
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3799

Array Data Transformation for Source Code
Obfuscation

S. Praveen, and P. Sojan Lal

Abstract—Obfuscation is a low cost software protection

methodology to avoid reverse engineering and re engineering of
applications. Source code obfuscation aims in obscuring the source
code to hide the functionality of the codes. This paper proposes an
Array data transformation in order to obfuscate the source code
which uses arrays. The applications using the proposed data
structures force the programmer to obscure the logic manually. It
makes the developed obscured codes hard to reverse engineer and
also protects the functionality of the codes.

Keywords—Reverse Engineering, Source Code Obfuscation.

I. INTRODUCTION
HE first part of the translation is from Java source to Java
Virtual Machine (JVM) machine code. Followed by,

translation to real machine instruction in the browser on the
user’s machine. Since byte code retains almost all information
of the source file, there are possibilities for reverse
engineering [10] and reengineering. Reverse Engineering or
Reengineering is a form of intellectual property theft which is
illegal. The code obfuscation was a novel move for software
protection and the intention is to hide the functionality of the
codes, to limit the possibilities of reverse engineering or
reengineering. The possibility of the execution of the
obfuscated object code, has led to the popularity of
obfuscation. The popular code obfuscation transformation
techniques are (i) Layout transformation (making the code
unreadable) (ii) Data transformation (obscuring data and data
structures) (iii) Control transformation (obscuring the flow of
execution) [2] [7] [8]. Source code obfuscation is achieved
through source code transformations, Java bytecode
obfuscation through bytecode transformations and binary
obfuscation through binary rewriting [6]. Our focus is on
source code obfuscation, aiming at obscuring the source code
manually. It consists of techniques to target at making source
code less comprehensible and automatically transform the
programmer's source code into more complex, functionally
equivalent source code.

A. The Format of a Class File
The Java class file stores all necessary data regarding the

class. The main components of a class file are the Magic
number, Version number, Constant pool, Access flags,

S. Praveen is with Federal Institute of Science and Technology, Angamaly,
Kerala, India (e-mail: praveen_sivadas@yahoo.com).

P. Sojan Lal is with School of Computer Sciences, Mahatma Gandhi
University, Kottayam, Kerala, India (e-mail: sojanlal@gmail.com).

Super class, Interfaces, Fields, Methods and
Attributes[1][4]. JVM is a stack based machine. Each thread
has JVM stack which stores frames. A frame is created each
time a method is invoked and consists of an operand stack, an
array of local variables, and a reference to the runtime
constant pool of the current method. The constant pool is a
table of structures representing various constants such as
string constants, class and interface names and field names.

B. The Obfuscation Procedure
The class files are the input to the obfuscator [5] and the

obfuscator transforms the byte code files into a complex
format which is almost difficult to perceive. The obfuscator
imposes a one level security by obfuscating the class file.

One of the proposals in this paper is applying the proposed
data structures in the source code. It forces the developer to
manually obfuscate the source code. The details of the data
structures are maintained within the developing organization.
The source code can again be obfuscated, by passing the
compiled class file through the obfuscator. Hence, this
methodology implements a second level security to the source
code.

Fig. 1 Two levels obfuscation process

T

Apply data structures for
manual obfuscation

Manually obfuscated source
code

Level 1

Compile

Input the class file to the
obfuscator

The obfuscated class file

Level 2

Class file of manually
obfuscated source code

Source code

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3800

The main threat to obfuscation is deobfuscation[3].
Deobfuscation is performed on the obfuscated class files and it
could result in byte code of manually obfuscated source code
which is hard to understand and reverse engineer.

II. THE EXISTING ARRAY INDEX TRANSFORMATION DATA
STRUCTURE

In [9], Array index transformation using composite
functions has been proposed.

Let I = f (i) = 2 * i + 3, be a function representing the new
value of I. Let J = g (I) = f ((I – 3)/2) be a function
representing the new position of the i’th element in the
reordered array.

TABLE I
ARRAY INDEX TRANSFORMATION TABLE

i I=f(i)=2*i+3 J=g(I)=f((I-3)/2)
1 5 1
2 7 2
3 9 3
4 11 4

The starting index of the array is stored within the program.

The observation of the first two row values of I, clearly
reveals that the difference of numbers is 2. It helps to predict
the value of I for any i, without the help of the function f(i).
The purpose of f(i) is not served fully. This is a drawback of
the algorithm. Other drawbacks are for all the transformed
arrays, the starting index is 5(for index i=1) with respect to the
transformation function f(i). The elements are stored at places
5,7,9,11,… and the indices 0,1,2,3,4,6,8,10,… remain
unassigned with respect to Table I, which leads to improper
utilization of arrays.

