
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:2, 2018

107

Attempt to Reuse Used-PCs as Distributed Storage
Toshiya Kawato, Shin-ichi Motomura, Masayuki Higashino, Takao Kawamura

Abstract—Storage for storing data is indispensable. If a storage
capacity becomes insufficient, we can increase its capacity by adding
new disks. It is, however, difficult to add a new disk when a
budget is not enough. On the other hand, there are many unused
idle resources such as used personal computers despite those use
value. In order to solve those problems, used personal computers can
be reused as storage. In this paper, we attempt to reuse used-PCs
as a distributed storage. First, we list up the characteristics of
used-PCs and design a storage system that utilizes its characteristics.
Next, we experimentally implement an auto-construction system
that automatically constructs a distributed storage environment in
used-PCs.

Keywords—Distributed storage, used personal computer, idle
resource, auto construction.

I. INTRODUCTION

RECENTLY, the amount of data handled by an

information system continues to increase, and storage

for saving data is indispensable. In order to cope with the

increasing amount of data, capacity of HDD and SSD is

growing, and online storage that can be used via a network has

been widespread. Moreover, organizations such as companies

and universities use not only built-in storage such as personal

computers used by individuals but also shared storage and

storage of servers such as business systems.

Now, if the amount of data to be stored increases and a

storage capacity becomes insufficient, it is possible increase

capacity by adding disks. It is, however, difficult to purchase

a new disk when a budget is limited. On the other hand,

in modern times when information equipment floods, there

are many unused idle resources despite those use value, and

resources are not effectively utilized. For example, there are

used personal computers, used-PCs, which are left unused or

being discarded due to renewals or other reasons.

In order to solve those problems, used-PCs can be reused

as storage. Since used-PCs are existing devices, there is no

cost in reusing themselves. We can, therefore, inexpensively

introduce used-PCs to reuse compared with introducing new

storage. Moreover, in an environment such as a university

where the total number of PCs is large and PCs are frequently

replaced, there are many used-PCs. These many unused-PCs

can be collected to be reused. It is widely common to

disassemble and recycle used-PCs. There are few attempts to

reuse used-PCs for another use application which is different

from one when they were installed. It would be effective

utilization of resources more and more to reuse used-PCs for

different purpose while they can still be available for generic

PC usage.

Toshiya Kawato, Shin-ichi Motomura, Masayuki Higashino and
Takao Kawamura are with the Tottori University, Tottori, 680-8550,
Japan (e-mail: t.kawato@tottori-u.ac.jp, motomura@tottori-u.ac.jp,
higashino@tottori-u.ac.jp, kawamura@eecs.tottori-u.ac.jp).

In this paper, we organize the characteristics of used-PCs

and design a storage system based on its characteristics.

Moreover, we experimentally implement an auto-construction
system that automatically constructs a distributed storage
environment in used-PCs which makes the used-PC join the

distributed storage as a part of the storage.

II. RELATED WORKS

It has already been attempted to construct a storage system

with a cluster configuration of personal computers. Google

File System [1] is a distributed file system on the premise that

a large scale storage system is constructed using servers based

on PCs. Google File System is designed to allow built-in PCs

to fail, and focuses on automatic recovery without losing data

even in failure. In addition to Google File System, there are

distributed file systems such as Ceph [2] and GlusterFS [3]. It

is possible to construct a storage system using PCs by using

these systems.

These existing methods are, however, based on the premise

that servers have been dedicated for a storage system since

they are installed. They are not supposed to reuse used-PCs,

which are used for a different usage other than storage,

and research that reuses used-PCs as storage has not been

conducted. In order to use used-PCs as storage, it is necessary

to consider characteristics of used-PCs. In addition, in order

to reduce works of introduction and operation and make them

easier, it is necessary to automate processing necessary for

constructing a storage system with used-PCs.

III. CHARACTERISTICS OF USED-PCS

Before reusing used-PCs as storage, it is necessary to

discuss practical methods that have advantages and can be

used for appropriate use. In this section, we organize the

characteristics of used-PCs. Moreover, we discuss a storage

system considering its characteristics.

A. Small Capacity

Although recent PCs with TB class disks are common,

capacity of a used-PC that can be collected at present may

be about several hundred GB. For the reason, in order to

have large capacity such as TB class, it is necessary to secure

numerous used-PCs. It is, however, inefficient and not realistic

in terms of installation locations and power consumption in

this state.

For this reason, if an existing disk of a used-PC cannot

satisfy a required capacity, we replace the existing disk with

a new large capacity disk in order to secure a capacity.

