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Abstract—Recently, the effectiveness of random dither
quantization method for linear feedback control systems has
been shown in several papers. However, the random dither
quantization method has not yet been applied to nonlinear feedback
control systems. The objective of this paper is to verify the
effectiveness of random dither quantization method for nonlinear
feedback control systems. For this purpose, we consider the attitude
stabilization problem of satellites using discrete-level actuators.
Namely, this paper provides a control method based on the random
dither quantization method for stabilizing the attitude of satellites
using discrete-level actuators.
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I. INTRODUCTION

THE quantization of control inputs occurs in many

systems equipped with discrete-level actuators. The

control signals are also quantized in communication networks.

Thus, the quantized control of systems is one of the most

important research topics in recent years.

Recently, the random dither quantization method

that transforms a given continuous-valued signal to a

discrete-valued signal by adding artificial random noise to

the continuous-valued signal before quantization has been

proposed in [1]. Model predictive control [2]-[4], also known

as receding horizon control [5]-[10], is a kind of optimal

feedback control and the so-called stochastic model predictive

control [11]-[14] has been applied to the quantized control

of systems with random dither quantizer in [15]. It has

been shown that the random dither quantization method

exhibits much better performance than the simple uniform

quantization method for linear feedback control systems.

Hence, this paper focuses on the feedback control systems

with random dither quantization method.

The control performance of quantized control of systems

using random dither quantizer has been well analyzed for

linear feedback control systems. However, the random dither

quantization method has not yet been applied to nonlinear

feedback control systems. The objective of this paper is to

verify the effectiveness of random dither quantization method

for nonlinear feedback control systems.
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For this purpose, we analyze the control performance of

quantized control of nonlinear systems using the random

dither quantizer. So far, several kinds of nonlinear feedback

control problems have been studied [16]-[19]. In this study,

we focus on the class of attitude control problems of

satellites in which the control of nonlinear dynamics is

taken into account. Motivated by the fact that the actuators

such as thrusters that are often used for attitude control of

satellites yield discrete-level inputs, we apply the random

dither quantization method to the nonlinear feedback control

of satellite attitude. The main contribution of this study is to

verify the effectiveness of random dither quantization method

for attitude stabilization of satellites.

This paper is organized as follows. In Section II, we

introduce some notations and the system model of satellites.

In Section III, we formulate the control problem of satellite

attitude with quantized control inputs. The main results are

provided in Section IV. Finally, some concluding remarks are

given in Section V.

II. NOTATIONS AND SYSTEM MODEL

First, we introduce some notations that are adopted

throughout this paper. Let the set of real numbers be denoted

by R. Let the set of non-negative real numbers be denoted

by R+. Let t ∈ R+ denote the temporal variable. Next, we

introduce the system model of satellites. Let us consider a rigid

satellite in an inertial reference frame and let ω1(t), ω2(t), and

ω3(t) denote the angular velocity components along a body

fixed reference frame having the origin at the center of gravity

and consisting of three principal axes. The Euler’s equations

for the rigid body with three independent controls aligned with

three principal axes are

J1ω̇1(t) = (J2 − J3)ω2(t)ω3(t) + u1(t) (1a)

J2ω̇2(t) = (J3 − J1)ω3(t)ω1(t) + u2(t) (1b)

J3ω̇3(t) = (J1 − J2)ω1(t)ω2(t) + u3(t) (1c)

where J1 > 0, J2 > 0, and J3 > 0 denote the principal

moments of inertia and u1(t), u2(t), and u3(t) denote the

control torques. Let us introduce the inertia ratios I1, I2, I3
defined as follows:

I1 =
J2 − J3

J1

I2 =
J3 − J1

J2

I3 =
J1 − J2

J3
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Using inertia ratios I1, I2, and I3, the system model (1) can

be rewritten as follows:

ω̇1(t) = I1ω2(t)ω3(t) +
u1(t)

J1
(2a)

