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Augmented Lyapunov approach to robust stability
of discrete-time stochastic neural networks with

time-varying delays
Shu Lü, Shouming Zhong, Zixin Liu

Abstract—In this paper, the robust exponential stability problem
of discrete-time uncertain stochastic neural networks with time-
varying delays is investigated. By introducing a new augmented
Lyapunov function, some delay-dependent stable results are obtained
in terms of linear matrix inequality (LMI) technique. Compared with
some existing results in the literature, the conservatism of the new
criteria is reduced notably. Three numerical examples are provided to
demonstrate the less conservatism and effectiveness of the proposed
method.
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I. INTRODUCTION

RECENTLY, recurrent neural networks (see [1]-[7]), such
as Hopfield neural networks, cellular neural networks

and other networks have attracted considerable attention be-
cause of their potential applications in pattern recognition, im-
age processing, fixed-point computation, and so on. However,
because of the finite switching speed of neurons and ampli-
fiers, time delays, both constant and time-varying, are often
unavoidable in various engineering, neural networks, large-
scale, biological, and economic systems. Since the occurrence
of time delays may cause poor performance or instability, the
studies on stability for delayed neural networks are of great
significance. There has been a growing research interest on the
stability analysis problems for delayed neural networks, and
many excellent papers and monographs have been available.
On the other hand, during the design of neural network and its
hardware implementation, the convergence of a neural network
may often be destroyed by its unavoidable uncertainty due to
the existence of modeling error, the deviation of vital data, and
so on. These unavoidable uncertainty can be classified into two
types: that is, stochastic disturbances and parameters uncer-
tainties. As pointed out in [8] that, while modeling real nervous
systems, both of the stochastic disturbances and parameters
uncertainties are probably the main resources of the per-
formance degradations of the implemented neural networks.
Therefore, the studies on robust convergence of stochastic
delayed neural network have been a hot reach direction. Up
to now, many sufficient conditions, either delay-dependent or
delay-independent, have been proposed to guarantee the global
robust asymptotic or exponential stability for different class of
delayed neural networks (see [9]-[17]).
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It’s worth pointing out that most neural networks have been
assumed to be in continuous time, but few in discrete time.
In practice, discrete-time neural networks are more applicable
to problems that are inherently temporal in nature or related
to biological realities. And they can ideally keep the dynamic
characteristics, functional similarity, and even the physical or
biological reality of the continuous-time networks under mild
restriction. Thus, the stability analysis problems for discrete-
time neural networks have received more and more interest,
and some stability criteria have been proposed in the literature
(see [8],[16]- [26]). For the first time, Liu,Wang and Liu con-
sidered the robust stability for discrete-time stochastic neural
networks with time-varying delays in [8], and proposed some
delay-dependent stability criteria in terms of LMI approach.
By using a similar technique to that in [19], [20], the result
obtained in [8] has been improved by Luo et al. [17].

In this paper, some mew improved delay-dependent stabil-
ity criteria are obtained via constructing a new augmented
Lyapunov-Krasovskii function. These new conditions are less
conservative than those obtained in [8], [16]-[21]. Further-
more, three numerical examples are also provided to illuminate
the improvement of the proposed criteria.

Notation: The notations are used in our paper except where
otherwise specified. ‖ · ‖ denotes a vector or a matrix norm;
R, Rn are real and n-dimension real number sets, respectively;
N

+ is positive integer set. I is identity matrix; ∗ represents
the elements below the main diagonal of a symmetric block
matrix; Real matrix P > 0(< 0) denotes P is a positive
definite (negative definite) matrix; N[a, b] = {a, a+1, · · · , b};
λmin(λmax) denotes the minimum (maximum) eigenvalue of
a real matrix; (Ω,R,P) is a complete probability space with
filtration P satisfying the usual condition; E(·) stands for the
mathematical expectation operator with respect to the given
probability measure.

II. PRELIMINARIES

Consider the following n-neuron discrete-time stochastic
neural network (DSNN) [8] with time delays of the form:

x(k + 1) = C(k)x(k) + A(k)f(x(k)) + B(k)g(x(k − τ(k)))

= +δ(k, x(k), x(k − τ(k)))ω(k), k ∈ N
+ (1)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ R
n de-

notes the neural state vector; f(x(k)) = [f1(x1(k)), f2

(x2(k)), · · · , fn(xn(k))]T , g(x(k − τ(k))) = [g1(x1(k −
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τ(k))), g2(x2(k − τ(k))), · · · , gn(xn(k − τ(k)))]T are the
neuron activation functions; Positive integer τ(k) represents
the transmission delay that satisfies 0 < τ(m) ≤ τ(k) ≤
τ(M), where τ(m), τ(M) are known positive integers rep-
resenting the lower and upper bounds of the delay. C(k) =
C + �C(k), A(k) = A + �A(k), B(k) = B + �B(k).
C = diag(c1, c2, · · · , cn) with |ci| < 1 describes the rate with
which the ith neuron will reset its potential to the resting state
in isolation when disconnected from the networks and external
inputs; C, A, B ∈ R

n×n represent the weighting matrices;
ΔC(k),ΔA(k),ΔB(k) denote the time-varying structured
uncertainties which are of the following form:

[ΔC(k),ΔA(k),ΔB(k)] = KF (k)[Ec Ea Eb],

where K, Ec, Ea, Eb are known real constant matrices of
appropriate dimensions, F (k) is unknown time-varying matrix
function satisfying FT (k)F (k) ≤ I,∀k ∈ N

+. ω(k) is a
scalar Wiener process (Brownian Motion) on (Ω,R,P) with
E(ω(k)) = 0, E(ω2(k)) = 1, E(ω(i)ω(j)) = 0,∀i �= j; δ is
the continuous function.

To obtain our main results, we need introduce the following
assumptions, definition and lemmas.