Although costs are incurred on a disk to replace, disks for

PCs are inexpensive compared with disks for storage products

and servers, and a storage can be constructed at low cost



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:2, 2018

108

as a whole. Moreover, it is possible to reduce a risk of an

occurrence of a failure by replacing a disk having a high failure

rate with a brand-new one.

B. Low Performance

Compared with storage products and servers, PCs are

inferior in performance of CPU and NIC. Since their disks

are also supposed to be used in general PCs, it is difficult to

request high-speed communication and high-load processing.

Their disks are, thus, not suitable for a system in which reading

and writing occur frequently.

For this reason, a storage system needs to be a light-weight

system that can demonstrate sufficient performance even for

PCs use. An appropriate utilization is supposed to be a backup

system for storing data with low frequency of utilization or

update.

C. Different Lifetime

Depending on how hard a PC is used until the PC

becomes unused, performance may deteriorate compared to

fresh condition, and it is difficult to predict a lifetime such

as how long it can be used after collection and so on. Even

if a PC can be used inexpensively, availability should not be

reduced by its failure rate.

For this reason, it is necessary to sufficiently deal with

failure prepared by monitoring a state of used-PCs, e.g.,

estimation of a lifetime, automatic detachment on failure and

automatic incorporation of a spare machine.

D. High Diversity

Used-PCs have models of various performance and

configurations. Since various manufacturers sell various

models, PCs are more diverse than storage products and

servers. It would then take a lot of works to configure a

used-PC as storage.

For this reason, for reducing construction works, a method

that can automatically construct an environment for use as

storage is necessary.

E. Available Numerous Units

In an environment such as a university where the total

number of PCs is large and replace is frequent, we can collect

numerous used-PCs. Moreover, since there is no cost to reuse

used-PCs themselves, it is possible to use numerous used-PCs

as long as there is a place for installation of used-PCs. Disks

are distributed and arranged in case of using numerous disks,

and high availability can be realized at low cost if data can

be arranged distributedly or redundantly. In addition, there are

few restrictions on a place to install used-PCs compared with

rack-mounted servers. It is, therefore, possible to physically

distribute used-PCs and place them easily. Moreover, it is

possible to flexibly install and use used-PCs regardless of

locations if there are power supply and network connectivity.

For this reason, we focus on distributed storage that is

a configuration in which distributed disks on a network

connecting to form one large storage. Data is distributed and

stored in distributed storage because disks are distributed.

Now, in addition to a distributed arrangement, availability in

the case of a redundant arrangement of data will depend on the

number of disks. Used-PCs are, hence, suitable since numerous

used-PCs are available. In addition, it is desirable that addition

and deletion of used-PCs in an operating system are easy, and

distributed storage can flexibly deal with them.

We listed 5 points as characteristics of used-PCs. As a

storage system that takes into consideration the characteristics

of used-PCs, we, therefore, assume an inexpensive and

highly available distributed storage system that uses numerous

used-PCs after securing capacity by replacing an existing disk

of used-PCs with a large-capacity disk as needed. In order to

realize high availability, we distribute potential parts of failure,

and we redundantly distribute data over numerous used-PCs.

In addition, it is assumed that an installation location is

physically distributed in various places taking advantage of

the flexibly selectable characteristic.

As the main use, we assume to handle data that can

be processed even with low performance of used-PCs, for

example, data with low usage or update frequency. A storage

system reusing used-PCs cannot meet all requirements in

various situations. It is, therefore, necessary to clearly separate

roles and to use a storage system reusing used-PCs in

combination with other storage systems, e. g., we should leave

data that is frequently utilized or updated to storage products

and servers.

In the next section, as a necessary measure for constructing

the assumed distributed storage system, we discuss a

system for automatically constructing a distributed storage

environment.

IV. EXPERIMENTALLY IMPLEMENTATION OF

AUTO-CONSTRUCTION SYSTEM

In using used-PCs as storage, numerous used-PCs are

used from their characteristics. Moreover, many works to

add used-PCs to an existing distributed storage system are

necessary. Such as replacement of used-PCs when used-PCs

in failure and adding newly collected used-PCs. It is, therefore,

extremely inefficient to perform manually necessary works for

each used-PC.

In this system, by automating additions required for using

used-PCs as distributed storage, it reduces works required for

adding. In order to facilitate construction and management,

this system executes each process for the used-PCs via a

network and the central server manages all at once. Moreover,

manual works should be reduced as few as possible except for

physical operation to connect used-PCs to a network such as

LAN cable connection.

In this system, there are two processes required for

used-PCs. One is processing for using used-PCs as nodes on

a network. Used-PCs can be used as nodes even right after

they are collected. There are, however, problems that OS is

different and it is necessary to delete data before collection.