The proposal is suggesting a data structure which performs
the array index transformation, mainly considering proper
storage of elements.

III. ARRAY INDEX TRANSFORMATION DATA STRUCTURE -
PROPOSAL

Before proposing the Data Structure, some improvements
have to be suggested for the Data Structure proposed in [9].

The Table I, proposed in [9], shows that the index ‘i’ with
start value as 1. It can be enhanced with start value as 0.

TABLE II
ENHANCED ARRAY INDEX TRANSFORMATION TABLE

i I=f(i)=2*i+3 J=g(I)=f((I-3)/2)
0 3 0
1 5 1
2 7 2
3 9 3

Instead of f(i)=2* i + 3, the transformation function can be

considered as f(i)=2 * i + 1,which possibly makes to utilize the
unfilled array space during the second trace without much
effort.

TABLE III
ENHANCED ARRAY TRANSFORMATION FUNCTION
Trace 1 Trace 2

i I=f(i)=2*i+1 J=g(I)=f((I-1)/2) j I=2*j
0 1 0 0 0
1 3 1 1 2
2 5 2 2 4
3 7 3 3 6

For the first trace, the reordered array starts with indices
1,3,5,7,9… and the second trace with indices 0,2,4,6,8….to
utilize the free spaces .

Let ‘count’ be the number of elements to be stored in the
array.

The pseudo code for array storage as in Table III is as
follows:
i=0,j=0,p=0;
while (p<count)
{ if(f(i)<array.length)
 { a[f(i)] = args[p] ;
 i=i+1;
 }
 else
 { a[m(j)]=args[p];
 j=j+1;
 }
 p=p+1;
 }

 int f(i) //transformation function for first trace
{
 return (2 * i + 1);
 }
int m(j) //transformation function for second trace
{
 return (2 * j);
 }

The array is filled in two traces. In trace1, the array positions
with odd indices are filled, followed by positions with even
indices in trace 2. Now, let us propose a data structure based
on this procedure, to obscure the array elements. In this
approach variable splitting is also applied to array elements.

The declaration procedure for a Decimal array of size 10 is
using the statement Double [] a=new Double [10]. Instead of
this one statement, our proposal is to use 3 separate member
arrays of the same size. array1 is the obscured integer part
storage array (Table IV), array2 is the obfuscator-shuffling
array(Table V), array3 is the obscured fractional part storage
array (Table VI). The obfuscator-shuffling array, array2 is
applied for obscuring and relocating elements of array1 and
array3. array1 and array3 are of Data type double and array2
of type Integer. The elements of array2 are shuffled during
run-time. array1 stores the integer part and array3 stores the
fractional part of the element after transformation.

The data transformation of array1 are performed using the
expressions,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3801

array1[f(i)]=array1[f(i)]+array2[f(i)]
array1[array2[i]]=array1[array2[i]]+array2[array2[i]].

The data transformation of array3 are performed using
expressions,
array3[f(i)]=array3[f(i)]+array2[f(i)]
array3[array2[i]]=array3[array2[i]]+array2[array2[i]].

Let ‘Ri’ be the ith real number. Ii be the integer part of Ri

TABLE IV
ARRAY1 – OBSCURED INTEGER PART STORAGE ARRAY DATA STRUCTURE

I0 I1 I2 I3 I4 I5 I6 …… …… In
0 1 2 3 4 5 6 ….. ….. n

In Table IV, the assigning of integer part of elements start
with indices 1, 3, 5,7,…. and later from indices 0,2,4,6,… so-
on. The integer part of the real number is obscured and stored
in this table.

TABLE IV

ARRAY2 – OBFUSCATOR SHUFFLING ARRAY DATA STRUCTURE
0 1 2 3 ….. ….. ….. …. …. n
0 1 2 3 4 5 6 ….. … n

Table V is used for obscuring and shuffling elements of array1
and array3. Initially, the values of the array are from 0 to
maximum index of array1. The elements of the array are
shuffled. For shuffling, the details given are the start element,
the length and the number of times of shuffling. The elements
at the position of indices ‘start’ and ‘start+len’ will be
swapped.

TABLE VI
ARRAY3 – OBSCURED FRACTIONAL STORAGE ARRAY DATA STRUCTURE

F0 F1 F2 F4 F5 F6 F7 …. …. Fn
0 1 2 3 4 5 6 ….. … n

In Table VI, the assigning of fractional part of elements start
with indices 1, 3, 5, 7,… and later from indices 0,2,4,6,.. so-
on. The fractional part of the real number is obscured and
stored in this table.