Assumption 1: For i ∈ N
+, x �= y ∈ R, the neuron

activation functions in DSNN (1) satisfy

l−i ≤ fi(x) − fi(y)

x − y
≤ l+i , σ−

i ≤ gi(x) − gi(y)

x − y
≤ σ+

i , (2)

where l−i , l+i , σ−
i , σ+

i are known constant scalars.
Assumption 2: The continuous function δ satisfies that

δT (k, x(k), x(k − τ(k)))δ(k, x(k), x(k − τ(k)))

≤ ρ1x
T (k)x(k) + ρ2x

T (k − τ(k))x(k − τ(k)),
(3)

where ρ1 > 0, ρ2 > 0 are known constant scalars.
Assumption 3:

f(0) = g(0) = 0, (4)

which means that x(k) ≡ 0 is a trivial solution of the DSNN
(1).

Remark 2.1: As pointed out in [8], the constants
l−i , l+i , σ−

i , σ+
i in Assumption 1 are allowed to be

positive, negative or zero. Hence, the resulting activation
functions could be nonmonotonic, and are more general than
the usual sigmoid functions and the recently commonly used
Lipschitz conditions.

Definition 2.1: The DSNN (1) is said to be robustly ex-
ponentially stable in the mean square if there exist constants
α > 0 and β ∈ (0, 1) such that every solution of the DSNN
(1) satisfies that

E‖x(k)‖2 ≤ α · βk sup
i∈N[−τM ,0]

E‖x(i)‖2, ∀k ≥ 0,

for all parameter uncertainties satisfying the admissible con-
dition.

Lemma 2.1: [27](Tchebychev Inequality) For any given
vectors vi ∈ R

n, i = 1, 2, · · · , n, the following inequality
holds:

[
n∑

i=1

vi]T [
n∑

i=1

vi] ≤ n
n∑

i=1

vT
i vi.

Lemma 2.2: [28] Given constant symmetric matrices
Σ1,Σ2,Σ3 where ΣT

1 = Σ1 and 0 < Σ2 = ΣT
2 , then

Σ1 + ΣT
3 Σ−1

2 Σ3 < 0 if and only if(
Σ1 ΣT

3

Σ3 −Σ2

)
< 0 or

( −Σ2 Σ3

ΣT
3 Σ1

)
< 0.

Lemma 2.3: [8] Let N and E be real constant ma-
trices with appropriate dimensions, matrix F (k) satisfying
FT (k)F (k) ≤ I , then, for any ε > 0, EF (k)N +
NT FT (k)ET ≤ ε−1EET + εNNT .

III. MAIN RESULTS

Theorem 3.1: For any given positive integers 0 < τm <
τM , then, under Assumption 1-3, system (1) is globally
robustly and exponentially stable in the mean square for any
time-varying delay τ(k) satisfying τm ≤ τ(k) ≤ τM , if
there exist positive matrices Q,R, H, γ, M51, positive diago-
nal matrices Λ1,Λ2,Γ1,Γ2, Z1, Z2, Z3, Z4, arbitrary matrices
M11, P1, P2, G1, G2 with appropriate dimensions, and two
positive scalars λ∗ > 0, ε > 0 such that the following LMIs
hold:

Ξ = [Ξ(1),Ξ(2)] < 0, (5)

where

Ξ(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ11 Ξ12 Ξ13 0 Ξ15 Ξ16 Ξ17 0 Ξ19 Ξ1,10

∗ Ξ22 Ξ23 0 Ξ25 Ξ26 Ξ27 0 Ξ29 Ξ2,10

∗ ∗ Ξ33 0 Ξ35 Ξ36 Ξ37 0 Ξ39 Ξ3,10

∗ ∗ ∗ Ξ44 0 0 0 Ξ48 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 0 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 0 Ξ69 Ξ6,10

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 Ξ79 Ξ7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 Ξ8,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 Ξ9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ξ(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ1,11 Ξ1,12 Ξ1,13 0 Ξ1,15 0 Ξ1,17M11K
Ξ2,11 Ξ2,12 0 0 0 0 0 0
Ξ3,11 Ξ3,12 0 0 0 0 0 0

0 0 0 Ξ4,14 0 Ξ4,16 Ξ4,17 0
Ξ5,11 Ξ5,12 Ξ5,13 0 Ξ5,15 0 Ξ5,17M51K
Ξ6,11 Ξ6,12 0 0 0 0 0 0
Ξ7,11 Ξ7,12 0 0 0 0 0 0
Ξ8,11 Ξ8,12 0 Ξ8,14 0 Ξ8,16 0 0
Ξ9,11 Ξ9,12 0 0 0 0 0 0
Ξ10,11 Ξ10,12 0 0 0 0 0 0
Ξ11,11 Ξ11,12 0 0 0 0 0 0

∗ Ξ12,12 0 0 0 0 0 0
∗ ∗ Ξ13,13 0 Ξ13,15 0 0 0
∗ ∗ ∗ Ξ14,14 0 Ξ14,16 0 0
∗ ∗ ∗ ∗ Ξ15,15 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ16,16 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ17,17 εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M51 < λ∗I,

Ξ11 = Q14 + QT
14 + Q15 + QT

15 + Q45 + QT
45
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+ + Q44 + Q55(1 +
1

