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selection procedure. With the advent of high- tiglqaut data-

Abstract—Cryo-electron microscopy (CEM) in combination with acquisition routines [5][6], the need for automateatticle

single particle analysis (SPA) is a widely usedhtegue for

elucidating structural details of macromoleculasemsblies at close-
to-atomic resolutions. However, development of méted software
for SPA processing is still vital since thousands niillions of

individual particle images need to be processede Hee present our
workflow for automated particle picking. Our appcbaintegrates
peak shape analysis to the classical correlatioth @am iterative
approach to separate macromolecules and backgrobpd
classification. This particle selection workflowrfioermore provides
a robust means for SPA with little user interactid?rocessing
simulated and experimental data assesses perfoemafficthe

presented tools.

extraction procedures became obvious and sevaatkgies
have been suggested since [2] [7]-[9]. Given thelatively
robust performance at low SNRs, the majority oftipkr
picking methods to date are based on cross-caoelasing
templates matching [9]. However, cross-correlatibased
methods still suffer from false positive and negatmatches
by which candidate particle images are incorreatigepted or
rejected. High contrast features caused by sampleapation
or contamination are often the reason for thesengvrioits.

Another problem is the intrinsically low SNR of orfEM

micrographs typically ranging from 0.01 to 0.1 [Hence, the

Keywords—Cryo-electron Microscopy, Single Particle Analysis,refinement of cross- correlation approaches toigeofast and

Image Processing.

|. INTRODUCTION

N recent years "single particle analysis" (SPA)ured to a
key technology for structure determination in malac
structural biology [1]. The underlying principle Based on
recording two-dimensional (2D), high-resolution atfen

deterministic selection under low contrast and SMRditions
given minimal a priori knowledge (aiding in automat and
applicability to a wide selection of particleskissential.

Here we present an enhanced cross-correlation based

particle-picking algorithm unifying the calculatiaf a “Fast
Local Correlation Function” (FLCF) with correlatiopeak

analysis based on “Peak to Sidelobe Ratio” (PSRJ an

micrographs each containing many, randomly oriente®econd Order Correlation” (SOC) [10][11]. By comisig

macromolecular complexes. By aligning and classgythe
particle images iteratively the original projectiangles can be
determined and the three-dimensional density isnéar by
superposition of the "class averages". ldeally, fretein
complexes are preserved during the data acquigitiooess in
a close to native environment. This can be achiebgd
vitrification in a thin layer of ice, which comes the cost that
the sample is highly sensitive to radiation damageced by

each of the afore-mentioned criteria by a weighstdchastic
optimizer, a final correlation score is determini@d@]. The
final candidate set of particle images is furthefined by an
iterative removal approach of false positives tilsabased on
Principal component analysis (PCA) and K-meanstetug).
We demonstrate that this approach reduces significéhe
requirements of a priori knowledge and exhaustiaaing by
using only a minimal training set. We further dersinate

the electron beam. Therefore electron micrographs didelity of the presented procedure by evaluatiothisynthetic

recorded under strict low-dose conditions and ocguesetly
suffer from low signal-to-noise ratios (SNRs) aond/ Icontrast
levels [2]-[4].

and experimental data.

Il. ALGORITHMS

Averaging of many particle images increases the SNR A.Optimizing cross-correlation

significantly and allows a meaningful classificatioand
reconstruction of the underlying three-dimensiopabtein

Correlation based localization of particles is vydesed in
particle picking [13]. In the following, we introda the

complex [1]. Typical particle numbers needed folis th mathematical concepts used in this manuscript &adegies

procedure reach from several tens of thousandseveral
millions. The extraction of the particle sub-imagesm the
full electron micrographs is the initial processstgp (Fig. 1)
that is often still carried out by a manual, usieteractive

All authors are with the Max Planck Institute ofoBhemistry, Munich,
Germany. (Corresponding author N. Stephan: phor8:80.8578.2651; e-
mail: stephan@nickell.de).

for peak analysis of two-dimensional cross corietatmaps
[14]-[16].

1) Fast local cross-correlation

Cross-correlation search approaches are based en th

comparison of a searched, templafeand an electron
micrograph I. The similarity measure is based on the
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normalized cross-correlation coefficient havingiaterval of multiplying the Fourier transform of with the complex
[-1,1] (where -1 indicates a perfect inverted copy andI a conjugate of the Fourier transform 6f[10]. The inverse
perfect match of two identical images). Cross-datien transformation of the product vyields cross-corietat

functions can be quickly calculated for large ingmbg coefficients at every position within the microghagor S.

