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Approximations to the Distribution of the Sample
Correlation Coefficient

John N. Haddad and Serge B. Provost

Abstract—Given a bivariate normal sample of correlated variables,
(Xi, Yi), i = 1, . . . , n, an alternative estimator of Pearson’s cor-
relation coefficient is obtained in terms of the ranges, |Xi − Yi|.
An approximate confidence interval for ρX,Y is then derived, and
a simulation study reveals that the resulting coverage probabilities
are in close agreement with the set confidence levels. As well, a
new approximant is provided for the density function of R, the
sample correlation coefficient. A mixture involving the proposed
approximate density of R, denoted by hR(r), and a density function
determined from a known approximation due to R. A. Fisher is shown
to accurately approximate the distribution of R. Finally, nearly exact
density approximants are obtained on adjusting hR(r) by a 7th degree
polynomial.

Keywords—Sample correlation coefficient, density approximation,
confidence intervals.

I. INTRODUCTION

CORRELATION between two variables is generally un-
derstood to imply a certain departure from stochastic

independence. For a discussion on the concept of correlation
and certain of its misinterpretations, the reader is referred to
[1] and the references therein. The most common measure
of correlation between the random variables X and Y is
Pearson’s (product-moment) correlation coefficient,

ρX,Y =
E[(X − μX)(Y − μY )]√

E[(X − μX)2] E[(Y − μY )2]
,

where μX =E(X) and μY =E(Y ).
Given a random sample {(Xi, Yi), i = 1, . . . , n} from a

bivariate normal distribution, ρX,Y is customarily estimated
by the sample correlation coefficient,

R =
1

(n− 1)

n∑

i=1

(
Xi − X̄

SX

)(
Yi − Ȳ

SY

)
, (1)

where X̄ =
∑n

i=1Xi/n, Ȳ =
∑n

i=1 Yi/n, S2
X =

∑n
i=1(Xi−

X̄)2/(n− 1) and S2
Y =

∑n
i=1(Yi − Ȳ )2/(n− 1).

R. A. Fisher obtained the following representation of the
exact density function of R in [2]:

fR(r) =
2n−3

π(n− 3)!
(1− ρ2)(n−1)/2(1− r2)(n−2)/4

×
∞∑

i=0

Γ2
(n− i+ 1

2

) (2 ρ r)i
i!

, (2)
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for r ∈ (−1, 1). However, this series representation converges
very slowly. Fisher’s Z-transform is a well known transforma-
tion of R whose associated approximate normal distribution
possesses some shortcomings, especially when the sample size
is small and |ρX,Y | is large, in which case the distribution
of R is markedly skewed. Is was shown in [3] that the
normal approximation requires large sample sizes to be valid.
Moreover, as mentioned in [4], the variance of R changes with
the mean. In the case of bivariate normal vectors, it is known
that the asymptotic variance of Fisher’s Z statistic does not
depend on ρX,Y . However, as was pointed out for instance by
[5] and [6], this property does not necessarily carry over to
non-normally distributed vectors.

When X and Y follow a bivariate normal distribution with
zero means, unit variances and correlation coefficient ρ, and
a random sample of size n is available, the statistics being
utilized to make inferences about the population correlation
coefficient are usually expressed in terms of the products
{XiYi, i = 1, . . . , n}. It would appear that, as an alternative,
the set of ordered pairs {(Z1i, Z2i), i = 1, . . . , n}, where Z1i

= Min(Xi, Yi) and Z2i = Max(Xi, Yi), has yet to be fully
exploited for drawing inferences about ρ. It is shown in Section
2 that one can indeed make inferences about ρ from the ranges
of the pairs (Xi, Yi), or equivalently the absolute value of
the differences |Xi − Yi| = Z2i − Z1i ≡ Di. Approximate
confidence intervals for ρ, which are based on |Xi − Yi| and
|Xi + Yi|, i = 1, . . . , n, are derived in Section 3. Section 4
proposes two approximations to the density function of R,
which turn out to be more accurate than that determined from
Fisher’s Z statistic.

