the weaknesses of the 

modalities involved [2]. These modalities provide excellent 

structural and functional information but produce no textural 

information relating to the surface texture of the skin.  

 Stereophotogrammetry is a 3D surface imaging modality 

that produces high resolution topographical surface maps with 

surface texture information. Capture of 3D 

stereophotogrammetry data involves the acquisition of images 

from two or more pairs of stereoscopic cameras, acquiring 

data from different viewpoints. The 3D location of a point in 

the surface is calculated by locating this point in each of the 

acquired stereoscopic image.  From this information, the 
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geometry of the cameras and triangulation is used to determine 

this points location in 3D space [3]. Stereophotogrammetry is 

gaining more widespread popularity in the clinical setting as a 

result of an increase in the systems available commercially 

[4]. Combining the stereophotogrammetry data with data from 

conventional medical imaging modalities (CT and MR), has 

the potential to provide a better visualization on how soft 

tissue surface disease relates to the internal anatomy of the 

patient. Previous applications of combining this data have 

been in the planning and post operative evaluation of maxillo-

facial surgery and in the  evaluation of cadavers in forensic 

medicine [5], [6].  

Although stereophotogrammetry does not provide internal 

anatomical data, there are many benefits associated with using 

this modality in the clinical setting. These benefits include 

short acquisition time (0.002s); demonstrated accuracy of 

0.5mm in each orthogonal axes; easy calibration; non 

invasiveness; no requirement for injected tracers; no moving 

parts; and inexpensive hardware [7], [8]. Since patients are not 

exposed to potentially harmful radiation, unlike CT imaging, 

stereophotogrammetry can be used for follow up assessment 

without having to consider patient safety. Furthermore this 

modality is well suited for follow up data acquisition over 

time since as it can shows the effect of internal structural 

change to the soft tissue surface.  

The area around the stereophotogrammetry surface edge is 

prone to imaging artifacts, considered as outliers due to these 

regions being near the limits of the camera’s field of view. 

Such outlier regions can create a misrepresentation of these 

areas with the potential to cause misinterpretation of the 

stereophotogrammetry surface data. Therefore in combining 

3D surface texture from stereophotogrammetry with 3D 

volumetric image data, careful consideration is required in 

choosing an outlier robust registration algorithm.  

The focus of this paper is to address the problem of surface 

edge outliers in the stereophotogrammetry data and 

demonstrate how these outliers may be removed 

automatically. The aim of this paper is to improve the overall 

visualization of registered stereophotogrammetry and CT data. 

To achieve this, several iterative automated cleansing 

algorithms have been developed and implemented to identify 

and remove surface edge outliers.  

II.  METHODOLOGY 

A. Image Acquisition 

In this investigation four anatomical phantoms were 

selected for data acquisition from both stereophotogrammetry 
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and CT modalities.  The four phantoms selected were

mannequin head model made from polystyrene; 

radiography head model used for teaching with 12 traverse 

slices and bone inside; a right foot molded in Perspex with 

bone inside; and a silicone based right foot with 3 simulated 

ulcers on the surface (Fig. 1). These phantoms were selected 

as the acquired data from them produces different types of 

artifacts with complex curved surfaces 

anatomical regions. 

 

Fig. 1 The four anatomical phantoms used in this investigation (a) 

polystyrene head mannequin model; (b) plastic radiography head 

model with 12 traverse slices; (c) a Perspex foot with bone 

encapsulated; (d) silicone based foot with 3 simulated ulcers

 

The stereophotogrammetry data was acquired using the 

Di3D passive stereophotogrammetry system (Dimensional 

Imaging, Glasgow, UK, www.di3d.com). This system has two 

pairs of Canon EOS 1000D 10.1 Megapixel cameras, each 

with 18-55mm wide angle zoom lenses. For each camera pair 

a synchronized SunPak 383 Autoflash is attached

data provided by the camera system is 

manufacturers software, Di3dCapture 

capture and build the 3D textured surface. Prior to data 

acquisition the Di3D system was calibrated. The 3D phantom 

was placed at a distance of 90cm from the centre of the system 

and data captured with shutter speed 50ms, ISO speed 100 and 

a flash brightness of ¼ in accordance wit

recommended settings. 

 

Fig. 2 The Di3D stereophotogrammetry system 

laptop with Di3dCapture installed

 

The CT data was acquired from a Philips Brilliance 10 Slice 

System CT scanner with a slice thickness of 1mm

(www.philipsctscanner.com/ct-scanner/) 

Imaging and Communications in Medicine (DICOM) format. 