5 / Improved Correlaﬁoh / . . \ Selected Reconstruction

( Micrographs ) Filter Iterative Classifier Projections Methods

: Fast Local Principal Component ! ==

Cross Correlation Analysis | : ) «:F R
Peak to Sidelobe K-Means A ‘ RASG "'

Ratio Clustering sl « i

Second Order Automated adaption of ‘

\ Correlation j \ cluster size /

Fig. 1 Workflow of single particle analysis fromeroscopy to the resulting 3D protein structure
In our case, the improved correlation filter auttioaly localizes and extracts projections of masotecules from micrographs. Next, the
iterative classifier refines this selection by amé#dically adapting a cluster acceptance thresidid.remaining projections are then used to
determine the macromolecules 3D structure

This can be expressed as: space. The standard deviation of the local araander the
footprint of the template is calculated by:
CC=F(F(IF(9% 1)(
1 2 =
whereF denotes the respective Fourier transform, “*” desot 0 = B MOI" -1 (4)

the complex conjugate aritf indicates the inverse transform.
In this operation, the search templ&téwhich is smaller in

size than the search image) must be zero-paddiw tsize of - ) h
the micrograph, prior to calculating the transform.aSI and /;, corresponding to the (P/2 1 )" value of the

Multiplication of the two transforms is an elemevise caiculated convolutions. We later refer to FLCC e
multiplication of the two matrice&(I) andF(S). determined coefficients by the FL@#nction.

Each correlation score CCi is normalized by the Inemof
considered points P in the template (i.e. the nunafenon
zero pixels in the template) as well as the loc@rages, the
standard deviations of S and the local area of deurthe
footprint of S. The localized normalization of csesorrelation

2) Peak to sidelobe ratio

Correlation peak shape analysis has been introdasegh
additional constraint to cross correlation basetigla picking
[16]. Valid particles should yield sharp peaks $mito the
optimal shape of a delta function (a peak of imdinialue

coefficient is
1 _
~cc -Ssd 2]
FLcc, =P 2
0.,
_ . a
where | and /; are the mean and standard deviation of values

in the image and the search template respectit€l [I_i and

/[ are the local mean and standard deviatiord ofider the
footprint of templateS for each position (corresponding to
individual cross-correlation scoré€¥;) within the image. The
mean value$ are calculated by convolution 6find a binary
mask (M) corresponding to the zero-padded border of the Fig. 2 The improved correlation filter analyses peak shape to
search templaté. In reciprocal space, the calculation of theéncrease accuracy for identifying a template. (bjokorrelation-peak
local mean for each position Iris expressed as: specific for template (a). (d) Reveals the cor'rel‘apeak-shape of (c)
and (a). (d) resembles a damped copy of (b). (fifs the peak of
(e) correlated with (a). The pattern of (b) is abtainable here. Thus,
g = 1 M2 -T2 3) in order t.o |mprove plckl_ng reliability we extendedrrelatlop with
two functions: one focusing on the peak sharpriegeaK to sidelobe
ratio) and the other focusing on the peak shapeof8korder
correlation)

where [ represents the convolution &f andI in reciprocal

The scalar value$S and (s are calculated in the same way
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surrounded by zeros), similar to the autocorretataf a

template (Fig. 2). The peak to sidelobe rafRSR) is a

measure of correlation peak sharpness, based onetiteal

peak value relative to those of its neighbors aamlle used to
distinguish “sharp peaks” (indicative for valid peles) from

“broad peaks” (indicative for false correlation rmaa) [11].

merged the three functions to one by weightfagh,c) the
respective function.