ω̇2(t) = I2ω3(t)ω1(t) +
u2(t)

J2
(2b)

ω̇3(t) = I3ω1(t)ω2(t) +
u3(t)

J3
(2c)

Let a unit vector along the Euler axis be denoted by

e =

⎡
⎣

e1
e2
e3

⎤
⎦ ,

where e1, e2, and e3 are the direction cosines of the Euler

axis relative to the body fixed control axes. The four elements

called the quaternions are defined as follows:

q(t) =

⎡
⎢⎢⎣

q1(t)
q2(t)
q3(t)
q4(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

e1 sin
(

θ(t)
2

)

e2 sin
(

θ(t)
2

)

e3 sin
(

θ(t)
2

)

cos
(

θ(t)
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where θ(t) denotes the rotation angle about the Euler axis.

Then we have the following relation.

q21(t) + q22(t) + q23(t) + q24(t) = 1. (3)

It is known that the quaternion kinematic differential equations
are given by
⎡
⎢⎣

q̇1(t)
q̇2(t)
q̇3(t)
q̇4(t)

⎤
⎥⎦ =

1

2

⎡
⎢⎣

0 ω3(t) −ω2(t) ω1(t)
−ω3(t) 0 ω1(t) ω2(t)
ω2(t) −ω1(t) 0 ω3(t)
−ω1(t) −ω2(t) −ω3(t) 0

⎤
⎥⎦

⎡
⎢⎣

q1(t)
q2(t)
q3(t)
q4(t)

⎤
⎥⎦ .

(4)

Let the state vector x(t) ∈ R
7 be defined by

x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1(t)
q2(t)
q3(t)
q4(t)
ω1(t)
ω2(t)
ω3(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the state vector x(t), the rotational equations of motion

of a rigid satellite about principal axes are described by

ẋ1(t) =
1

2
(x5x4 − x6x3 + x7x2), (5a)

ẋ2(t) =
1

2
(x5x3 + x6x4 − x7x1), (5b)

ẋ3(t) =
1

2
(−x5x2 + x6x1 + x7x4), (5c)

ẋ4(t) =
1

2
(−x5x1 − x6x2 − x7x3), (5d)

ẋ5(t) = I1x6(t)x7(t) +
u1(t)

J1
, (5e)

ẋ6(t) = I2x7(t)x5(t) +
u2(t)

J2
, (5f)

ẋ7(t) = I3x5(t)x6(t) +
u3(t)

J3
. (5g)

III. DESIGN OF FEEDBACK CONTROL SYSTEM

In this section, we design the feedback control system for

stabilizing the rotational motion of a satellite. Let the target

state denoted by x̄ be set as

x̄(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, we introduce the control law as follows:

u1(t) = −k1x1 − c1x5, (6a)

u2(t) = −k2x2 − c2x6, (6b)

u3(t) = −k3x3 − c3x7, (6c)

where k1, k2, k3 and c1, c2, c3 are positive constants. Next, we

examine the stability of the target state using the control inputs

(6). Let the following positive-definite function as a Lyapunov

function.

E =
J1
2k1

x2
5 +

J2
2k2

x2
6 +

J3
2k3

x2
7 + q21 + q22 + q23 + (q4 − 1)2

(7)

Suppose that k1, k2, k3 are selected so as to satisfy the

following condition:

J2 − J3
k1

+
J3 − J1

k2
+

J1 − J2
k3

= 0. (8)

Then, the following condition holds true.

Ė ≤ 0 (9)

Consequently, based on the Lyapunov stability theory, we can

see that if condition (8) is satisfied, then the equilibrium point

x̄ is globally asymptotically stable for any positive constants

c1, c2, c3. Next, we introduce the simple uniform quantizer

defined by

v(t) = q (u(t)) , (10)

where q denotes the static nearest-neighbor quantizer toward

−∞ with the quantization interval d as shown in Fig. 1 of

[15]. Furthermore, we introduce the random dither quantizer

defined by

v(t) = q (u(t) + η(t)) , (11)

where η(t) is an independent and identically distributed

random variable with the uniform probability distribution on

[−d/2, d/2).
A schematic view of quantized control system using the

simple uniform quantizer (10) is shown in Fig. 1. In contrast, a

schematic view of quantized control system using the random

dither quantizer (11) is shown in Fig. 2.