τM − τm
)R11 + γ11

+H11 + (1 + τm)Z3 + (1 + τM )Z4 − Λ1L1 − Λ2L2

+M11(C − I) + (C − I)T MT
11 + εET

c Ec

+2λ∗ρ1I + P1 + PT
1 + G1 + GT

1 ,

Ξ12 = QT
24 + QT

25 − Q14 − Q44 − QT
45,

Ξ13 = QT
34 + QT

35 − Q15 − Q45 − Q55,

Ξ14 = PT
2 − P1 − G1 + GT

2 ,

Ξ15 = Q11 + QT
14 + QT

15 + Q14 + Q44

+QT
45 + Q15 + Q45 + Q55 + Q16 + Q46 + Q56

+PT
1 + Q17 + Q47 + Q57 + (1 +

1
τM − τm

)R12

+γ12 + H12 − M11 + (C − I)T MT
51,

Ξ16 = Q12 − Q16 + QT
24 − Q46 + QT

25 − Q56,

Ξ17 = Q13 − Q17 + QT
34 − Q47 + QT

35 − Q57,

Ξ19 = Q44 + QT
45, Ξ1,10 = Q45 + Q55,

Ξ1,11 = Q46 + Q56, Ξ1,12 = Q47 + Q57,

Ξ1,13 = Λ2L2 + (1+
1

τM − τm
)R13 + M11A + εET

c Ea,

Ξ1,15 = Λ1L2 + (1+
1

τM − τm
)R14 + M11B + εET

c Eb,

Ξ1,17 = −P1 − G1 + PT
2 + GT

2 ,

Ξ22 = −QT
24 − Q24 + Q44 − γ11,

Ξ23 = −QT
34 − Q25 + Q45,

Ξ25 = Q21 − QT
14 + Q24 − Q44 + Q25

−Q45 + Q26 − Q46 + Q27 − Q47,

Ξ26 = Q22 − QT
24 + Q46 − Q26 − γ12,

Ξ27 = Q23 − Q43 + Q47 − Q27,

Ξ29 = −Q44,Ξ2,10 = −Q45,Ξ2,11 = −Q46,

Ξ2,12 = −Q47,Ξ33 = −QT
35 − Q35 + Q55 − H11,

Ξ35 = QT
13 − QT

15 + Q34 − QT
45 + Q35

−Q55 + Q36 − Q56 + Q37 − Q57,

Ξ36 = QT
23 − QT

25 + Q56 − Q36,

Ξ37 = Q33 − QT
35 + Q57 − Q37 − H12,

Ξ39 = −Q54,Ξ3,10 = −Q55,

Ξ3,11 = −Q56,Ξ3,12 = −Q57,

Ξ44 = − 1
τM − τm

R11 − Γ1Π1 − Γ2Π1

+2λ∗ρ2I − PT
2 − P2 − GT

2 − G2,

Ξ45 = −PT
1 , Ξ48 = − 1

τM − τm
R12,

Ξ4,14 = − 1
τM − τm

R13 + Γ2Π2,

Ξ4,16 = − 1
τM − τm

R14 + Γ1Π2,

Ξ4,17 = −P2 − PT
2 − H2,

Ξ55 = Q11 + QT
14 + QT

15 + QT
16 + QT

17 + Q14 + Q44

+QT
45 + QT

46 + QT
47 + Q15 + Q45 + Q55 + Q65 + Q75

+Q16 + Q46 + Q56 + Q66 + Q76 + Q17 + Q47 + Q57

+Q67 + Q77 + (1 +
1

τM − τm
)R22 + γ22

+H22 + τmZ1 + τMZ2 − M51 − MT
51,

Ξ56 = Q12 + QT
24 + QT

25 + QT
26 + QT

27

−Q16 − Q46 − Q56 − Q66 − Q76,

Ξ57 = Q13 + QT
34 + QT

35 + QT
36 + QT

37

−Q17 − Q47 − Q57 − Q67 − Q77,

Ξ59 = Q14 + Q44 + QT
45 + QT

46 + QT
47,

Ξ5,10 = Q16 + Q46 + Q56 + Q66 + Q76,

Ξ5,11 = Q17 + Q47 + Q57 + Q67 + Q77,

Ξ5,12 = Q16 + Q46 + Q56 + Q66 + Q76,

Ξ5,13 = (1 +
1

τM − τm
)R23 + M51A,

Ξ5,15 = (1 +
1

τM − τm
)R24 + M51B,Ξ5,17 = −P1,

Ξ66 = Q22 − QT
26 − Q26 + Q66 − γ22,

Ξ67 = Q23 − QT
36 − Q27 + Q67,

Ξ69 = Q24 − QT
46,Ξ6,10 = Q25 − Q65,

Ξ6,11 = Q26 − Q66,Ξ6,12 = Q27 − Q67,

Ξ77 = Q33 − QT
37 − Q37 + Q77 − H22,

Ξ79 = Q34 − QT
47,Ξ7,10 = Q35 − Q75,

Ξ7,11 = Q36 − Q76,Ξ7,12 = Q37 − Q77,

Ξ88 = − 1
τM − τm

R22,Ξ8,14 = − 1
τM − τm

R23,

Ξ8,16 = − 1
τM − τm

R24,Ξ9,9 = − Z3

(1 + τm)

Ξ10,10 = − Z4

(1 + τM )
, Ξ11,11 = −Z2

τm
, Ξ12,12 = − Z1

τM
,

Ξ13,13 = (1 +
1

τM − τm
)R33 − Λ2 + εET

a Ea,

Ξ13,15 = (1 +
1

τM − τm
)R34 + εET

a Eb,

Ξ14,14 = − 1
τM − τm

R33 − Γ2,

Ξ14,16 = − 1
τM − τm

R34,
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Ξ15,15 = (1 +
1

τM − τm
)R44 − Λ1 + εET

b Eb,

Ξ16,16 = − 1
τM − τm

R44 − Γ1,

Ξ17,17 = −P2 − PT
2 − H2 − HT

2 ,

H =
(

H11 H12

∗ H22

)
> 0,

Q =

⎛
⎜⎜⎜⎝

Q11 Q12 · · · Q17

∗ Q22 · · · Q27

...
...

. . .
...

∗ ∗ . . . Q77

⎞
⎟⎟⎟⎠ > 0,

R =

⎛
⎜⎜⎝

R11 R12 R13 R14

∗ R22 R23 R24

∗ ∗ R33 R34

∗ ∗ ∗ R44

⎞
⎟⎟⎠ > 0,

γ =
(

γ11 γ12

∗ γ22

)
> 0,

L1 = diag(l+1 l−1 , · · · , l+n l−n ),

L2 = diag(
l+1 + l−1

2
, · · · ,

l+n + l−n
2

),

Π1 = diag(σ+
1 σ−

1 , · · · , σ+
n σ−

n ),

Π2 = diag(
σ+

1 + σ−
1

2
, · · · ,

σ+
n + σ−

n

2
).