IV. ALGORITHM FOR ARRAY DATA TRANSFORMATION

a) Start

b) Shuffle the obfuscator shuffling array,array2

c) Read the real number say,Real_num .

d) Split the integer and fractional part

e) Store the integer part of Real_num, say int_Real_num

in array1, with first element at position specified by
array1[f(i)].

 Store the fractional part of the Real_num,say

 fract_Real_num in array3 ,with first element at
 position specified by array3[f(i)].

f) Transform the elements in array1 by,

array1[f(i)]=array1[f(i)]+array2[f(i)].
 Transform the elements in array3 by,
 array3[f(i)]=array3[f(i)]+array2[f(i)].

g) Obscure the elements of array1 using,

 array1[array2[i]]=array1[array2[i]]+array2[array2[i]];
 Obscure the elements of array3 using,
 array3[array2[i]]=array3[array2[i]]+array2[array2[i]];

h) Relocating elements of array1

array5[array2[i]]=array1[i]
array1[i]=array5[i]

i) Relocating elements of array3

array5[array2[i]]=array3[i]
 array3[i]=array5[i]

j) Obfuscating fractional part

array3[i]=array3[i]+array3[i]

k) Stop

Let the execution be on arrays of say size 10.

 Step 1 Start

Step2 Shuffling of obfuscator shuffling array

Enter start
0
Enter length
2
Enter Times
3
Shuffling.....
Shuffling.....
Shuffling.....
2
5
8
1
0
9
4
3
6
7

 Step 3 Let the elements read to arrays are
 2.3, -3.45, 4.6, 7.5, 3.6789, 5, 9.2

Step4
The integer part and fractional part of the numbers are
split and stored in array1 and array3 at positions specified
by array1[f(i)] and array3[f(i)] respectively

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3802

Step 5 Transforming elements of array1 and array3
array1[f(i)]=array1[f(i)]+array2[f(i)].
array3[f(i)]=array3[f(i)]+array2[f(i)]

 Step 6 Obscuring elements of array1 and array3
 array1[array2[i]]=array1[array2[i]]+array2[array2[i]]
 array3[array2[i]]=array3[array2[i]]+array2[array2[i]]

Step 7
Relocating elements of array1

array5[array2[i]]=array1[i]
array1[i]=array5[i]

Step 8
Relocating elements of array3

array5[array2[i]]=array3[i]
 array3[i]=array5[i]

Step 9

 Obfuscating fractional part
array3[i]=array3[i]+array3[i]

array2
0 2
1 5
2 8
3 1
4 0
5 9
6 4
7 3
8 6
9 7

array3
0 0
1 0.3
2 0.2
3 0.45
4 0
5 0.6
6 0
7 0.5
8 0
9 0.6789

array1
0 5
1 2
2 9
3 -3
4 0
5 4
6 0
7 7
8 0
9 3

array1
0 7
1 7
2 17
3 -2
4 0
5 13
6 4
7 10
8 6
9 10

array2
0 2
1 5
2 8
3 1
4 0
5 9
6 4
7 3
8 6
9 7

array3
0 2
1 5.3
2 8.2
3 1.45
4 0
5 9.6
6 4
7 3.5
8 6
9 7.6789

array1
0 9
1 12
2 25
3 -1
4 0
5 22
6 8
7 13
8 12
9 17

array2
0 2
1 5
2 8
3 1
4 0
5 9
6 4
7 3
8 6
9 7

array3
0 4
1 10.3
2 16.2
3 2.45
4 0
5 18.6
6 8
7 6.5
8 12
9 14.6789

array1
0 0
1 -1
2 9
3 13
4 8
5 12
6 12
7 17
8 25
9 22

array2
0 2
1 5
2 8
3 1
4 0
5 9
6 4
7 3
8 6
9 7

array5
0 0
1 -1
2 9
3 13
4 8
5 12
6 12
7 17
8 25
9 22

array3
0 0
1 2.45
2 4
3 6.5
4 8
5 10.3
6 12
7 14.6789
8 16.2
9 18.6

array2
0 2
1 5
2 8
3 1
4 0
5 9
6 4
7 3
8 6
9 7

array5
0 0
1 2.45
2 4
3 6.5
4 8
5 10.3
6 12
7 14.6789
8 16.2
9 18.6

array3
0 0
1 4.9
2 8
3 13
4 16
5 20.6
6 24
7 29.3578
8 32.4
9 37.2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3803

Step 10

The obscured integer and fractional parts for the given input
data are as follows,

The input elements are hidden and obscured and make it
difficult to identify them. Deobfuscation is the process of
retrieving the input elements from the obscured elements.