Hereafter, we consider the attitude control problem of

satellites with quantized control inputs governed by the
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Fig. 1 A schematic view of system using the simple uniform quantizer (10)

Fig. 2 A schematic view of system using the random dither quantizer (11)

following equations:

ẋ1(t) =
1

2
(x5x4 − x6x3 + x7x2), (12a)

ẋ2(t) =
1

2
(x5x3 + x6x4 − x7x1), (12b)

ẋ3(t) =
1

2
(−x5x2 + x6x1 + x7x4), (12c)

ẋ4(t) =
1

2
(−x5x1 − x6x2 − x7x3), (12d)

ẋ5(t) = I1x6(t)x7(t) +
v1(t)

J1
, (12e)

ẋ6(t) = I2x7(t)x5(t) +
v2(t)

J2
, (12f)

ẋ7(t) = I3x5(t)x6(t) +
v3(t)

J3
. (12g)

IV. MAIN RESULTS

In this section, we show the control performances of

satellites with quantized controls governed by (12) for both

cases of the SUQ (simple uniform quantizer) and the RDQ

(random dither quantizer). The parameters employed in the

numerical simulations are as follows: J1 = 1, J2 = 2, J3 = 3,

k1 = k2 = k3 = 1, c1 = c2 = c3 = 1, d = 1. Time responses

of the state x of quantized control system (12) for both cases

of the SUQ and the RDQ are shown in Figs. 3–9. Those figures

verify the effectiveness of the proposed RDQ method. We can

see from Figs. 3–9 that the proposed RDQ method exhibits

much better performance than the SUQ method for attitude

stabilization of a satellite. Figs. 10–12 show the difference

between the quantized control inputs using the SUQ method

and the RDQ method. We can see from Figs. 10–12 that the

quantized control inputs using the proposed RDQ method are

well adjusted to decrease the quantization errors rather than

the ones using the SUQ method.
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Fig. 3 Time responses of x1 for both cases of SUQ and RDQ
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Fig. 4 Time responses of x2 for both cases of SUQ and RDQ
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Fig. 5 Time responses of x3 for both cases of SUQ and RDQ
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Fig. 6 Time responses of x4 for both cases of SUQ and RDQ

V. CONCLUSION

In this study, we have examined a design method of

quantized control systems for nonlinear dynamics. The
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Fig. 7 Time responses of x5 for both cases of SUQ and RDQ
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Fig. 8 Time responses of x6 for both cases of SUQ and RDQ
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Fig. 9 Time responses of x7 for both cases of SUQ and RDQ

approach shown here is based on the random dither

quantization method that transforms a given continuous-valued

signal to a discrete-valued signal by adding artificial random

noise to the continuous-valued signal before quantization. It

has been shown that the random dither quantization method

exhibits much better performance than the simple uniform

quantization method for attitude control of satellites. The

results of numerical simulations were provided to verify the

effectiveness of the proposed method. It is known that not

only quantization errors but also time delays may cause

instabilities of control systems and lead to more complex

analysis [20]-[25]. The stabilization problem of random dither

quantized systems with time delays is a possible future work.
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Fig. 10 Time responses of v1 for both cases of SUQ and RDQ

0 10 20 30 40 50 60
t

-1

-0.5

0

0.5

1

v
2
(S
U
Q
)

0 10 20 30 40 50 60
t

-2

-1

0

1

v
2
(R

D
Q
)

Fig. 11 Time responses of v2 for both cases of SUQ and RDQ
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Fig. 12 Time responses of v3 for both cases of SUQ and RDQ
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