Proof. Constructing a new augmented Lyapunov-Krasovskii
functional candidate as follows:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k) + V6(k),

where

V1(k) = XT (k)QX(k),

XT (k) = [xT (k), xT (k−τm), xT (k−τM ),
∑k

i=k−τm
xT (i),∑k

i=k−τM
xT (i),

∑k−1
i=k−τm

ηT (i),
∑k−1

i=k−τM
ηT (i)], η(k) =

x(k + 1) − x(k),

V2(k) =
1

τM − τm

k−1∑
i=k−τ(k)

λT (i)Rλ(i),

V3(k) =
1

τM − τm

k−τm∑
j=k+1−τM

k−1∑
i=j

λT (i)Rλ(i),

V4(k) =

k−1∑
i=k−τm

ξT (i)Hξ(i) +

k−1∑
i=k−τM

ξT (i)γξ(i),

where λ(k) =

⎡
⎢⎣

x(k)
η(k)

f(x(k))
g(x(k))

⎤
⎥⎦, ξ(i) =

[
x(k)
η(k)

]
,

V5(k) =

−1∑
j=−τM

k−1∑
i=k+j

ηT (i)Z1η(i)+

−1∑
j=−τm

k−1∑
i=k+j

ηT (i)Z2η(i),

V6(k) =

k∑
j=k−τm

k−1∑
i=j

xT (i)Z3x(i) +

k∑
j=k−τM

k−1∑
i=j

xT (i)Z4x(i).

Note that XT (k+1) = [xT (k)+ηT (k), xT (k−τm)+ηT (k−τm),
xT (k − τM ) + ηT (k − τM ), xT (k) + ηT (k) +

∑k
i=k−τm

xT (i) −
xT (k − τm), xT (k) + ηT (k) +

∑k
i=k−τM

xT (i) −
xT (k − τM ), ηT (k) +

∑k−1
i=k−τm

ηT (i) − ηT (k − τm),
ηT (k) +

∑k−1
i=k−τM

ηT (i) − ηT (k − τM )], and set X̃T (k) =

[xT (k), xT (k − τm), xT (k − τM ), xT (k − τ(k)), ηT (k), ηT (k −
τm), ηT (k−τM ), ηT (k−τ(k)),

∑k
i=k−τm

xT (i),
∑k

i=k−τM
xT (i),∑k−1

i=k−τm
ηT (i),

∑k−1
i=k−τM

ηT (i), fT (x(k)), fT (x(k −
τ(k))), gT (x(k)), gT (x(k − τ(k)))],

IT
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 I I 0 0
0 I 0 −I 0 0 0
0 0 I 0 −I 0 0
0 0 0 0 0 0 0
I 0 0 I I I I
0 I 0 0 0 −I 0
0 0 I 0 0 0 −I
0 0 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ĨT
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ĨT
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0
0 0 0 I
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ĨT
4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0
0 0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Define ΔV (k) = V (k+1)−V (k), then along the solution of system
(1) we obtain

E(ΔV1(k)) = E(XT (k + 1)QX(k + 1) − XT (k)QX(k))

= E[X̃T (k)(ĨT
1 QĨ1 − ĨT

2 QĨ2)X̃(k)], (7)

E(ΔV2(k)) =
1

τM − τm
E[λT (k)Rλ(k)

−λT (k − τ(k))Rλ(k − τ(k)) +

k−τm∑
i=k+1−τ(k+1)

λT (i)Rλ(i)

+

k−1∑
i=k+1−τm

λT (i)Rλ(i) −
k−1∑

i=k+1−τ(k)

λT (i)Rλ(i)]

≤ 1

τM − τm
E[λT (k)Rλ(k) − λT (k − τ(k))Rλ(k − τ(k))

+

k−τm∑
i=k+1−τM

λT (i)Rλ(i)]

≤ 1

τM − τm
E[X̃T (k)(ĨT

3 RĨ3 − ĨT
4 RĨ4)X̃(k)]

+
1

τM − τm
E[

k−τm∑
i=k+1−τM

λT (i)Rλ(i)], (8)
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E(ΔV3(k)) =
1

τM − τm
E[

k+1−τm∑
j=k+2−τM

k∑
i=j

λT (i)Rλ(i)

−
k−τm∑

j=k+1−τM

k−1∑
i=j

λT (i)Rλ(i)]

= E[X̃T (k)ĨT
3 RĨ3X̃(k)]

− 1

τM − τm
E[

k−τm∑
i=k+1−τM

λT (i)Rλ(i)], (9)

E(ΔV4(k)) = E[ξT (k)(γ + H)ξ(k)

−ξT (k − τM )γξ(k − τM − ξT (k − τm)Hξ(k − τm))].(10)

By lemma 2.1, we have

E(ΔV5(k)) = E[τMηT (k)Z1η(k) −
k−1∑

i=k−τM

ηT (i)Z1η(i)

+τmηT (k)Z2η(k) −
k−1∑

i=k−τm

ηT (i)Z2η(i)]

= E[τMηT (k)Z1η(k) + τmηT (k)Z2η(k)

−
k−1∑

i=k−τM

(
√

Z1η(i))T
√

Z1η(i)

−
k−1∑

i=k−τm

(
√

Z2η(i))T
√

Z2η(i)]

≤ E[τMηT (k)Z1η(k) + τmηT (k)Z2η(k)

− 1

τM
(

k−1∑
i=k−τM

η(i))T Z1(

k−1∑
i=k−τM

η(i))

− 1

τm
(

k−1∑
i=k−τm

η(i))T Z2(

k−1∑
i=k−τm

η(i))], (11)

E(ΔV6(k)) = E[(1 + τm)xT (k)Z3x(k) −
k∑

i=k−τm

xT (i)Z3x(i)