The scanner bed was removed from the CT

surface phantom rendered using the marching cubes algorithm 

within the Mayo Clinic Analyze® 10.0 

(Mayo Clinic, Rochester

(http://www.mayo.edu/bir/Software/Analyze/Analyze.html
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stereophotogrammetry system (Dimensional 

). This system has two 

pairs of Canon EOS 1000D 10.1 Megapixel cameras, each 

55mm wide angle zoom lenses. For each camera pair 

a synchronized SunPak 383 Autoflash is attached (Fig. 2). The 

camera system is inputted into the 

Di3dCapture (version 5.2.5), to 

textured surface. Prior to data 

acquisition the Di3D system was calibrated. The 3D phantom 

was placed at a distance of 90cm from the centre of the system 

and data captured with shutter speed 50ms, ISO speed 100 and 

in accordance with the manufacturers 

 
The Di3D stereophotogrammetry system connected to the 

ptop with Di3dCapture installed 

The CT data was acquired from a Philips Brilliance 10 Slice 

System CT scanner with a slice thickness of 1mm 

 in the Digital 

Imaging and Communications in Medicine (DICOM) format. 

The scanner bed was removed from the CT manually and the 

using the marching cubes algorithm 

10.0 imaging software 

(Mayo Clinic, Rochester, USA, 

http://www.mayo.edu/bir/Software/Analyze/Analyze.html) 

[9], [10].  Surface image data from both modalities was stored 

in the Wavefront Object file format 

surface data from both modalities was decimated to 10% of 

their original facets using a quadratic edge collapse 

decimation with a quality threshold of 0.5 within Meshlab 

(version 1.3.1) [12].  

B. Image Registration 

In this investigation the 

registered with the CT data, using the registration between the 

two surfaces to identify outliers in the stereophotogrammetry 

data. The outlier robust Trimmed iterative closest point 

(TrICP) algorithm by Chetverikov, Steapnov and Krsek is 

used to register the stereophotogrammetry surface to the CT 

surface [13]. The TrICP algorithm is a variant of the 

commonly used iterative closes

successful in registering partially overlapping

that have shape defects and ou

TrICP uses the least trimmed squares of corresponding point 

distances between the two surfaces, to classify and exclude 

outliers at each iteration. A previous investigation 

that TrICP is very robust in the presence of high levels of 

Gaussian and impulsive noise

registering surface data with artifacts present

Prior to the registration, the st

was manually moved to within 30

necessary since the TrICP algorithm requires the two surfaces 

to be within 30
o
 of each other prior to registration 

the TrICP algorithm the stereophotogrammetry surface was 

registered to the CT surface.  

The TrICP algorithm was implemented in Matlab R2012a 

with a k-d tree in C++. The termination conditions for the 

TrICP algorithm were: 

1. The maximum number of 300 iterations was exceeded. 

This value was selected to give TrICP sufficient 

iterations for convergence

2. The change in error measure between iterations was less 

than 1x10
-5

mm. 

The TrICP algorithm produced a transformation matrix 

which was applied to the stereophotogrammetry OBJ file so 

that it was in spatial correspondence with the CT OBJ surface. 

 

C.  Stereophotogrammetry Surface Edge Outlier Problem

To demonstrate that the stereophotogrammetry surface edge 

suffers from artifacts and outliers, the 

surface with the CT surface is used. 

modalities are represented as triangular mesh

stereophotogrammetry surface is a sub surface of the CT 

surface. The CT surface is used as a reference model and for 

each stereophotogrammetry surface node the closest node in 

the CT surface is found using a k

stereophotogrammetry surface edge were 

Distribution of the corresponding distances between each 

stereophotogrammetry surface node an

was calculated. Also the distribution of corresponding 

distances for all the stereophotogrammetry 

was generated (Fig. 3). By removing surface edge levels 1

Fig. 3, a distribution of corresponding distance

calculated, displaying the impact of removing 

Surface image data from both modalities was stored 

in the Wavefront Object file format [11]. Prior to registration 

surface data from both modalities was decimated to 10% of 

g a quadratic edge collapse 

decimation with a quality threshold of 0.5 within Meshlab 

In this investigation the stereophotogrammetry data is 

red with the CT data, using the registration between the 

two surfaces to identify outliers in the stereophotogrammetry 

outlier robust Trimmed iterative closest point 

(TrICP) algorithm by Chetverikov, Steapnov and Krsek is 

reophotogrammetry surface to the CT 

. The TrICP algorithm is a variant of the 

commonly used iterative closest point algorithm, which is 

successful in registering partially overlapping 3D point sets 

that have shape defects and outliers present in the surfaces. 

TrICP uses the least trimmed squares of corresponding point 

distances between the two surfaces, to classify and exclude 

A previous investigation has shown 

that TrICP is very robust in the presence of high levels of 

Gaussian and impulsive noise, so is suited to accurately 

registering surface data with artifacts present [14].  

Prior to the registration, the stereophotogrammetry surface 

was manually moved to within 30
o
 of the CT data. This was 

the TrICP algorithm requires the two surfaces 

of each other prior to registration [13]. Using 

the TrICP algorithm the stereophotogrammetry surface was 

 

The TrICP algorithm was implemented in Matlab R2012a 

The termination conditions for the 

number of 300 iterations was exceeded. 

This value was selected to give TrICP sufficient 

iterations for convergence 

The change in error measure between iterations was less 

The TrICP algorithm produced a transformation matrix 

to the stereophotogrammetry OBJ file so 

that it was in spatial correspondence with the CT OBJ surface.  