We, therefore, delete an environment before collection by

overwriting it with open source OS and use used-PCs as



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:2, 2018

109

nodes after unifying them in an easy-to-use environment for

distributed storage.

The other is installing distributed storage software that

constructing distributed storage in used-PCs. Open source

software is also used in distributed storage software as well

as OS. Used-PCs can, therefore, be used distributed storage.

A. Automatic Installation of OS

We used Kickstart [4] and PXE boot [5] to install OS

on used-PCs. Kickstart is an automatic installation tool for

Red Hat related OS. Moreover, PXE Boot is a network boot

mechanism using Preboot eXecution Environment (PXE) and

PXE boot can install and start OS via a network.

Now, it is necessary to assign IP addresses to used-PCs in

order to execute PXE boot. For administrative purposes, it is

desirable to be able to identify each used-PC. We, therefore,

created a script to automatically assign fixed IP addresses in

this paper. A sent DHCP DISCOVER message is recorded in

a log of a DHCP server when PXE boot performs. The script

then always monitors the log and extracts a MAC address of a

used-PC from a log of a DHCP DISCOVER message. If this

MAC address is not found in the DHCP configuration file, the

script adds new configuration and reloads the configuration.

We constructed a PXE server that CentOS with Kickstart

and PXE boot can be installed. The PXE server is composed

of DHCP, TFTP, and HTTP servers. Fig. 1 shows a flow of an

automatic installation of OS. The DHCP server assigns a fixed

IP address to a used-PC by the script when a used-PC sends

a PXE boot request. Moreover, OS is automatically installed

by downloading a boot image from the TFTP server, and an

OS image and Kickstart related files from the HTTP server. It

is, therefore, possible to automatically complete an installation

of OS, initial setting and network setting only by connecting

used-PCs to the network and executing PXE boot.

Fig. 1 Installation of OS

B. Automatic Installation of Distributed Storage Software

We focused on object storage [6], [7] as a type of distributed

storage. Object storage manages data in units of an object.

Object storage can be implemented using open source software

as well as products, and they are used in educational and

research information systems at a university [8].

Object storage uses an HTTP protocol conforming to

Representational State Transfer (REST) [9] to access objects.

Object storage can, therefore, be used like a web application

and hide underlying actual file systems such as the Extended

File System of Linux. Software that tries to use object storage

may, however, not support an HTTP access. We can solve

this issue by introducing a gateway such as s3ql [10] that can

access object storage and enable to mount object storage as if

it were an ordinary physical disk.

Moreover, an object is stored in a flat space that is not a

hierarchical structure after provided with a unique identifier

indicating a storage location and metadata that can records

various information. Since a unique identifier does not depend

on a location of a disk where it is actually stored, there is

a little restriction on arrangement of data. Object storage,

therefore, is easy to move and distribute data, and easy to

realize scaling out by storing copies to remote locations and

adding disks.

OpenStack Swift [11] was used as software for constructing

object storage. Fig. 2 shows a basic configuration of Swift.

In Swift, objects are managed by containers, and containers

are managed by accounts. An Object Server stores objects, a

Container Server manages containers, and an Account Server
manages accounts. All these servers are called a Storage
Node. A Storage Node is grouped by a unit of a zone, and

multiple zones can be created. The same objects, containers,

and accounts are stored in each zone. Even if failure occurs

in one zone, redundancy and improvement in fault tolerance

can be, therefore, realized by the presence of other accessible

zones. Moreover, communication between clients and Storage

Nodes is authenticated by an Auth Server, and is relayed by a

Proxy Server called a Proxy Node.

Fig. 2 Basic configuration of Swift

We used Chef [12] for an automatic installation of Swift.

Chef can construct an environment for software to operate

by writing codes like programming. Moreover, Chef has

idempotency that is the property that the same code always

produces the same result. Basic usage is to create and execute

a file called a Recipe that describes a configuration of an

environment that you want to construct in a folder called a

Cookbook. First, we constructed a Chef server on the PXE

server. The Chef server is a server on which Chef itself and

knife-solo are installed. Knife-solo here is a tool that can

executes Recipes for Chef on used-PCs. Next, we created a

Cookbook for Swift, and created Recipes and related files

that describe configurations necessary for installing Swift.

Object storage environment by Swift, therefore, constructs

automatically on used-PCs. Furthermore, since there is no need

to create a proxy node for each used-PC, and a proxy node

was created manually and only storage nodes constructed in

this paper.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:2, 2018

110

V. EXPERIMENT OF REUSEING USED-PCS AS

DISTRIBUTED STORAGE

We actually constructed a distributed storage environment

for used-PCs by the auto-construction system. Table I shows

the number and specification of used-PCs here.