OLC = al FLCF +bl PSR +¢[ SOC ©)

Thus, we optimized the linear combination so thghést

The sidelobe(SB) is the region around a correlationvalues are assigned to true particles. For thispgze,

maximum extending to the radius of the templategend his
area can be increased by a factor of two for lagagidjacent
particles. A small, center-region around the psakasked out
since typical correlation peaks are wider thandeal, single

pixel [11]. Given the mean correlation coefficieBB of SB
and the corresponding deviatiogdeiore, the PSR for each peak
in the correlation map is determined using the ofwihg
expression:

FLCC, -SB

O5ddobe;

PR = (5)

where FLCCy, are the all coefficients determined for ever

pixel inl. SB is calculated in a similar manner &s

— 1
B= E BO FLCCMap (6)
The standard deviatiangaone iS determined by:
1 5 —2
O4gaiobe — BSB 0 FLCCM,le -8B @)

3) Second order correlation

Rather than only focusing on peak sharpness witP$iR,
one may also focus on peak shape in order to funimgrove
correlation fidelity to distinguishing the corratat profile of
noisy image regions and unwanted image featuren fralid
particles. By using Second Order CorrelatiaisOC),
correlation peaks withinFLCCuap are correlated with the
autocorrelation function of the search templgl® (i.e.
correlation of(S) with itself) using theFLCF.

SOC = FLCF(FLCF(I,S),FLCF(S,9)) ®)

4) Training set

If no a priori information of the macromolecular structure is

available, the user has to manually select a smathber
(<100) of particles for generating a training §&tS). This
training set is aligned and averaged forming a tatapused
for particle picking.

5) Optimized linear combination
The aim of combining the three methods (FL®SR and
SOC) was to improve correlation based particle selectitie

representative points = (a,b,c) are assessed according to an
objective functiorof{p) using a training seirs).

Given a list of candidate particles organized iscdmding
order according to the correspondidgC values, the objective
function of{p) will yield a high score fop if the training set
members have the highe8LC value. The next step was to
find the global optimum in the feature space spdrmnea, b
and c¢. We determined the optimal linear combination for
(a,bc) using a standard stochastic optimizer, Simulated
Annealing (SA)[17].

B. Iterative classification
Selection of particles with the above introduced QOL

);esulted in a reliable localization of candidategas(CS) on

the micrographs. However, whilst localization gudeas a
lower number of false negatives, the rate of fgissitives
(showing up as outliers) turned out to be rathghhHence,
false positives need to be further classified axadugled from
the candidate set.

The iterative classifier introduced here mimics theman”
particle picking process. Firstly, an experiencedspn would
select the obviously correct particles, and woblkehtincrease
the tolerance level by accepting particles havinglightly
different appearance. Clear outliers are iteragiesicluded by
progressively reducing the maximal permitted entrdgvel
between particles. False positives are thus remgvadually
in an adaptive manner.

1) Principal component analysis and K-means clustering

Principal component analysiéPCA) is a tool used to
analyze multi-dimensional data-sets in lower din@ms Such
a reduction of data-complexity limits the influenmfenoise by
conserving data-typical features [8][18]. We ug¥dl on the
union U of the training sef'S and the candidate sés.
U=TSOCS (10)

This way, the number of true particles is increased
corresponding features are amplified significantty the
eigenimages. Other image features such as canbooherent
background and noise will be consequently mapped [@ss
significant eigenimages.

The unionU is furthermore projected into a reduced space
in a classical PCA manner [19], guaranteeing a nmobeist
classification result. The number of eigenimagestrifouting
to this reduction is regulated by the sum of tldgenvalues,
which should at least cover 60% of the total var@an
Experiments with values as high as 90% revealed the
increasing influence of noise on classification.
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Fig. 3 Workflow of the particle selection algorithfirst, few projections in the micrographs aredusegenerate a Training Set from which a
Template is compiled. Micrographs used here arkidgd from later particle selection. The improvedrelation filter robustly localizes
projections similar to the template and yieldstao$eandidate projections. These projections epeatedly decomposed with principal
component analysis and clustered with k-means. M@ne the constant training set supports featufréseoparticle searched; projection set
and cluster size is successively reduced to adef@red deviation threshold of candidate projectiorhe remaining projections are eventually
returned as the final projections

We then used K-means clustering as the second awnpo improvements, making a “real time” particle pickinaf
of the iterative classifier to separate true plrtidrom false individual micrographs feasible.
positives [18]. Memberg of TS are used to indicaté&
reference clusters for classification. We spedify tluster size 1) Smulated data
s; of clusterj by determining the mean member Euclidian Test runs with simulated data provided a quanati

distancey; from the center and the standard deviatipn assessment of the developed algorithm whilst apglyi to
c - cryo-EM data demonstrated performance under “readdi
§=H O (11)  conditions.