Stereophotogrammetry Surface Edge Outlier Problem 

To demonstrate that the stereophotogrammetry surface edge 

suffers from artifacts and outliers, the registration of this 

surface with the CT surface is used. Surfaces from both 

modalities are represented as triangular meshes where the 

stereophotogrammetry surface is a sub surface of the CT 

The CT surface is used as a reference model and for 

stereophotogrammetry surface node the closest node in 

the CT surface is found using a k-d tree. The nodes on the 

stereophotogrammetry surface edge were located.  

istribution of the corresponding distances between each 

stereophotogrammetry surface node and its closest CT node 

the distribution of corresponding 

for all the stereophotogrammetry surface edge nodes 

. By removing surface edge levels 1-3, 

Fig. 3, a distribution of corresponding distances was 

the impact of removing this potentially 
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erroneous data from around the surface edge. Using the sub 

surface representation in Fig. 3, where nodes 1-6 in level 1, 

nodes 7-12 in level 2 and nodes 13-17 in level 3 are removed, 

the corresponding distance distribution of the remaining 

stereophotogrammetry surface nodes can be calculated.  The 

corresponding node distances were placed in bins with a 

corresponding distance of size 0.5mm, with the frequency and 

normalized frequency distributions of these distances found. 

The issue of outliers on the stereophotogrammetry edge can be 

displayed by plotting these normalized distributions and 

comparing the proportion of outliers nodes for the entire 

surface, the surface edge and the remaining nodes (with 

surface edge levels 1-3 removed).  

 

 

 
Fig. 3 A partial surface mesh depicting the surface edge levels; level 

1 nodes (1 – 6); level 2 nodes (7-12); level 3 nodes (13-17) 

 

The normalized distribution of corresponding node 

distances for the plastic head data in Fig. 4(a) shows that the 

surface edge nodes have a wider corresponding distribution in 

comparison with the distribution for the entire surface nodes. 

The corresponding distances for the entire surface has 86.98% 

of the nodes with a corresponding distance of <2.5mm, 

compared with 61.85% for the surface edge and 91.50% for 

the remaining surface nodes. This implies that most of the 

outliers lie on the surface edge, and by removing surface edge 

levels 1-3, the proportion surface nodes in this range can be 

improved. Removing surface edge levels 1-3 generates a 

distribution that converges to 0% at 7mm compared with the 

normalized distribution for all the surface nodes converging to 

0% at 8mm. Further evidence of outliers on the surface edge 

can be seen on the normalized surface edge distribution as it 

converges to 0% at a large corresponding distance and the 

small peak at 6-7mm.  

Further evidence of the surface edge outlier problem is 

shown in the normalized distribution of corresponding node 

distances for the remaining phantoms. In the normalized 

distributions for the polystyrene head data, the distribution of 

the corresponding distances for the entire surface converges to 

0% at 7mm shown in Fig. 4(b). Removal of the nodes in 

surface edge levels 1-3 improves to convergence to 0% at 

5mm. With the silicone foot data the normalized distribution 

of corresponding distances is improved (Fig. 4(c)). The 

normalized distribution converges to 0% at 12mm with all the 

surface nodes, compared with a convergence at 9mm for the 

surface nodes with surface edge levels 1-3 removed. The 

stereophotogrammetry data for the Perspex foot has a large 

artifact in the ankle region. The surface edge outliers have a 

maximum distribution of 11.74% at 1mm (Fig. (d)). This is a 

lower maximum distribution of nodes compared with the 

entire surface, 20.73%. Removal of surface edge levels 1-3 

improves the maximum distribution at 1mm to 22.92%, 

showing that the surface edge has a lot of outlier data present.  

From the analysis of the stereophotogrammetry surface 

edge distances, it is clearly demonstrated that the there is a 

higher proportion of outliers at the surface edge compared 

with the entire surface. By removing the areas around the 

surface edge, the overall corresponding node distribution can 

be improved and the proportion of large distances is either 

removed or lowered. An automated cleansing algorithm to 

detect and remove these stereophotogrammetry surface edge 

outliers would potentially improve the visualization with the 

registered CT surface. This cleansing would aid clinicians as 

erroneous data in these regions would be removed, providing a 

more accurate digital human representation. Automated 

cleansing would remove the requirement for manual cleansing 

interventions which can be time consuming and operator 

dependent.  

D. Automated Data Cleansing Algorithms 

To automatically cleanse the stereophotogrammetry surface, 

by detecting and removing outliers on the surface edge, the CT 

surface is used as a reference model, with the closest 

corresponding node in the CT surface located for each 

stereophotogrammetry node. Several automated cleansing 

approaches are proposed, which use the corresponding node 

distances between the registered stereophotogrammetry 

surface and CT surface to determine a distance threshold. This 

distance threshold will determine which nodes on the 

stereophotogrammetry surface edge can be determined as 

outliers and subsequently removed from the surface.  

