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Abstract─In this study four Holstein steers with rumen fistula 
fed 7 kg of dry matter (DM) of diets differing in concentrate to 
alfalfa hay ratios as 60:40, 70:30, 80:20, and 90:10 in a 4 × 4 latin 
square design. The pH of the ruminal fluid was measured before 
the morning feeding (0.0 h) to 8 h post feeding. In this study, a 
two-layered feed-forward neural network trained by the 
Levenberg-Marquardt algorithm was used for modelling of ruminal 
pH. The input variables of the network were time, concentrate to 
alfalfa hay ratios (C/F), non fiber carbohydrate (NFC) and neutral 
detergent fiber (NDF). The output variable was the ruminal pH. 
The modeling results showed that there was excellent agreement 
between the experimental data and predicted values, with a high 
determination coefficient (R2 >0.96). Therefore, we suggest using 
these model-derived biological values to summarize continuously 
recorded pH data. 

Keywords─Ruminal pH, Artificial Neural Network (ANN), 
Non Fiber Carbohydrate, Neutral Detergent Fiber. 
 

Ι. INTRODUCTION 

UMINAL acidosis is the consequence of feeding high 
grain diets to ruminant animals, who are adapted to 

digest and metabolise predominantly forage diets. Feeding 
diets that are progressively higher in grain tends to increase 
milk production, even in diets containing up to 0.75 
concentrates [1]. However, short-term gains in milk 
production from feeding high grain diets are often 
substantially or completely negated by long-term 
compromises in cow health. Compromises in dairy cow 
health due to ruminal acidosis are a concern not only for 
economic reasons, but also for animal welfare reasons. Sub 
acute ruminal acidosis is defined as periods of moderately 
depressed ruminal pH, from about 5.5 to 5.0. Although 
ruminal pH varies considerably within a day, cows possess a 
highly developed system to maintain ruminal pH within a 
physiological range. However, if the acid production from 
fermentation is more than the system can buffer, ruminal pH 
compensation fails and ruminal pH may drop drastically. 
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pH fluctuations, specially low pH, affects rumen 
fermentation and microbial growth [2], but, most current 
feeding systems for dairy cattle [3]-[4] do not include the 
effect of pH in their models [5]. In fact, the effects of pH 
fluctuations on microbial fermentation and nutrient flow 
have been identified as one of the research needs to improve 
the prediction of nutrient digestion in the rumen [6]-[7]. The 
relationship between ruminal pH and dietary variables, and 
subsequent dairy cow production has not been well 
documented for cows fed high concentrate diets. Most of the 
previously ruminal pH prediction models reported were 
based on the regression analysis methods. Alternatively, a 
soft-computing method, which is a combination of artificial 
neural networks seemed to be more appropriate for the 
ruminal pH prediction. An ANN is a set of nonlinear 
equations that predicts output variable(s) from input 
variable(s) in a flexible way using layers of linear 
regressions and S-shaped functions [8]. Artificial neural 
networks are new information processing techniques 
offering solutions to problems that have not been clearly 
formulated. This paper proposes an artificial neural network 
approach for modelling of ruminal pH based on time, 
concentrate to forage ratios, nonfiber carbohydrate and 
neutral detergent fiber.  

 
П. MATERIALS AND METHOD 

Dataset 
Four Holstein steers (300 ± 15 kg, body weight) with 

rumen fistulae were adapted to experimental diets for one 
week. Steers fed 7 kg of DM of diets differing in 
concentrate (155 g CP kg-1 of DM; 30% maize, 34% barley, 
8% soybean meal, 5% sugar beet pulp, 10% wheat bran, 
12% cottonseed meal, 0.3% CaCo3, 0.5% mineral and 
vitamin premix, 0.2% salt ) to forage (155 g CP kg-1 of 
DM) ratios as 60:40, 70:30, 80:20, and 90:10 in a 4×4 Latin 
square design (28 days of each period). Ruminal fluid was 
taken, by suction, via rumen fistula on days 24 to 28 of each 
period. The pH of the ruminal fluid samples was measured 
immediately with a portable pH meter (Metrohm 744) 
before the morning feeding (0.0 h) to 8 h post feeding 
(interval 15 min) on all ruminal collection days of each  
experimental period. Data of the consequence days of the 
each period were then pooled. 
 