+(1 + τM )xT (k)Z4x(k) −
k∑

i=k−τM

xT (i)Z4x(i)]

≤ E{(1 + τm)xT (k)Z3x(k)

− 1

1 + τm
[

k∑
i=k−τm

x(i)]T Z3[

k∑
i=k−τm

x(i)]

+(1 + τM )xT (k)Z4x(k)

− 1

1 + τM
[

k∑
i=k−τM

x(i)]T Z4[

k∑
i=k−τM

x(i)]}. (12)

Set MT = [MT
11, 0, 0, 0, MT

51, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], α1

= [C − I, 0, 0, 0,−I, 0, 0, 0, 0, 0, 0, 0, A, 0, B, 0], α2 = [Ec, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Ea, 0, Eb, 0]T . From lemma 2.3, we get

0 = E{2X̃T (k)M [(C(k) − I)x(k) + A(k)f(x(k))

+B(k)g(x(k − τ(k))) + δ(k, x(k), x(k − τ(k)))ω(k) − η(k)]}
≤ E[X̃T (k)(Mα1 + αT

1 MT + εα2α
T
2 +

1

ε
MKKT MT )X̃(k)]

+E[2X̃T (k)Mδ(k, x(k), x(k − τ(k)))ω(k)]

≤ E[X̃T (k)(Mα1 + αT
1 MT + εα2α

T
2 +

1

ε
MKKT MT )X̃(k)]

+2λ∗[ρ1E(xT (k)x(k)) + ρ2E(xT (k − τ(k))x(k − τ(k)))].(13)

Since x(k) − ∑k−1
i=k−τ(k) η(i) − x(k − τ(k)) = 0, for arbitrary

matrices P1, P2, G1, G2 of appropriate dimensions, we can obtain
that

0 = 2E{[ηT (k) + xT (k),

k−1∑
i=k−τ(k)

ηT (i) + xT (k − τ(k))]

[
0 P1

0 P2

] [
η(k) + x(k)

x(k) − ∑k−1
i=k−τ(k) η(i) − x(k − τ(k))

]
}, (14)

0 = 2E{[xT (k),

k−1∑
i=k−τ(k)

ηT (i) + xT (k − τ(k))]

[
0 −G1

0 −G2

] [
η(k) + x(k)

−x(k) +
∑k−1

i=k−τ(k) η(i) + x(k − τ(k))

]
}.(15)

From Assumption 1, for any positive diagonal matrices
Λ1, Λ2, Γ1, Γ2 of appropriate dimensions, we have

2xT (k)Λ1L2f(x(k)) − xT (k)Λ1L1x(k) − fT (x(k))Λ1f(x(k)) ≥ 0,

−xT (k − τ(k))Λ2L1x(k − τ(k)) − fT (x(k − τ(k))) ×
Λ2f(x(k − τ(k))) + 2xT (k − τ(k))Λ2L2f(x(k − τ(k))) ≥ 0,

2xT (k)Γ1Π2g(x(k)) − xT (k)Γ1Π1x(k) − gT (x(k))Γ1g(x(k)) ≥ 0,

−xT (k − τ(k))Γ2Π1x(k − τ(k)) + 2xT (k − τ(k))Γ2 ×
Π2g(x(k − τ(k))) − gT (x(k − τ(k)))Γ2g(x(k − τ(k))) ≥ 0, (16)

Combining (7)-(16), we get

E(ΔV (k)) ≤ E{X̂T (k) [Ξ′ +
1

ε
MKKT MT ] X̂(k)}, (17)

where X̂T (k) = [X̃T (k),
∑k−1

i=k−τ(k) ηT (i)], Ξ′ ∈ R
17n×17n and

the elements are the same with the foreword seventeen rows and
columns in matrix Ξ.

If the LMI (5) holds, applying Lemma 2.2, it follows that there
exists a sufficient small positive scalar ε > 0 such that

E(ΔV (k)) ≤ −εE‖x(k)‖2. (18)

On the other hand, it can easily to get that

E(V (k)) ≤ E(α1‖x(k)‖2 + α2

k−1∑
i=k−τM

‖x(i)‖2), (19)

where α1 = α2 + 7λmax(Q), α2 = 4λmax(R)(5 + ‖L‖2 +
‖Π‖2)( 1

τM−τm
+1)+10(λmax(H)+λmax(γ))+2τMλmax(Z1)+

2τmλmax(Z2)+ (1+ τM )λmax(Z4)+ (1+ τm)λmax(Z3), ‖L‖2 =
max{‖L1‖2, ‖L2‖2}, ‖Π‖2 = max{‖Π1‖2, ‖Π2‖2}.

For any θ > 1, it follows from (19) that

θj+1
E(V (j + 1) − θjV (j))

= θj+1ΔE(V (j)) + θj(θ − 1)E(V (j))

≤ E[θj(−εθ‖x(j)‖2 + (θ − 1)α1‖x(j)‖2

+(θ − 1)α2

j−1∑
i=j−τM

‖x(j)‖2)]. (20)

Summing up both sides of (20) from 0 to k − 1 we can obtain

E(θkV (k) − V (0)) ≤ E{[α1(θ − 1) − εθ]

k−1∑
j=0

θj‖x(j)‖2

+α2(θ − 1)

k−1∑
j=0

j−1∑
i=j−τM

θj‖x(i)‖2}

≤ E{μ1(θ) sup
j∈N[−τM ,0]

‖x(j)‖2

+μ2(θ)

k∑
j=0

θk‖x(k)‖2}, (21)
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where μ1(θ) = α2(θ − 1)τ2
MθτM , μ2(θ) = α2(θ − 1)τMθτM +

α1(θ− 1)− εθ. Since μ2(1) = −εθ < 0, there must exist a positive
θ0 > 1 such that μ2(θ0) < 0. Then we have

E(V (k)) ≤ E[μ1(θ0)(
1

θ0
)k sup

j∈N[−τM ,0]

‖x(j)‖2+(
1

θ0
)kV (0)], (22)

On the other hand, note � = α1 + (1 + τM )α2, we can obtain

E(V (0)) ≤ � sup
j∈N[−τM ,0]

E‖x(j)‖2,

E(V (k)) ≥ λmin(Q)E‖x(k)‖2. (23)

It follows that E‖x(k)‖2 ≤ α · βk supj∈N[−τM ,0] E‖x(j)‖2,
where β = (θ0)

−1, α = μ1(θ0)+�
λmin(P )

. By Definition 1, system (1) is
globally robustly and exponentially stable, which complete the proof
of Theorem 3.1.