1) Otsu’s Method  

The first approach investigated was Otsu’s method, a 

frequently used automatic thresholding detection mechanism 

in image segmentation to determine thresholds for partitioning 

images into regions depending on their intensity values [15]. 

This method maximizes the between-class variance or 

corresponding node distance creating two separate classes 

which are a class of surface nodes deemed as inliers and a 

second class of surface nodes that have been identified as 

outliers. The two classes created by Otsu’s thresholding are 

distinct and provide the best separation between the two 

classes [16]. This method is efficient in that it uses the 

histogram of the corresponding node distances to compute the 

threshold. In this investigation Otsu’s method is implemented 

to locate the maximum between-class variance of the 

histogram data from the corresponding distances between the 

stereophotogrammetry and CT nodes.  

In Otsu’s method let {0, 1, 2, …, L-1} denote the distinct 

bins of corresponding distance levels from the registered 
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(a) Plastic head 

 
(d) Polystyrene head 

 

(c) Silicone foot 

 

 
(d) Perspex foot  

Fig. 4 The normalized distribution of corresponding node distance between the stereophotogrammetry surface nodes and the closest CT surface 

nodes for (a) polystyrene head; (b) plastic head; (c) silicone foot; (d) Perspex foot;
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stereophotogrammetry and CT data. The number of 

corresponding distances ni denotes the number of 

stereophotogrammetry nodes that have a corresponding CT 

node distance of i. The total number of stereophotogrammetry 

nodes in the surface is N. Therefore the normalized histogram 

uses pi, the proportion of nodes at distance levels i. 

 

Nnp ii /=  (1) 

,1
1

0

∑
−

=

=
L

i

ip 0≥ip  (2) 

 

From this data the aim of Otsu’s algorithm is to find the 

distance threshold that maximizes between-class variance of 

two distance classes (inliers and outliers).  The summary of 

the algorithm is as follows: 

1) Compute the normalized histogram using pi 

,ip 1,...,2,1,0 −= Li                           (3) 

2) Determine the cumulative sums, P1(k) for k = 0, 1, 2,…, 

L-1  

∑
=

=
k

i

ipkP
0

1 )(                                     (4) 

3) Calculate the cumulative means, m(k), for the thresholds k 

= 0, 1, 2,…, L-1. 

∑
=

=
k

i

iipkm
0

)(                                     (5) 

4) Determine the global distance mean, mG 

∑
−

=

=
1

0

L

i

iG ipm                                       (6) 

5) For each threshold k = 0, 1, 2,…, L-1, compute the 

between-class variance σ
2

B 

)](1)[(

)]()([
)(

11

2

12

kPkP

kmkPm
k G

B
−

−
=σ                             (7) 

6) Otsu’s threshold, k
*
, is the value of k which produces the 

maximum  σ
2

B, (8). If a non-unique maximum is found, k
*
 

is calculated as the average of the maxima located.   

 

)(max)( 2

10

*2 kk BLkB σσ −≤≤=                         (8) 

 

Therefore to find the optimal threshold using Otsu’s 

algorithm, all the binned distance values in the normalized 

histogram are used and (8) is evaluated. The value of k that 

produces the maximum in (8) is then selected as the threshold 

unless more than one maximum exists. If more than one 

maximum is found the values of k that produces these maxima 

values are averaged [16]. 

 

2) Mean and Standard Deviation of Corresponding 

Stereophotogrammetry and CT Distance  

The second method used to determine outliers, using the 

corresponding stereophotogrammetry to CT distance, are with 

the mean and standard deviation (SD) of the corresponding 

distance nodes. Let i = {0, 1, 2,…,n-1} be the index of each 

node in the stereophotogrammetry surface with N nodes. Each 

stereophotogrammetry node has a distance to its closest CT 

node of di. From the normalized histograms in Fig. 4 the mean 

and standard deviation of corresponding distance can be 

calculated. By using all the corresponding distance values the 

mean, (µ), and standard deviation, (σ), can be sought and 

different combinations of the mean and standard deviations 

tested. In this investigation the threshold was selected based 

on variations of µ + α σ, where α = 1, 1.5, 2. 

 

∑
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=
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3) Data Cleansing Algorithms  

In this investigation the following cleansing algorithm is 

used with the registered stereophotogrammetry and CT 

surfaces for all the phantoms in Fig 1. The algorithm finds the 

distance threshold and the nodes on the stereophotogrammetry 

surface edge that have a distance equal to or greater than this 

threshold.  