II. A RANGE-BASED ESTIMATOR

Assuming that (X,Y ) follows a bivariate normal distribu-
tion with zero means, unit variances and correlation coefficient
ρ, the joint probability density function of (X,Y ) is given by

fX,Y (x, y) =
1

2π
√
1− ρ2

exp
{
− (x2 − 2ρxy + y2)

2 (1− ρ2)

}
(3)

for all real values of x and y. The joint density function
of the order statistics (Z1, Z2) is then gZ1,Z2

(z1, z2) =
2! fX,Y (z1, z2) for −∞ < z1 < z2 < ∞, with Z1 =
Min(X,Y ) and Z2 = Max(X,Y ), that is,

gZ1,Z2
(z1, z2) =

1

π
√
1− ρ2

exp
{
− (z21 − 2ρz1z2 + z22)

2 (1− ρ2)

}
.

The density function of D = Z2 − Z1 can be obtained as
follows. Letting D = Z2−Z1 and Z = Z1, one has Z2 = D +
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Z and Z1 = Z. The Jacobian of this inverse transformation
being 1, the joint density of D and Z is

fD,Z(d, z) =
1

π
√
1− ρ2

exp
{
− 2(1− ρ)(z2 + d z) + d2

2(1− ρ2)

}
,

where −∞ < z <∞ and 0 ≤ d <∞.

The marginal density of D is then obtained by integrating
out Z as follows:

fD(d) =

∫ ∞

−∞
fD,Z(d, z)dz =

1

π
√
1− ρ2

exp
{ −d2
2(1− ρ2)

}

×
∫ ∞

−∞
exp
{−z2 − d z

1 + ρ

}
dz

where
∫ ∞

−∞
exp
{−z2 − d z

1 + ρ

}
dz

= exp
{ d2

4(1 + ρ)

} ∫ ∞

−∞
exp
{−(z + d

2 )
2

2(1 + ρ)/2

}
dz

= exp
{ d2

4(1 + ρ)

}√
2π

√
1 + ρ

2
,

since the integrand, exp
{
−(z + d

2 )
2/(2(1 + ρ)/2)

}
, is pro-

portional to a N (−d/2 , (1 + ρ)/2) density function, N (μ, θ)
denoting a normal distribution with mean μ and variance θ.
The density of D is therefore

fD(d) =
1√

π
√
1− ρ

exp
{
− d2

4(1− ρ)

}
(4)

for 0 ≤ d <∞ and fD(d) = 0 for d < 0.

Thus, on the basis of the ranges di = |xi − yi|,
i = 1, . . . , n, determined from the pairs of observations
{(x1, y1), . . . , (xn, yn)}, the likelihood function is

L(d ; ρ) = (π(1− ρ))−n/2 exp
{
−
∑n

i=1 d
2
i

4(1− ρ)

}
, (5)

where d = (d1, . . . , dn)
′, the loglikelihood function being

� ≡ logL = −n
2

log(π(1− ρ))−
∑n

i=1 d
2
i

4(1− ρ)
.

On setting

d�

dρ
=

n

2(1− ρ)
−
∑n

i=1 d
2
i

4(1− ρ)2

equal to zero, one has

2n(1− ρ̂)−
n∑

i=1

d2i = 0 ,

and the m.l.e. of ρ is given by

ρ̂ = 1−
∑n

i=1 d
2
i

2n
,

that is,

ρ̂ = 1− d̄ 2

2
(6)

where

d̄ 2 =

∑n
i=1 d

2
i

n
.

In order to determine the exact distribution of the cor-
responding estimator, one may use the fact that

∑
D2

i =∑
(Xi − Yi)

2 is the sum of the squares of independent
N (0, 2(1− ρ)) random variables.