Remark 3.1: When ΔC(k) = ΔA(k) = ΔB(k) = 0, system (1)
becomes

x(k + 1)= Cx(k) + Af(x(k)) + Bg(x(k − τ(k)))

+δ(k, x(k), x(k − τ(k)))ω(k), k ∈ N
+, (24)

which studied in [8]. In this case, similar to the proofs of Theorem
3.1, we can obtain the following corollary.

Corollary 3.1: For any given positive integers 0 < τm < τM ,
then, under Assumption 1-3, system (24) is globally exponentially
stable in the mean square for any time-varying delay τ(k) satisfying
τm ≤ τ(k) ≤ τM , if there exist positive matrices Q, R, H, γ, M51,
positive diagonal matrices Λ1, Λ2, Γ1, Γ2, Z1, Z2, Z3, Z4, arbitrary
matrices M11, P1, P2, G1, G2 with appropriate dimensions, and
positive scalar λ∗ > 0, such that the following LMIs hold:

Ξ̃ = [Ξ̃(1), Ξ̃(2)] < 0, (25)

where

Ξ̃(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ̃11 Ξ12 Ξ13 0 Ξ15 Ξ16 Ξ17 0 Ξ19 Ξ1,10

∗ Ξ22 Ξ23 0 Ξ25 Ξ26 Ξ27 0 Ξ29 Ξ2,10

∗ ∗ Ξ33 0 Ξ35 Ξ36 Ξ37 0 Ξ39 Ξ3,10

∗ ∗ ∗ Ξ44 0 0 0 Ξ48 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 0 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 0 Ξ69 Ξ6,10

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 Ξ79 Ξ7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 Ξ8,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 Ξ9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ξ̃(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ1,11 Ξ1,12 Ξ̃1,13 0 Ξ̃1,15 0 Ξ1,17

Ξ2,11 Ξ2,12 0 0 0 0 0
Ξ3,11 Ξ3,12 0 0 0 0 0

0 0 0 Ξ4,14 0 Ξ4,16 Ξ4,17

Ξ5,11 Ξ5,12 Ξ5,13 0 Ξ5,15 0 Ξ5,17

Ξ6,11 Ξ6,12 0 0 0 0 0
Ξ7,11 Ξ7,12 0 0 0 0 0
Ξ8,11 Ξ8,12 0 Ξ8,14 0 Ξ8,16 0
Ξ9,11 Ξ9,12 0 0 0 0 0
Ξ10,11 Ξ10,12 0 0 0 0 0
Ξ11,11 Ξ11,12 0 0 0 0 0

∗ Ξ12,12 0 0 0 0 0

∗ ∗ Ξ̃13,13 0 Ξ̃13,15 0 0
∗ ∗ ∗ Ξ14,14 0 Ξ14,16 0

∗ ∗ ∗ ∗ Ξ̃15,15 0 0
∗ ∗ ∗ ∗ ∗ Ξ16,16 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ17,17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M51 < λ∗I, (26)

Ξ̃11 = Q14 + QT
14 + Q15 + QT

15 + Q45 + QT
45 + Q44 + Q55

+(1 +
1

τM − τm
)R11 + γ11 + H11 + (1 + τm)Z3 − Λ1L1

+(C − I)T MT
11 + (1 + τM )Z4 − Λ2L2 + M11(C − I)

+2λ∗ρ1I + P1 + P T
1 + G1 + GT

1 ,

Ξ̃1,13 = Λ2L2 +(1+ 1
τM−τm

)R13 +M11A, Ξ̃1,15 = Λ1L2 +(1+
1

τM−τm
)R14 + M11B, Ξ̃13,13 = (1 + 1

τM−τm
)R33 − Λ2,Ξ̃13,15 =

(1 + 1
τM−τm

)R34,Ξ̃15,15 = (1 + 1
τM−τm

)R44 − Λ1.
Remark 3.2: When δ(k, x(k), x(k − τ(k))) = 0, system (1)

becomes

x(k + 1) = C(k)x(k) + A(k)f(x(k)) + B(k)g(x(k− τ(k))), (27)

which studied in [8], [16]-[18]. In this case, similar to the proofs of
Theorem 3.1, we can obtain the following corollary.

Corollary 3.2: For any given positive integers 0 < τm < τM ,
then, under Assumption 1,3, system (27) is globally robustly and
exponentially stable for any time-varying delay τ(k) satisfying
τm ≤ τ(k) ≤ τM , if there exist positive matrices Q, R, H, γ, M51,
positive diagonal matrices Λ1, Λ2, Γ1, Γ2, Z1, Z2, Z3, Z4, arbitrary
matrices M11, P1, P2, G1, G2 with appropriate dimensions, and
positive scalar ε > 0, such that the following LMI hold:

Ξ̂ = [Ξ̂(1), Ξ̂(2)] < 0, (28)

where

Ξ̂(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ̂11 Ξ12 Ξ13 0 Ξ15 Ξ16 Ξ17 0 Ξ19 Ξ1,10

∗ Ξ22 Ξ23 0 Ξ25 Ξ26 Ξ27 0 Ξ29 Ξ2,10

∗ ∗ Ξ33 0 Ξ35 Ξ36 Ξ37 0 Ξ39 Ξ3,10

∗ ∗ ∗ Ξ̂44 0 0 0 Ξ48 0 0
∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 0 Ξ59 Ξ5,10