The iterative automated data cleansing algorithm is as 

follows: 

 
A disjoint detection algorithm was implemented to test 

which outlier nodes could be successfully removed without 

causing the stereophotogrammetry surface from becoming 

disjointed.  Ideally all the surface edge nodes that meet the 

Automated Stereophotogrammetry Data 

Cleansing Algorithm 

Input:  Stereophotogrammetry 3D surface mesh 

(SPG) 

CT 3D surface mesh (CT) 

Change in RMS distance threshold 

(RMSthresh) 

Output: Cleansed stereophotogrammetry surface 

1  begin 

2  find closest CT node for every SPG node 

3  calculate the distance di between each SPG node and its 

closest CT node 

4  Calculate the root mean square (RMS) of corresponding 

node distance for every SPG node  

∑
−

=

=
1

0

21 n

i

icurr d
N

RMS
 

5   while(RMSthresh < RMSchange) 

6   find the distance threshold T using all the 

corresponding distance values di with either Otsu’s or 

mean plus SD (µ + α σ) approach 

7 find the nodes on the SPG surface edge 

8 find which SPG surface edge nodes have a distance, 

di, ≥T, these nodes become outliers 

9 remove outlier nodes from SPG surface that do not 

cause surface disjoint 

10 RMSprev = RMScurr  

11   calculate the RMScurr for the cleansed SPF surface 

12  RMSchange = RMSprev - RMScurr  

13  endwhile 

14  end 
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threshold criteria would be removed. However if these nodes 

were removed a scenario could occur where the surface 

becomes disjointed, meaning that there could be clusters of 

nodes and facets that would not be connected to the main 

surface. Consider the sub surface in Fig. 5, where surface edge 

nodes 34 and 40 had a corresponding distance ≥ to the 

distance threshold. If node 34 was only to be removed, then 

facets F37, F38, F41, F42 and F43 would no longer exist. No 

disjoint would occur since node 41 connects facets F52 and 

F44. Likewise, if node 40 was to be removed, facets F44, F45 

and F49 would be removed and no disjoint would occur since 

node 35 connects facets F43 and F46. However, when both 

nodes 34 and 40 are removed, facets F37, F38, F41, F42, F43, 

F44, F45 and F49 are removed. Therefore, facets F46, F47 and 

F48 are no longer connected to the main surface and a disjoint 

occurs. 

 
 

 

 

Fig. 5 The sub surface of a mesh where the removal of surface edge 

nodes creates a disjointed surface 
 

In this work automatic selection of thresholds were 

investigated using the corresponding distances of every 

stereophotogrammetry surface node and its closest node in the 

CT surface:  

1) Otsu’s method 

2) Mean and standard deviation variants, µ + α σ, where α = 

1, 1.5, 2 

 

This algorithm was applied to the registered 

stereophotogrammetry and CT data for the silicone foot, 

Perspex foot, polystyrene head and plastic head.  

Corresponding node distance bins of 0.1mm were used, with 

the terminating change in RMS set to 0.001mm. Both 

threshold types were investigated, however the mean and 

standard deviation thresholds were independently tested at (a) 

mean + 1SD;  (b) mean + 1.5SD; (c) mean + 2SD. 

At each iteration the distance threshold (mm), number of 

surface edge nodes that meet the threshold criteria, number of 

surface edge nodes removed (without causing surface disjoint) 

and new distance RMS between the two surfaces is recorded. 

Furthermore for each iteration both the frequency and 

normalized frequency of the corresponding distance values for 

the entire stereophotogrammetry surface nodes, surface edge 

nodes (level 1), level 2 nodes, level 3 nodes and the remaining 

nodes are recorded.   

III. RESULTS 

Each algorithm was applied to the registered 

stereophotogrammetry data acquired from the 4 phantoms, 

plastic radiography head; the silicone foot; Perspex foot; and 

Polystyrene head.  

A. Plastic Head Phantom 

For each of the algorithms tested, the cleansing of the 

stereophotogrammetry surface of the plastic head removed 

many regions of outliers along the surface edge. The cleansing 

algorithm using Otsu’s method produced an overall 

improvement in RMS, 0.37mm (Table I). The first iteration 

had a threshold of 2.1mm, which then fluctuated between 

1.7mm and 1.8mm for the remaining iterations. This threshold 

had no gradual decline unlike the mean and SD approaches. 

After several iterations, there are clusters of data that are 

connected to the main surface by only a few nodes which 

caused a high number of nodes to be located, but only a small 

proportion of these nodes to be removed as a disjoint would 

have occurred. This is further reflected in that the change in 

RMS after 9 iterations falls to below 0.01mm.  However, this 

approach provides an unusable cleansed surface with large 

regions in the forehead, chin and neck removed (Fig. 6(b)). 

These regions have clusters of nodes that are connected to the 

main surface by a line of nodes which cannot be removed as a 

surface disjoint would occur.  

 

 
With the mean and 1SD as the cleansing threshold, the 

overall RMS improvement is 0.25mm (Table I). From the 1
st
  

iteration to the 4
th 

iteration the change in the threshold value 

declines by at least 0.1mm, producing a change in RMS of 

>0.1mm. On visual inspection of the cleansed 

stereophotogrammetry surface, it is evident that the outliers 

around the surface edge have been removed (Fig. 6(c)). 

However several node clusters have been removed just below 

one of the eyes and near the ear region.  

The mean plus 1.5SD improves the RMS 0.22mm (Table I). 