ANN Modeling 

Neural networks are interconnected processing units 
which model how human brain performs a particular task. 
Each of those units, termed neurons, forms a weighted sum 
of inputs. A constant term, called bias, is then added to each 
sum and total sum is passed through a linear, sigmoid or 
hyperbolic transfer function.  Structure of a neuron is 
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depicted in figure 1. Multilayer perceptron (MLP) networks 
are the most widely used kind of neural networks. Feed-
forward neural networks are those which do not form any 
loop. On the other hand, recurrent neural networks consist of 
one or more loops. Feed forward networks often include an 
input layer, one or more hidden layers and an output layer. 
Typically units in the input layer serve only for transferring 
the input pattern to the rest of the network, without any 
processing. Figure 2 shows the structure of a generic three-
layered neural network. Finding the optimal network 
architecture requires trying different combinations. Different 
number of hidden layers, different number of neurons in 
each layer and different transfer functions must be examined 
to achieve the optimal network. It must be noted that too 
few neurons leads to a network not flexible enough to 
appropriately model data and on the other hand when there 
are too many neurons, the network may overfit the data. 
Numbers of hidden layer neuron are normally chosen by 
trial an error. Training and learning are two main steps 
which have to be taken in modeling application. Training of 
the neural network is normally performed in a supervised 
manner. It’s assumed that a training set, including inputs and 
desired outputs, is available. In the learning process a neural 
network constructs an input–output mapping, adjusting the 
weights and biases at each iteration based on the 
minimization of some error measure between the output 
produced and the desired output. Thus, learning entails an 
optimization process. The error minimization process is 
repeated until an acceptable criterion for convergence is 
reached [9]. 

 
Fig. 1. Internal structure of a neuron 

 
 

Fig. 2. Example of a three-layered feed-forward neural network 
model with a single output unit  

             
The Levenberg-Marquardt algorithm, is a fast learning 

algorithm which was designed to approach second-order 
training speed without having to compute the Hessian 

matrix. When the performance function has the form of a 
sum of squares (as is typical in training feed forward 
networks), then the Hessian matrix can be approximated as:  
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and the gradient can be computed as:  
 

Tg H e=  
 
Where J is the Jacobean matrix that contains first 
derivatives of the network errors with respect to the weights 
and biases, and e is a vector of network errors. The 
Levenberg-Marquardt algorithm uses this approximation to 
the Hessian matrix in the following update: 
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Where parameter μ is conveniently modified during the 
algorithm iterations. 
 
Statistical Parameters 

The goodness of fit or accuracy of the model was 
determined by R-square (R2), mean absolute percentage 
error (MAPE), root mean squared error (RMSE) and 
standard deviation error (SDE). Equations formulate these 
criteria: 
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In the above equations, act
spH and model

spH are actual 

and predicted pH respectively. besides act
sPH is  the 

average of  act
spH  and N is the number of test data. The 
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error criteria are evaluated only using the test data in the 
comparisons.  
 

Model Development 
In this study, several three-layered feed-forward neural 

networks trained by the Levenberg-Marquardt algorithm 
were used for modelling of ruminal pH. Efficiency and 
accuracy of the presented models were demonstrated using 
real experimental data. The software package MATLAB 
(Version 2007b) was used to fit a truly connected MLP 
model to the training dataset. A neural network model 
consists of an input layer, an output layer, and one or more 
hidden layers. In this study, the ANN was designed with 
only one hidden layer with four neurons and one output 
[Figure 3]. One hidden layer is usually sufficient to 
approximate any continuous nonlinear function, although 
more complex networks must be used in special applications 
[10].  

In the present study, the neural network models to predict 
ruminal pH were developed using two and four input 
variables: time, C/F, and NFC and NDF concentrations. The 
training dataset was randomly split into a training dataset (n 
= 69, i.e., 75% of the data) and a test dataset (n = 23, i.e., 
25% of the data). 
 
 

 
 
Fig. 3. Selected neural network structure: two inputs were used for 
the artificial neural network (ANN): first input is time and the 
second input is concentrate to alfalfa hay ratios (60: 40, 70: 30, 80: 
20 and 90: 10). For the ANN used to predict the ruminal pH, one 
output was used and the output value was the “ruminal pH”. 
 