Suppose the program is to find the biggest of numbers 2.3,
-3.45, 4.6, 7.5, 3.6789, 5, 9.2. The integer part of the elements
will be transformed, hidden and stored in array1 (Step 10).
The fractional part of the elements are transformed, hidden
and stored in array3 (Step 10). Hence, to write the logic of the
biggest on the given numbers using the proposed data
structures, the deobfuscation process has to be carried out on
numbers, to retrieve the original values. The deobfuscation
code has to be included along with the obscured codes to
confuse the reverse engineer.

V. DATA STRUCTURE FORCING TO OBSCURE THE LOGIC
 Let the algorithm be to find the biggest of numbers 2.3, -

3.45, 4.6, 7.5, 3.6789, 5, 9.2 using the proposed data strucure.

Obscured algorithm

1. Read numbers and store obscured numbers in array1
and array3 as in Step 10

2. Deobfuscate to get values of array1 and array3 as in
Step 4 (Code becomes obscured)

3. Find the biggest element in array1.

4. If the biggest element does not repeat, say at index ‘j’
a. Find the corresponding fractional part from

array3 for index ‘j’
b. Find the sum of elements of array1 and

array3 for index ‘j’. Let the sum be ‘biggest’
 else

c. Consider all the fractional parts in array3
for the biggest repeated elements. From
array3, choose the biggest fraction say at
index ‘k’.

d. Find the sum of biggest element of array1
 and element of array3 for index ‘k’. Let
 the sum be ‘biggest’

5. Return ‘biggest’

VI. CONCLUSION
The proposed data structure performs data transformation

through variable splitting on array elements. The shuffling
process tries to complicate the data storage process and makes
reverse engineering hard. The execution speed can be
compromised considering the cost to avoid malicious thefts.
The obfuscation process in most of the cases results in lengthy
programs and possibility of optimization can be investigated
on the codes.

REFERENCES
[1] Markus Dahm, ‘Byte Code Engineering with the BCEL API’ Technical

Report B-17-98, April 3, 2001.
[2] Arjan de Roo, Leon van den Oord, ‘Stealthy obfuscation techniques:

misleading the pirates’, Department of Computer Science, University of
Twente Enschede, The Netherlands.

[3] Sharath.K.Udupa.Saumya K.Debray,Matias Madou, ‘Deobfuscation-
Reverse Engineering obfuscated Code’, Proceedings of the 12th
Working Conference on Reverse Engineering (WCRE’05).

[4] Christian Collberg, Ginger Myles, Michael Stepp, ‘An Empirical Study
of Java Bytecode Programs’,Department of Computer Science,
University of Arizona.

[5] Christian Collberg Clark Thomborson Douglas Low, ‘Breaking
Abstractions and Unstructuring Data Structures’,Department of
Computer Science,The University of Auckland.

[6] Madou, M.; Anckaert, B.; De Bus,De Bosschere, K.; Cappaert, J.;
Preneel, B.;‘On the Effectiveness of Source Code Transformations for
Binary Obfuscation’, Proc. of the International Conference on Software
Engineering Research and Practice (SERP06), June. 2006.

[7] Christian Collberg, Clark Thomborson, and Douglas Low, ‘A Taxonomy
of obfuscating Transformations’, Report 148, Department of Computer
Science, University of Auckland, July 1997.

[8] C. Collberg and C. Thomborson, ‘Watermarking,Tamper-proofing, and
obfuscation – tools for software protection’, IEEE Transactions on
Software Engineering, Vol. 28,pp. 735-746, August 2002.

[9] L. Ertaul, S. Venkatesh, ‘Novel Obfuscation Algorithms for Software
Security’, Proceedings of the 2005 International Conference on Software
Engineering Research and Practice, SERP’05, June, Las Vegas.

[10] Ira D. Baxter,Michael Mehlich, ‘Reverse Engineering is Reverse
Forward Engineering’, Proceedings of Fourth Working Conference on
Reverse Engineering, 1997.

array1
0 0
1 -1
2 9
3 13
4 8
5 12
6 12
7 17
8 25
9 22

array3
0 0
1 4.9
2 8
3 13
4 16
5 20.6
6 24
7 29.3578
8 32.4
9 37.2