The distance thresholds set by this approach, started at 

TABLE I 

PLASTIC HEAD: AUTOMATIC DATA CLEANSING RESULTS 

 
Otsu Mean + 

SD 

Mean + 

1.5SD 

Mean + 

2SD 

Number of Iterations 19 7 6 6 

Number of Surface Edge 
Nodes Removed 

1514 654 464 346 

Start RMS (mm) 1.87 1.87 1.87 1.87 

End RMS (mm) 1.50 1.62 1.65 1.67 
RMS Improvement (mm) 0.37 0.25 0.22 0.2 

Final Threshold (mm) 1.8 2.16 2.53 2.93 
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2.99mm, finishing at 2.53mm. After 4 iterations the change in 

the distance threshold falls to < 0.01mm, which impacts the 

change in RMS between iterations to <0.001mm. When this 

occurs very few surface edge nodes are located and removed. 

The visual inspection of the surface cleansed with this 

approach is a good visualization, Fig. 6(d), since much of the 

surface edge is removed from the entire surface, but regions of 

anatomical significance have been kept.  

The mean plus 2SD approach produces an improvement in 

RMS of 0.2mm (Table I). This method distance thresholds 

starting at 3.43mm and ending at 2.93mm. The high threshold 

limits set using this method creates a scenario that detects few 

nodes after 4 iterations that meets the threshold criteria. After 

4 iterations the change in the distance threshold is <0.01mm 

impacting on the RMS change so that it is <0.01mm. The 

visualization of the surface created by this cleansing approach 

shows that little of the surface edge data has been removed 

from the surface and there are areas around the surface edge 

that no data has been removed (Fig. 6(e)).  

 

 
 (a) 

 
 (b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 6 Profiles of the stereophotogrammetry plastic head surface (a) 

prior to cleansing; (b) with Otsu cleansing; (c) mean + SD;  

(d) mean + 1.5SD; (e) mean + 2SD 

 

 From the normalized distribution of corresponding 

distances the Otsu based approach has a maximum normalized 

distribution of 7.92% at 1.1mm compared non-cleaned data 

having a maximum distribution of 6.22% at 1mm (Fig. 7). The 

mean plus 1SD, 1.5 and 2SD all have a maximum distribution 

at 1mm with 6.86%, 6.66% and 6.55% respectively. The 

normalized distribution of nodes that have a corresponding 

distance of <2mm, using Otsu’s method is 87.95% compared 

with the original surface having 74.15% prior to cleansing. 

The normalized distribution for this corresponding distance 

range with the mean plus 1SD, 1.5SD and 2SD is 81.69%, 

79.35% and 77.96% respectively.   

 

Fig. 7 The normalized frequency distribution of corresponding 

distances for the plastic head stereophotogrammetry surface prior to 

cleansing and for all the algorithms implemented 
 

B. Silicone Foot Phantom 

The results from cleansing the silicone foot 

stereophotogrammetry surface are outlined in Table II. Using 

Otsu’s method the RMS was improved from 1.84mm to 

1.04mm, an improvement of 0.80mm. The distance threshold 

set by this approach starts at 3.7mm and decreases to 0.9mm 

after 9 iterations. This threshold remains at 0.9mm for the 

remaining 19 iterations, and with such a low corresponding 

distance threshold a large amount of nodes are removed until 

termination. After the 9
th

 iteration the number of nodes that 

meet the threshold criteria are high but less than half of these 

detected are removed. This is due to clusters of nodes being 

connected to the main surface by only a few nodes. Removal 

of these connecting nodes would have caused a surface 

disjoint, and so were not removed.  

The cleansing of the stereophotogrammetry surface using 

Otsu’s method created a surface with large regions of 

important data removed (Fig.8 (b)). This included the heel, 

arch and metatarsal heads (where the two ulcers are located).  

The mean plus 1SD approach removed areas around the toes 

and a significant portion of the inner arch region (Fig.8 (c)). 

With the mean plus 1.5SD nodes around the entire surface 

edge are removed, but the internal data remains (Fig 8(d)). 

Little data is removed from around the surface edge with the 

mean plus 2SD (Fig 8(e)).  

Examination of the normalized frequency distribution of the 

corresponding distances for all stereophotogrammetry surface 
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nodes, Fig. 9, shows that prior to cleansing 90.08% of all the 

surface nodes had a corresponding distance of <2mm. The 

proportion of nodes within a corresponding distance of <2mm 

for using Otsu, mean plus 1SD, mean plus 1.5SD and mean 

plus 2SD are 90.08%, 99.71%, 99.08%, 99.02% and 99.01% 

respectively.  