Ш. RESULTS AND DISCUSSION 

In the present study, the input variables of time, C/F, and 
NFC and NDF concentrations were included in the neural 
network models because of their potential role in explaining 
the output variable (ruminal pH). It was previously 
demonstrated that the amount of fiber in the ration affects 
rumen pH [11]. The NDF level is inversely related to the 
more fermentable NFC component of the diet [12]. The 
balance of carbohydrates in the diet impacts milk production 
because it affects amount and ratios of ruminal VFA 
produced, which in turn alters metabolism and partitioning 
of nutrients [13].  

Table 1 summarizes the key statistical measures used to 
compare performance of the models. The performance of the 
ANN models for the training and validation data sets are 
presented in figures 4 and 5. These figures show a 
comparison of model predictions with the experimental 
values of ruminal pH. Each model was developed separately 
for time + C/F, and time + C/F + NFC + NDF. The 
simplified algebraic equations derived from the ANN 

models for the prediction of ruminal pH with time + C/F (1) 
and time + C/F + NFC + NDF (2) are presented as follows: 
Model 1: 
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Where f (x) is activation function. 

Table 1. Statistical analysis of the prediction of ruminal pH using the 
neural network approach 

 
 Statistical parameters2 

 

 

Model Inputs1 R2 MAPE SDE RMSE 
 

Rank 
 

1 Time-C/F 0.9720 0.8314 0.0045 0.0589 1 

2 
Time-C/F-

NFC-NDF 

0.9612 0.8787 0.0068 0.0694 2 

1Inputs: C/F = concentrate to alfalfa hay ratios; NFC = Nonfiber 
carbohydrate (g/kg DM); NDF = Neutral detergent fiber (g/kg DM). 
2Statistical parameters: R2 = R-Squared; MAPE = Mean Absolute 
Percentage Error; SDE = Standard Deviation Error; RMSE = Root Mean 
Squared Error.  
 
 

The models were developed by time + C/F gave better 
results than another model. The error parameter values were 
the lower for the model was developed by time and C/F; 
furthermore, the highest R2 belonged to this model [Table 
1]. RMSE, MAPE and SDE parameters became increased 
for another model, however, correlation coefficient values 
were> 0.96 for all models [Table 1], which indicated high 
precision and accuracy. Therefore, time and C/F were 
considered the optimal factors to use in describing ruminal 
pH. Researchers have shown that ruminal pH was highly 
influenced by the C/F and the dietary level of fermentable 
carbohydrates [14]-[15]-[16]. Results of the present 
experimental showed that the training procedure for ruminal 
pH prediction was very successful and that a perfect match 
was obtained between the measured and the calculated 
values.  
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Fig. 4. In the developed models ~75% of the data were used for 
training and ~25% for validation (─: predicted ruminal pH, : 
actual ruminal pH). The y-axis represents the output for test data. 
The scale from 4 to 8 on the y-axis represents ruminal pH (a = time 
+ C/F and b = time + C/F + NFC + NDF). C/F = Concentrate to 
alfalfa hay ratios; NFC = Nonfiber carbohydrate; NDF = Neutral 
detergent fiber. 
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 R2= 0.9612 
 
 
 
Fig. 5. Correlation of neural network models output vs. actual 
ruminal pH values with training data set (69, *: training data) using 
the optimal network, with 1 hidden layer with 4 neurons and a test 
data set (23, ○: test data). The y-axis represents the output of model 
vs. Actual pH on the x-axis. The scale from 5.4 to 7 on the y-axis 
and x-axis represent ruminal pH (a = time + C/F, and b = time + 
C/F + NFC + NDF). C/F = Concentrate to alfalfa hay ratios; NFC 
= Nonfiber carbohydrate; NDF = Neutral detergent fiber. 

ΙV. CONCLUSION 

Combining neural networks with objective readings might 
result in powerful predictions. The modelling results showed 
that there was excellent agreement between the experimental 
data and predicted values, with a high determination 
coefficient (R2 >0.96), showing that the developed models 
were able to analyze nonlinear multivariant data with very 
good performance, fewer parameters, and shorter calculation 
time. Although ANN has been used in many applications in 
animal science, this is the first study modelling the 
prediction of ruminal pH using ANN. The use of ANN 
provides an inexpensive and easy technique for evaluation 
of ruminal pH.  The conceptual ANN model provides a 
database and an alternative generic framework for the 
modeling of ruminal pH. These models have potential to be 
used as an alternative method to control the ruminal 
acidosis, estimate the ruminal pH, and ensure the dairy cow 
health. The results indicated that the ANN model can 
reliably and satisfactorily simulate the system and is a 
potential alternative tool to be use for practical assessment 
and biological system development. 