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 0 Ξ69 Ξ6,10

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 Ξ79 Ξ7,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 Ξ8,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 Ξ9,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ10,10

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ξ̂(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ξ1,11 Ξ1,12 Ξ1,13 0 Ξ1,15 0 Ξ1,17M11K
Ξ2,11 Ξ2,12 0 0 0 0 0 0
Ξ3,11 Ξ3,12 0 0 0 0 0 0

0 0 0 Ξ4,14 0 Ξ4,16 Ξ4,17 0
Ξ5,11 Ξ5,12 Ξ5,13 0 Ξ5,15 0 Ξ5,17M51K
Ξ6,11 Ξ6,12 0 0 0 0 0 0
Ξ7,11 Ξ7,12 0 0 0 0 0 0
Ξ8,11 Ξ8,12 0 Ξ8,14 0 Ξ8,16 0 0
Ξ9,11 Ξ9,12 0 0 0 0 0 0
Ξ10,11 Ξ10,12 0 0 0 0 0 0
Ξ11,11 Ξ11,12 0 0 0 0 0 0

∗ Ξ12,12 0 0 0 0 0 0
∗ ∗ Ξ13,13 0 Ξ13,15 0 0 0
∗ ∗ ∗ Ξ14,14 0 Ξ14,16 0 0
∗ ∗ ∗ ∗ Ξ15,15 0 0 0
∗ ∗ ∗ ∗ Ξ16,16 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ17,17 εI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Ξ̂11 = Q14 + QT
14 + Q15 + QT

15 + Q45 + QT
45 + Q44 + Q55
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+(1 + frac1τM − τm)R11 + γ11 + H11 + (1 + τm)Z3

+(1 + τM )Z4 − Λ1L1 − Λ2L2 + M11(C − I)

+εET
c Ec + P1 + P T

1 + G1 + GT
1 + (C − I)T MT

11,

Ξ̂44 = − 1

τM − τm
R11 −Γ1Π1 −Γ2Π1 −P T

2 −P2 −GT
2 −G2.

Remark 3.3: We proposed V1, V2 which take
∑k

i=k−τm
x(k),∑k

i=k−τM
x(k),

∑k
i=k−τm

η(k − 1),
∑k−1

i=k−τM
η(k), f(x(k)),

g(x(k)) as augmented states. The proposed augmented Lyapunov
functional V1, V2 do not considered in the previous literature and may
improve the feasibility region of delay-dependent stability criterion.

Remark 3.4: Zero equations (14) (15) provide us a new method
to introduce free-weighting matrix, which do not considered in
existing works. And free-weighting matrices P1, P2, G1, G2 make
an important role in the reducing of conservatism for above criteria.

IV. NUMERICAL EXAMPLES

In this section, three numerical examples will be presented to
show the validity of the main results derived above.

Example 4.1: For the convenience of comparison, let’s consider a
delayed discrete-time recurrent neural network in (1), where

f1(s) = sin(0.2s), f2(s) = tanh(−0.4s), g1(s) = tanh(0.83s),

g2(s) = tanh(0.2s), τm = 1, ρ1 = ρ2 = 0.2

C =

( −0.1 0
0 −0.2

)
, A =

( −0.1 0.1
−0.1 0.5

)
,

B =

(
0.05 0.1
0.5 0.5

)
, L1 =

( −0.64 0
0 0

)
,

L2 =

(
0 0
0 −0.2

)
, Π1 =

( −0.6 0
0 0

)
,

Π2 =

(
0.2 0
0 0.1

)
, K = Ec = Ea = Eb

(
0.1 0
0 0.1

)
.

Applying the Theorem 1 in [8] and the Theorem 1 in [17], the
maximum value of τM for globally robustly mean square exponen-
tially stable of system (1) is τM = 10 and τM = 55, respectively.
While by using Theorem 3.1 obtained in this paper, the allowable
upper bound τM of the time-varying delay is infinity (details see
Table 1), which means that our result is less conservative than that
obtained in [8], [17].

When τ1 = 1, τM = 100, by the MATLAB LMI control toolbox,
we find a solution to the LMIs (5) as follows

Q
(1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

45.06 1.50 −13.77 −3.08 −1.66 −0.00 −5.67
∗ 39.88 −2.72 −20.01 0.00 −1.65 −0.40
∗ ∗ 12.97 2.48 −0.80 0.00 3.81
∗ ∗ ∗ 18.13 −0.00 −0.82 0.39
∗ ∗ ∗ ∗ 3.57 −0.25 0.00
∗ ∗ ∗ ∗ ∗ 3.46 −0.01
∗ ∗ ∗ ∗ ∗ ∗ 1.73
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q
(2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.39 −0.01 −0.00 −13.75 −3.06 −1.64 −0.11
−7.65 −0.00 −0.01 −2.83 −19.97 0.11 −1.64
0.42 0.00 0.00 0.00 0.00 −0.81 0.11
5.29 0.00 0.01 0.00 0.01 −0.11 −0.81
0.01 0.00 0.00 −0.81 0.00 2.46 0.00
0.00 −0.00 0.00 −0.01 −0.82 −0.00 2.46
−0.09 −0.00 0.00 3.84 0.44 −0.00 −0.00
2.15 0.00 −0.00 0.42 5.35 −0.00 −0.00
∗ 0.01 −0.00 0.01 0.00 0.00 0.00
∗ ∗ 0.01 0.00 0.01 0.00 0.00
∗ ∗ ∗ 11.29 2.68 −0.81 0.1159
∗ ∗ ∗ ∗ 16.28 −0.11 −0.81
∗ ∗ ∗ ∗ ∗ 2.46 −0.00
∗ ∗ ∗ ∗ ∗ ∗ 2.46

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q = [Q
(1)

, Q
(2)