 
     (a)        (b)        (c) 

 
        (d)         (e) 

Fig. 8 The stereophotogrammetry silicone foot surface (a) prior to 

cleansing; (b) with Otsu cleansing; (c) mean + SD;  

(d) mean + 1.5SD; (e) mean + 2SD 

 

 
Fig. 9 The normalized frequency distribution of corresponding 

distances for the silicone foot stereophotogrammetry surface prior to 

cleansing and for all the algorithms implemented 

 

C. Perspex Foot 

On visual inspection of the Perspex foot prior to cleansing a 

large artifact was visible on the RHS of the ankle region at the 

end of the field of view of the cameras. The returned RMS 

from cleansing the surface from all approaches is still high in 

the region of 4.37mm-4.85mm (Table III). On visual 

inspection of the surfaces the all of the algorithms failed to 

remove this large artifact and subsequently any outliers around 

the rest of the phantom’s surface edge (Fig. 10). This shows 

that these approaches are not suitable for removing large 

artifact data before cleansing the rest of the surface edge.  

Post-cleansing all the returned surface data had 

stereophotogrammetry nodes with a maximum distance of 

36.2mm.  

 

 

        
      (a)           (b)           (c)  

         
        (d)            (e) 

Fig. 10 The stereophotogrammetry Perspex foot surface (a) prior to 

cleansing; (b) with Otsu cleansing; (c) mean + SD;  

(d) mean + 1.5SD; (e) mean + 2SD 

D. Polystyrene Head 

The stereophotogrammetry data of the polystyrene head had 

a lot of small artifacts around the surface edge, especially 

around the surface edge of the head. All the algorithms tested 

were successful in removing outlier regions such as these with 

varying levels of success. Otsu’s method returns an RMS of 

distance improvement of 0.3mm (Table IV). The mean plus 

1SD, 1.5SD and 2SD yield an RMS improvement of 0.24mm, 

0.21mm and 0.18mm respectively. The distance threshold set 

by Otsu’s method at the first iteration is 2mm which is less 

than the other methods. This distance threshold set by Otsu’s 

method is lowered to 1.6mm after 4 iterations and remains at 

this distance threshold until the algorithm terminates. This 

means that the fewer nodes are removed and the change in 

RMS at each iteration is <0.001mm.  

The visual inspection of the cleansed surfaces shows that a 

large amount of useful data around the ears, temples and the 

forehead (Fig. 11(b)). With the mean plus 1SD approach 

important anatomical data around the ears is removed. The 

mean plus 1.5SD removes nodes from the surface edge but 

does not remove internal surface areas (Fig. 11(c)). In 
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TABLE III 
PERSPEX FOOT: AUTOMATIC DATA CLEANSING RESULTS 

 
Otsu Mean + 

SD 
Mean + 
1.5SD 

Mean + 
2SD 

Number of Iterations 8 10 8 8 

Number of Surface Edge 

Nodes Removed 

160 215 180 170 

Start RMS (mm) 7.8 7.8 7.8 7.8 

End RMS (mm) 4.85 4.37 4.79 4.82 

RMS Improvement (mm) 2.95 3.43 3.01 2.98 
Final Threshold (mm) 14.2 5.67 8.44 10.73 

 

TABLE II 

SILICONE FOOT: AUTOMATIC DATA CLEANSING RESULTS 

 
Otsu Mean + 

SD 

Mean + 

1.5SD 

Mean + 

2SD 

Number of Iterations 28 11 11 10 
Number of Surface Edge 

Nodes Removed 

1427 550 401 333 

Start RMS (mm) 1.84 1.84 1.84 1.84 
End RMS (mm) 0.80 0.95 0.99 1.01 

RMS Improvement (mm) 1.04 0.89 0.85 0.83 

Final Threshold (mm) 0.9 1.24 1.49 1.72 
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comparison with the surface prior to cleansing, Fig. 11(a), 

little of the surface edge data is removed using the mean plus 

2SD in Fig. 11(e).  

 
TABLE IV 

POLYSTYRENE HEAD: AUTOMATIC DATA CLEANSING RESULTS 

 
Otsu Mean + 

SD 

Mean + 

1.5SD 

Mean + 

2SD 

Number of Iterations 24 12 9 8 
Number of Surface Edge 
Nodes Removed 

1486 828 591 412 

Start RMS (mm) 1.79 1.79 1.79 1.79 

End RMS (mm) 1.49 1.55 1.58 1.61 
RMS Improvement (mm) 0.3 0.24 0.21 0.18 

Final Threshold (mm) 1.6 2.05 2.41 2.78 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 11 Profiles of the stereophotogrammetry polystyrene head 

surface (a) prior to cleansing; (b) with Otsu cleansing; (c) mean + 

SD; (d) mean + 1.5SD; (e) mean + 2SD 

 

The normalized distribution of the corresponding node 

distances for the stereophotogrammetry surface shows the 

effect that the cleansing has on the improvement to the 

corresponding distances (Fig. 12). From the distribution data 

the stereophotogrammetry surface has 77.21% of its nodes 

with a corresponding distance of <2mm. Using Otsu’s method 

in cleansing the distribution of corresponding node distances 

of <2mm is 88.25%. The mean plus SD cleanses the surface so 

that 86.03% of the nodes have a corresponding distance within 

2mm. With the mean plus 1.5SD this distribution is 83.31% 

and for the mean plus 2SD the proportion of nodes in the 

range is 81.36%. 