Every particlecin CS at a distance lower thafy from cluster

centrej will be classified as a true particle (Fig. 3) 2) Signal to noise ratio of cryo-EM micrographs

For quantitative, representative testing of theoatgm
dCj < 5,— (12) under controlled, but realistic imaging conditiosemulated
micrographs with a typic&NR of cryo-EM micrographs were
generated. We applied the protocol from [1] to aatmly
measure theNR in the micrographs. The values within the
KLH dataset slightly varied around a valueSéfR=~0.3.

2) Iterations

The workflow outlined above is processed iterayivigtig.
3). Particles are extracted from the candidatesgehat each
new U yields eigenvectors different from those of thevjmas
iteration. Thus, clustering is also repeated irh@saration.

We furthermore decreass, for each iterationrm with the
use of a size factay:

3) Smulated micrographs

Simulated micrographs were generated using randomly
oriented particles of the (KLH) complex (model dénsaken
from [7]). Each simulated micrograph contained tgde-
views (used as true particles) and fifteen top-gidused as
Sim = Hin + (Sfgae —MLSfgg)l 0y (13) false particles) positioned randomly in the simedat

micrograph. Overlapping side-views were removednfiihe

Hereby we reduce the accepted dista%and, if required’ list of true partiCIeS. Furthermore, an artificigdirbon edge
decrease the probability to wrongly assign falssitpes to a (typical for “real world” cryo-EM micrographs) was
clusterj. The valuesfsar andsfie, are user dependent; typical Simulated. Image acquisition was modeled accordinghe
values were sfsrt =3 and sfuep = 0.25. The iterative [olowing protocol [21]:
classification was stoppede.s when a cluster size ftna was

reached: 1. Orientation of side-views was randomized to mimic

real electron micrographs.
2. An additive, Gaussian noise model was used for all

Sfeng = St = Mena L Sfaep (14) simulated data. The standard deviation of the
model was set to match the previously determined
. METHODS SNR estimates (Section 3.A.2). THENR within
A.Implementation each simulated micrograph varied (between 0.4 -
The algorithm described above was implemented itida 0.1) over different areas to simulate variations in
using the functionality of the TOM toolbox and tMatlab ice thickness. (Fig. 4).
Distributed Computing Toolbox for parallel processi[20]. 3. The contrast-transfer functiqi€TF) was applied to
The parallel implementation of the particle pickeses a load simulate the image acquisition process in a cryo
balancing strategy that offers significant perfonce electron microscope using a defocus setting of -3
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um and an acceleration voltage of 120 kV. Adegree of structural heterogeneity due to the 2fsed
typical Modulation-transfer FunctiofMTF) of stability. This results in potential false-posititas. The ice-
approximately 20% at 0.5 Nyquist was applied tembedded 26S proteasomes were imaged using a Tecnai
the simulated electron micrograph. Polara electron microscope operated at 300 kV [22].
4. Simulated micrographs were used to assess tMicrographs were collected at an under-focus ofu®.5vith a
localization byOLC. However, we also generated GIF 2002 energy filter (Gatan Inc.). The final médigation of
individual particles for testing the iterative 82,500x yielded an object-pixel size of 8.6An experienced
classifier. Thus, we generated particle stacks afser generated an interactively picked particle dis 18903
true particles (KLH side-views), false particlesparticles. The final three-dimensional reconstarctiwas
(KLH top-views) and particle stacks mimicking computed using the XMIPP program package [23]. Réiso
carbon and background noise. All particle stack®or these data set was determined to be ABiging Fourier
were generated using the same simulatioBhell Correlation at the 0.5 criterion [24].

procedure as described above (1-3).

B. Cryo-electron Microscopy Data V. RESULTS

1) Keyhole Limpet Hemocyanin (KLH) A.Testing on Smulated Data

Although accurate simulated data allows quantiatesting Both components of the picker, the optimized linear
and benchmarking of a newly developed algorithm, gmpination (0LC) (localization) and the iterative classifier
standardized and widely accepted dataset compré&fimgany  (c|assification) were tested independently usirg stmulated
electron micrographs is required to demonstrate abial 4ai4 sets.
performance under real-world imaging conditionsg(F#).
Here we have applied our algorithm to the “KLH dat3, 1) Localization
previously used in a particle picking bakeoff [7]. Table | lists the performance of the standard datign
function andOLC. Datasets comprised simulated micrographs
with an invariant and a variant noise model (SecBoA.2).
We improved localization accuracy by using an eséghpeak
shape analysi€LC). OLC was determined to

OLC =0.5[ FLCF + 0.1l PSR+ 0.4 SOC

Furthermore, ten true particles (Section 3.A.3)eygresent in
each of ten simulated micrographs. Twenty candigatécles
were selected from each simulation after picking.