REFERENCES   
[1] Kennelly, J.J., Robinson, B., Khorasani, G.R., 1999. Influence of 

carbohydrate source and buffer on rumen fermentation characteristics, 
milk yield, and milk composition in early-lactation Holstein cows. J. 
Dairy Sci. 82, 2486–2496. 

[2] Hoover, W.H., Miller, T.K., 1995. Optimising carbohydrate 
fermentation in the rumen. In: Proceedings of the Sixth Annual 
Florida Ruminant Nutrition Symposium, University of Florida, 
Gainesville, Florida, pp. 89–95. 

[3] AFRC (Agricultural and Food Research Council). 1993. Energy and 
Protein Requirements of Ruminants. Advisory manual prepared by 
the Agric. Food Res. Counc. Technical Committee on Responses to 
Nutrients. CAB International, Wallingford, UK. 

[4] NRC, 2001. Nutrient Requirements of Dairy Cattle, 7th ed. National 
Academy Press, Washington, DC. 

[5] Cerrato-Sa´nchez, M., S. Calsamiglia, and A. Ferret. 2007. Effects of 
Time at Suboptimal pH on Rumen Fermentation in a Dual-Flow 
Continuous Culture System. J. Dairy Sci. 90:1486–1492. 

[6] de Veth, M. J., and E. S. Kolver. 2001a. Diurnal variation in pH 
reduces digestion and synthesis of microbial protein when pasture is 
fermented in continuous culture. J. Dairy Sci. 84:2066–2072. 

[7] Calsamiglia, S., A. Ferret, and M. Devant. 2002. Effects of pH and 
pH fluctuations on microbial fermentation and nutrient flow from a 
dual-flow continuous culture system. J. Dairy Sci. 85:574–579. 

[8] Dayhoff, J. E., and J. M. DeLeo. 2001. Artificial neural networks: 
Opening the black box. ancer 91(Suppl. 8):1615– 1635. 

[9] Nelles, O. 2000. Nonlinear system identification from classical 
approaches to neural networks and fuzzy models. Springer 

[10] Bucinski, A., H. Zielinski, and H. Kozlowska. 2004. Artificial neural 
networks for prediction of antioxidant capacity of cruciferous sprouts. 
Trends Food Sci. Technol. 15:161–169. 

[11] Pitt, R. E., J. S. Van Kessel, D. G. Fox, A. N. Pell, M. C. Barry, and 
P. J. VanSoest.1996. Prediction of ruminal volatile fatty acids and pH 
within the net carbohydrate and protein system. J. Anim. Sci. 74: 
226–244. 

[12] Stone, W. C. 2004.  Nutritional Approaches to Minimize Subacute 
Ruminal Acidosis and Laminitis in Dairy Cattle. J. Dairy Sci. 87:E13-
E26. 

[13] Mertens, D. R. 1992. Nonstructural and structural carbohydrates. 
Pages 219 to 235 in Large Dairy Herd Management. H. H. Van Horn 
and C. J. Wilcox, ed. American Dairy Science Association, 
Champaign, IL. 

[14] Krause, K. M., and D. K. Combs. 2003. Effects of particle size, 
forage, and grain fermentability on performance and ruminal pH in 
mid lactation cows. J. Dairy Sci. 86:1382–1397. 

[15] Rustomo, B., O. AlZahal, J. P. Cant, M. Z. Fan, T. F. Duffield, N. E. 
Odongo, and B. W. McBride. 2006a. Acidogenic value of feeds. II. 
Effects of rumen acid load from feeds on dry mater intake, ruminal 



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:8, 2010

651

pH, fiber degradability, and milk production in the lactating cow. 
Can. J. Anim. Sci. 86:119–126. 

[16] Rustomo, B., O. AlZahal, N. E. Odongo, T. F. Duffield, and B. W. 
McBride. 2006b. Effects of rumen acid-load from feed and forage 
particle size on ruminal pH and dry matter intake in the lactating dairy 
cow. J. Dairy Sci. 89:4758–4768. 

 