],

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.71 1.91 2.16 1.16 −1.27 −1.84 2.34 −1.27
∗ 10.83 1.89 8.81 1.29 −3.57 −5.94 −7.40
∗ ∗ 1.85 1.64 1.22 −1.46 −0.87 −1.46
∗ ∗ ∗ 8.00 1.00 −5.18 −5.22 −5.19
∗ ∗ ∗ ∗ 2.32 −0.21 −0.17 −0.21
∗ ∗ ∗ ∗ ∗ 13.07 0.76 0.79
∗ ∗ ∗ ∗ ∗ ∗ 6.38 0.77
∗ ∗ ∗ ∗ ∗ ∗ ∗ 14.41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎝

2.58 −0.66 1.79 −0.48
∗ 2.56 −0.38 1.73
∗ ∗ 1.80 −0.41
∗ ∗ ∗ 1.63

⎞
⎟⎠ ,

γ =

⎛
⎜⎝

3.47 −0.54 2.30 −0.47
∗ 4.00 −0.22 2.53
∗ ∗ 2.16 −0.34
∗ ∗ ∗ 2.19

⎞
⎟⎠ ,

Z1 =

(
0.0037 0

0 0.0030

)
, Z2 =

(
2.9562 0

0 3.8065

)
,

Z3 =

(
2.2837 0

0 2.8459

)
, Z4 =

(
0.0099 0

0 0.0088

)
,

Γ1 =

(
11.2062 0

0 27.2168

)
, Γ2 =

(
1.2155 0

0 6.0336

)
,

Λ1 =

(
4.3341 0

0 24.5398

)
, Λ2 =

(
1.2270 0

0 4.9688

)
,

M11 =

(
18.4085 −0.2803
2.3140 18.0917

)
, M55 =

(
17.5754 0.9462
−0.8644 16.0139

)
,

P1 =

(
0.6030 −0.1628
−0.1749 0.5666

)
, , P2 = a ∗

(
0.0150 0.0417
−0.0488 −4.4629

)
,

G1 =

(
1.3491 0.2686
−0.2979 1.0429

)
, G2 = a ∗

( −0.0070 −0.0416
0.0489 4.4699

)
,

a = 1.0e + 003, ε = 9.0456, λ
∗

= 17.9133.

Example 4.2: For the convenience of comparison, let’s consider a delayed discrete-
time recurrent neural network in (24) with parameters given by δ = 0,

C =

(
0.8 0
0 0.7

)
, A =

(
0.001 0

0 0.005

)
, B =

( −0.1 0.01
−0.2 −0.1

)
.

And the activation functions satisfy Assumption 1 with l−1 = l−2 = 0, σ+
1 = σ+

2 =
1. For τm = 1, 4, 8, 15, 25, references [8], [25], [18]-[21] gave out the allowable upper
bound τM of the time-varying delay, respectively. Table 2 shows that our results are less
conservative than these previous results.

Example 4.3: Consider an uncertain delayed discrete-time recurrent neural network
in (27) with parameters given by

C =

(
0.25 0
0 0.1

)
, A =

(
0.12 0.24
−0.15 0.2

)
,

B =

( −0.25 0.1
0.02 0.09

)
, K =

(
0.2 0
0 0.3

)
,

Ec =

(
0.15 0.1
0 −0.7

)
, Ea =

(
0.1 0.3
−0.2 0.05

)
,

Eb =

(
0.13 0.06
−0.05 0.15

)
. And the activation functions satisfy Assumption 1 with

l−1 = −0.5, l−2 = 0, σ+
1 = 1, σ+

2 = 0.5. For τm = 1, 2, 4, 6, 8, 10, references
[16], [19], [20] gave out the allowable upper bound τM of the time-varying delay,
respectively. The allowable upper bounds τM for given τm are showed in Table 3.
Obviously, our results are less conservative than these previous results.

V. CONCLUSION
Combined with linear matrix inequality (LMI) technique, a new augmented Lyapunov-

Krasovskii function is constructed, and some new improved sufficient conditions ensuring
globally exponential stability or robust exponential stability in the mean square are
obtained. Numerical examples show that the new results are less conservative than some
previous results.
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Shu Lü was born in 1963 in Jilin, China. She received B.S. degree in
Mathematics Department of Northeast Normal University, Changchun, China,
in 1984 and the M.S. degree from the School of mathematical statistics, China
University of Technology. She is now a Associate professor with School of
Applied Mathematics, University of Electronic Science and Technology of
China (UESTC). Her research interests include the theory and application
of economics mathematics, differential equations, neural networks, biomath-
ematics and robust control..

Shouming Zhong was born in 1955 in Sichuan, China. He received B.S.
degree in applied mathematics from the University of Electronic Science and
Technology of China (UESTC), Chengdu, China, in 1982. From 1984 to
1986, he studied at the Department of Mathematics in Sun Yat-sen University,
Guangzhou, China. From 2005 to 2006, he was a visiting research associate
with the Department of Mathematics in University of Waterloo, Waterloo,
Canada. He is currently as a full professor with School of Applied Mathe-
matics, UESTC. His current research interests include differential equations,
neural networks, biomathematics and robust control. He has authored more
than 80 papers in reputed journals such as the In International Journal of
Systems Science, Applied Mathematics and Computation, Chaos, Solitons and
Fractals, Dynamics of Continuous, Discrete and Impulsive Systems, Acta Au-
tomatica Sinica, Journal of Control Theory and Applications, Acta Electronica
Sinica, Control and Decision, and Journal of Engineering Mathematics.

Zixin Liu was born in Sichuan Province, China, in 1977. He received the B.S.
degree from China West Normal University, Sichuan in 1999. The M.S. and
Ph.D. degree from the University of Electronic Science and Technology of
China (UESTC), Sichuan, in 2006 and 2010, respectively. He is currently as
a full professor with School of Applied Mathematics and Statistics, GuiZhou
University of Finance and Economics. His research interests include neural
networks, chaos synchronization and stochastic delayed dynamic systems.