TABLE I
UTILIZED USED-PCS

Type x Number NIC Disk x Number
SFF∗ Desktop x 9 1Gbps HDD160GB x 1

Laptop x 1 100Mbps HDD320GB x 1
Laptop x 1 1Gbps HDD640GB x 1

Desktop x 1 1Gbps HDD160GB x 2
∗Small Form Factor.

First, each used-PC connected to the same network and

executed PXE boot. In many cases, it was possible to execute

PXE boot by pressing a specific key at startup. There were,

however, cases where standard setting could not execute

PXE boot, and we had to change BIOS or UEFI setting

depending on a configuration of used-PCs. After executing

PXE boot, an installation and setting of OS by PXE server

were automatically completed, and an installation and setting

of Swift by Chef server were automatically completed. Total

capacity was about 2,700 GB by using 12 used-PCs. Moreover,

actual available capacity for a data storage was about 900 GB

because we set the number of zones of Swift to three in this

paper. Through this experiment, we needed manual operation

such as wiring and execution of PXE boot. We, however,

confirmed that an auto-construction system could automate

the most of a processing and utilize used-PCs as distributed

storage.

VI. DISCUSSION

In the experiment, there was difference in the time required

until a processing completed depending on performance of

a NIC of used-PCs. In particular, required time for a laptop

PC equipped with a 100 Mbps NIC was too long. Since a

construction process was automated, it did not matter if it

took time or not. Heavy traffic, however, is generated when

used-PCs are used as storage. At least 1 Gbps is required

for a NIC of used-PCs to use as storage in order to avoid a

bottleneck.

In addition, disk replacement is required in case of

increasing capacity. Since a 2.5 inch disk is expensive

compared to a 3.5 inch disk, desktop PCs, which are capable

of mounting 3.5 inch disks, are suitable for realizing large

capacity inexpensively.

VII. CONCLUDING REMARKS

In this paper, we have organized characteristics of

used-PCs and considered a storage system based on

their characteristics. Moreover, we have experimentally

implemented an auto-construction system of a distributed

storage environment for used-PCs. In addition, We have

confirmed by experiment that used-PCs can utilize as

distributed storage.

In future works, an implementation automatically handles

failure such as disconnecting used-PCs that experience failure.

We, therefore, automate a series of tasks from an installation

to failure handling which are necessary for operation and

reduce further labors. Moreover, there is practical operation

of a distributed storage system reusing used-PCs. We will,

therefore, evaluate performance such as speed and a failure

rate, and investigate concretely what kind of data is suitable

for reading and writing. In addition, we will calculate the

advantage in cost-effectiveness by verifying a running cost

such as power consumption. By implementing these, we will

show effectiveness of reusing used-PCs as storage.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant

Number 16K00477.

REFERENCES

[1] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google
File System,” 19th ACM Symposium on Operating Systems Principles,
2003.

[2] “Ceph Homepage - Ceph,” from http://ceph.com/, Retrieved November
10, 2017.

[3] “Gluster,” from https://www.gluster.org/, Retrieved November 10, 2017.
[4] “CHAPTER 26. KICKSTART INSTALLATIONS,” from

https://access.redhat.com/documentation/en-us/red hat enterprise linux/7
/html/installation guide/chap-kickstart-installations, Retrieved November
10, 2017.

[5] “Preboot Execution Environment (PXE) Specification,” from
http://www.pix.net/software/pxeboot/archive/pxespec.pdf, Retrieved
November 10, 2017.

[6] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian
Satran, “Object storage: the future building block for storage systems,”
Local to Global Data Interoperability - Challenges and Technologies,
pp.119-123, 2005.

[7] Mike Mesnier, Greg Ganger, and Erik Riede, “Object-based storage,”
IEEE Communications Magazine, Vol. 41, pp.84-90, 2005.

[8] Shin-ichi Motomura, Toshiya Kawato, and Masaya Kimoto, “Usecase of
object storage for education and research computer systems,” Journal
for Academic Computing and Networking, No. 19, pp. 26-34, 2015
(published in japanese).

[9] Roy Thomas Fielding,“Architectural Styles and the Design of
Network-based Software Architectures,” Ph.D Thesis, University of
California, Irvine, 2000.

[10] “nikratio / S3QL - Bitbucket,” from https://bitbucket.org/nikratio/s3ql/,
Retrieved November 10, 2017.

[11] “Welcome to Swift’s documentation!,” from
https://docs.openstack.org/swift/latest/, Retrieved November 10, 2017.

[12] “Chef - Automate Your Infrastructure,” from http://ceph.com/, Retrieved
November 10, 2017.