SNR 0.2 SNR 0.3
Fig. 4 Simulations of electron micrographs usedsfssessing the 2) Classification
developed software. (a) Depicts artificial micrqgra using side and The classification strategy was also tested forukted
top views of the Keyhole Limpet Hemocyanin (KLH) enamolecule  data. However, here we used stacks of heterogenabmsed
with varying signal to noise ratios (SNR) withineoimage. Varying  aricles for testing. The complete particle staoksisted of

SNRs simulate varying ice thickness of vitrifiedrgdes. (b) Shows a . e .
micrograph taken from the KLH dataset used for berarking true positives and false positives:

particle selection algorithms. Typical pitfalls fautomated selection
are low SNR, varying projection angles (b1), ovepiag particles
(b2) and (high-contrast) contamination (b3).

1. True positives — KLH side-views
2. False positives — KLH top-views / Background

This dataset was collected at an electron micrascop

operated at an accelerating voltage of 120 kV using TABLE |

2048x2048 pixel CCD camera ard under focus. The final FALSE PosSITIVE (FPR) AND FALSE NEGATIVE (FNR) RATESREVEAL A
— . . . N HIGHER ACCURACY OF THEOPTIMIZED LINEAR COMBINATION (OLC)

magnlflcgtlon was 66,000x resultlng ina plxellsm‘ez'.QA at COMPARED TO THESTANDARD CORRELATION FUNCTION (XCF)

the specimen level. Two reference lists of partoderdinates, XCE oLC

one interactively picked by a user (Mouche) and oneNoise FPR FNR FPR FNR

automatically generated (Selexon), were used asngat in _Invariant 60% 23% 62% 26%

this study [9][16] Variant 62% 26% 56% 15%

Furthermore, we also generated a small training teet
comply with the iterative workflow we presented ¢&en 2.B)
and merged it with the true positives. Hence, thalfstack
used for testing the iterative classifier consistéten training

2) 26S Proteasome
Additionally, a second dataset of the 26S proteasoms

used for testing the algorithm [22]. In contrasttbhe KLH
complex, micrographs of the 26S proteasome displ&arger
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set members, twenty true particles, thirty falssifpeges and
ten background images. Classification accuracieslifferent
SNRs (Table ).

TABLE Il
RESULTS OF THHTERATIVE CLASSIFIER PROCESSED ONSIMULATED PARTICLE
STACKS. PROCESSING WASREPEATED FORDIFFERENTSNRS TODETERMINE
THE PERFORMANCE UNDERV ARYING CONDITIONS

SNR FPR FNR

0.5 0% 5%

0.1 2% 17%

0.01 13% 20%

B. Testing on Cryo-Electron Microscopy Data

1) Keyhole Limpet Hemocyanin

One hundred particles were interactively selectethfa set
of eight micrographs from the KLH dataset and wexeluded
from all further testing steps. A templatéor picking with the
improved correlation filter and a training set the iterative
classifier were generated from selected particks. [Best

2517-9934
No:1, 2012

settings were manually adjusted to the followingfmuration:

1. The first 8 eigenimages were used for projectirgy th
particles into reduced space.

2. The training set was abstracted into 6 classes for
generating the classification references.

3. The cluster size was reduced froffart = 3 t0 Sfena =
1.5in Sﬁtep= 0.25

Here, we compared performance to an expert gemkrate
ground truth (Table 1V). 51.3% of the automaticadlgiected
particles were in agreement with the expert lisatet
inspection determined that 31.8% were incomplete
components of the protein complex, contaminatiomging
artifacts. Thus, 16.9% of the collected data wem@S 2
Proteasomes that were not selected by the expggrtsF

TABLE IV
RESULTS OF THEAUTOMATED PARTICLE PICKER (157 20PARTICLES)
COMPARED TO AGROUND TRUTH (18903PARTICLES) GENERATED BY AN

weighting coefficients of the three correlation huets were

determined to:

EXPERT
Overlag FPR FNR
Expert 51.3% 31.8% 48.7%

OLC =0.12[ FLCF +0.18[ PSR+0.70 SOC

Tuning of the iterative classifier was carried oo&nually
using only few of the KLH micrographs as a pre-cild
training set. An optimal configuration was foundeinvay that:

1. The first 5 eigenimages were used for projectirg t
particles into reduced space.

2. The training set was abstracted into 3 classes
generating the classification references.

3. The cluster size was reduced frofftart = 3 10 Sfend =
1.5in Sf;tep= 02

The performance of our algorithms was compared to '%\ . i
k represented in a reduced data space where they #dig

interactively (Mouche) and to an automatically pd
reference (Selexon) (Table I11).

TABLE Ill
RESULTS FOR THEBENCHMARK DATASET KLH. RESULTS OF THEDEVELOPED
PARTICLE PICKER WERECOMPARED TO AINTERACTIVELY (MOUCHE) AND TO
AN AUTOMATICALLY PICKED REFERENCE(SELEXON) BY ANALYZING THE
RESPECTIVEFALSE POSITIVE AND FALSE NEGATIVE RATES

FPF FNR

Mouche 35.7% 18.7%

Selexol 32.4% 19.6%
2) 26S Proteasome

A second set of particle picking tests was perfatmsing
the 26S proteasome data. This was carried out bgsihg an
appropriate template and training set, generated f600
manually selected particles. Optimal weighting bé tthree
methods were determined by the optimizer and arendiere:

OLC =0.34[ FLCF +0.09 PSR+0.57 SOC

For the 26S proteasome dataset, the iterative ifdaiss

V. DISCUSSION

An automatic particle selection algorithm was prése in
this work, consisting of two main components: arpriaved
correlation filter and an iterative classifier. Ftie first
component, two novel approaches for peak shapeysisal
hextend the classical correlation.

The optimal combination of the shape analysis nuthand
fg}e cross correlation function was determined uairsgandard
optimization algorithm. We found that this approauiproved

the fidelity of localizing protein complexes signéntly.

An iterative classifier further refined the selecti of
detected complexes by iteratively repeating the R@DA the
-Means classification steps. Candidate particlegrew

predefined clusters, which were previously, detaadiusing a
small training sets of “true” particles. Concludive the
combination of enhanced correlation with iterative
classification and sorting of particles yields eust and
adaptive particle picking method. The complete lovk
relies only on a small training set of 100 to 1@@0ticles for
initialization that specifies expected positionstroie particles
in the feature space. Thus, one major benefit isf tilaining
scheme is that no large training sets of truesefglarticles as
for Neural Networks or Support Vector Machines iaguired
[26]. Both methods turned out to be a critical immment
towards a reliable and robust localization stratfgyprotein
complexes in cryo-electron micrographs. Tests o€ th
algorithms developed were carried out on simulated real-
world datasets.

116



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:6, No:1, 2012

FSC Coefficient

0.0 . . . \
0.0 0.0139 0.0278 0.0417 , 0.0556
Spatial frequency [ 1/A]

b|

0.0694

Fig. 5 26S Proteasome densities after particletete (a)
Resolution as determined by the FSC=0.5 criterimrekpert
generated data (dotted line) and our automatedtigapicking

algorithm (full line). (b) and (c) are the respeetdensities

The simulation protocol used included all imagin
characteristics of cryo-electron micrographs suc@T¥, MTF
and noise. Both processing components were
independently to determine their performance ungeying
imaging conditions.

Cryo electron microscopic data used for testingsisted of
one established benchmarking dataset (KLH) anddate set
of high interest for current research (26S Proteejp
respectively. Results on both revealed the methedisbility
for particle picking, while making it comparable tther
picking algorithms. Furthermore, the software psses the
data in a parallelized manner, speeding up praugsshe for
large datasets and even make the algorithm suifableeal
time processing.

However, direct comparison of particle
lists to false positive / false negative are alwpysblematic
and hardly give accurate numbers in evaluating igart
selection algorithms. In our experience, partidksl| from
trained experts already vary with error rates ofta30% as
we observed for the 26S proteasome dataset. Thelear
selection software developed here is furthermomt giathe
TOM toolbox [20] and is currently used for the aysad of the
26S Proteasome [27].
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