 

 
Fig. 12 The normalized frequency distribution of corresponding 

distances for the polystyrene head stereophotogrammetry surface 

prior to cleansing and for all the algorithms implemented 

IV. DISCUSSION 

The cleansing of the plastic head shows the 

stereophotogrammetry surface can return a good improvement 

in the RMS distance between the two surfaces and increase the 

distribution of nodes with a corresponding distance of 2mm. 

Although Otsu’s method yielded the best RMS improvement, 

0.37mm, large areas of the surface including the forehead, 

chin and neck were removed (Fig. 6(b)). This shows that the 

greatest RMS improvement does not guarantee that the 

visualized surface will not have important areas of surface 

removed. Although the mean plus 1.5SD yields the best 

visualization, Fig. 6(d), this method does not return the best 

improvement in RMS, the highest number of nodes removed 

or the best normalized corresponding distance distribution 

(Table I and Fig. 7). This approach removed surface edge 

outliers around the entire surface edge without removing more 

internal data, making this cleansing approach the most suitable 

cleansing mechanism for visualization. 

The results from cleansing the silicone foot show that 

Otsu’s approach returns the greatest RMS improvement 

compared with the other methods (Table II). In comparing the 

normalized distributions of the 4 algorithms, the Otsu based 

approach yields a greater maximum distribution (Fig. 9). 

However this approach does not produce a clinically usable 

surface with many regions of anatomical significance 

removed. The reason for this is that the distance threshold to 

identify outliers is considerably lower than the other methods. 

The mean plus 1.5SD method returns the most usable surface 

data with outliers from the surface edge removed from around 

the entire surface (Fig. 8(d)). This method returns a distance 
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threshold at each iteration which prevents the removal of large 

proportions of the surface edge.  

Cleansing of the Perspex foot was unsuccessful as a result 

of a large artifact in the ankle region. All the algorithms failed 

to remove this artifact or any other outlier data from the rest of 

the stereophotogrammetry surface edge (Fig. 10). This failure 

to remove this artifact would cause misinterpretation of the 

surface data. All cleansed stereophotogrammetry surfaces had 

corresponding distances of 36.2mm. This shows that more 

work is required in removing large artifacts so that the 

remainder of the surface edge can be cleansed.  

The results from the polystyrene head shows that the 

difference in RMS improvement is small between each 

method, but the difference in the number of nodes removed for 

this gain is very high. The method that uses the mean plus 

1.5SD produces the best visualization, with a clinically 

acceptable amount of nodes removed. This method does not 

have the best RMS improvement or the best normalized 

distribution (Table IV, Fig.12). However, the overall 

visualization of the surface is the most appropriate, with areas 

of importance kept, but a substantial amount of surface edge 

outlier removed (Fig 11(d)).  

With the use of automated cleansing algorithms the overall 

RMS between the two surfaces can be improved by iteratively 

setting a distance threshold and finding surface edge nodes 

with a corresponding distance that meets the threshold criteria. 

Over all the surfaces Otsu’s approach produced the lowest 

thresholds, except for the Perspex foot phantom. As a result of 

this a lot of data was removed with data removed that was in 

areas of clinical significance producing the lowest RMS and 

the removing the highest number of nodes. The distance 

thresholds with Otsu’s approach did not decrease at each 

iteration unlike the mean and SD approaches.  

The findings from the Perspex foot showed that each 

approach cannot remove large artifacts in the examples 

provided since the stereophotogrammetry data that has no 

corresponding CT data in this region. This yields high 

corresponding distances, which in turn produce high distance 

thresholds so that few surface edge nodes are removed. 

Furthermore, with this data the algorithms did not remove any 

surface nodes from the rest of the surface and produced high 

RMS values post-cleansing. This highlights that further work 

is required in adapting the algorithms to highlight and remove 

these large artifact areas.  

Therefore in choosing one of these algorithms to 

automatically cleanse stereophotogrammetry data, careful 

consideration must be given to the tradeoff between the RMS 

improvement and the visualization of the cleansed surface. 

Further work is required in selecting a better termination 

condition for these approaches so that an appropriate amount 

of data is removed for an acceptable RMS improvement. 

Stereophotogrammetry data is captured with the cameras 

focused in the centre of the region of anatomical importance. 

Therefore the algorithms could be adapted to ignore the 

removal of surface nodes near the central capture region.  

V.  CONCLUSION 

This investigation has shown that there is a high distribution 

of outliers in and around the surface edge of 

stereophotogrammetry data and these can be automatically 

removed. However these approaches require refinement to 

remove large artifacts and surface edge outliers without 

removing clinically significant data. Future work will focus on 

improving the data cleansing, so that large artifacts and outlier 

on the surface edge are removed, without removing areas of 

clinical significance. This work is part of a framework for 

automated visualization of stereophotogrammetry and CT 

data. As part of this process the stereophotogrammetry data 

requires cleansing to remove outliers and artifacts which can 

produce a poor representation of the surface and limits the 

misinterpretation of this data. 
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