Once a random sample from a bivariate normal distribution
whose means and variances are unknown is secured, the
variables can be standardized by letting X∗

i = (Xi − X̄)/SX

and Y ∗
i = (Yi − Ȳ )/SY . Then, on substituting these stan-

dardized variables in Equation (6), one obtains the following
representation of the estimator:

ρ̂s = 1−
∑n

i=1(X
∗
i − Y ∗

i )
2

2n

= 1− 1

2n

n∑

i=1

(Xi − X̄

SX
− Yi − Ȳ

SY

)2

= 1− 1

2n

n∑

i=1

(SY (Xi − X̄)− SX (Yi − Ȳ )

SX SY

)2

= 1− 1

2n

[∑n
i=1(Xi − X̄)2

S2
X

+

∑n
i=1(Yi − Ȳ )2

S2
Y

− 2
∑n

i=1(Xi − X̄)(Yi − Ȳ )

SX SY

]

= 1− 1

2n

[ (n− 1)S2
X

S2
X

+
(n− 1)S2

Y

S2
Y

− 2 (n− 1)R
]

= 1− n− 1

n
(1−R)

= R+
1−R

n
. (7)

Consequently, as n increases, ρ̂s will tend to R and share
its distributional properties. Fisher showed that E(R) � ρ −
ρ
2n (1−ρ2). Accordingly, an approximate expression for E(ρ̂s)
can be obtained as follows:

E(ρ̂s) =
1

n
+
n− 1

n
E(R)

� 1

n
+
n− 1

n
ρ
(
1− 1− ρ2

2n

)

=
1

n
+

(2nρ− ρ+ ρ3)(n− 1)

2n2

=
2n2 ρ− (3n− 1) ρ+ (n− 1) ρ+ 2n

2n2

= ρ−
((3n− 1

2n2

)
ρ−

(n− 1

2n2

)
ρ3 − 1

n

)
.

Thus,
(

3n−1
2n2

)
ρ −

(
n−1
2n2

)
ρ3 − 1

n is the approximate bias
associated with ρ̂s.

Note that under the initial distributional assumptions,

|Xi − Yi|2
2 (1− ρ)

=
(Xi − Yi)

2

2 (1− ρ)
∼ χ2

1

as (Xi − Yi) ∼ N (0, 2(1− ρ)) . This implies that

D̄2

2
=

∑n
i=1(Xi − Yi)

2

2n
∼ 1− ρ

n
χ2
n .
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Thus,
E(ρ̂) = 1−

(1− ρ

n

)
n = ρ

and
Var(ρ̂) =

( (1− ρ)2

n2

)
(2n) =

2

n
(1− ρ)2 .

Observe that the variance will be larger when ρ is negative.
This suggests making use of an estimator that is expressed
in terms

∑n
i=1(Xi + Y −

i )2 when ρ is negative, where Y −
i

denotes the second component of the ith pair of negatively
correlated random variables in a sample of size n. This will
result in a variance given in terms of (1 + ρ−) where ρ−

denotes the negative correlation coefficient. Such an estimator
can be derived as follows: Let X and Y − be negatively
correlated with correlation coefficient ρ−, X ∼ N (0, 1) and
Y − ∼ N (0, 1), and let Y = −Y − and ρ = −ρ−; then, given
a sample (Xi, Y

−
i ) , i = 1, . . . , n, of negatively correlated

variables, one can form a sample (Xi, Yi) , i = 1, . . . , n, of
positively correlated variables and make use of the estimator

ρ̂ = 1−
∑n

i=1(Xi − Yi)
2

2n
,

which can be re-expressed as

1−
∑n

i=1(Xi + Y −
i )2

2n
.

Then ρ̂− is taken to be

−ρ̂ =

∑n
i=1(Xi + Y −

i )2

2n
− 1 .

Since (Xi+Y
−
i ) ∼ N (0, 2(1+ρ−)) , it follows that E(ρ̂−) =

ρ− and Var(ρ̂−) = 2
n (1 + ρ−)2 .

III. APPROXIMATE CONFIDENCE INTERVALS FOR ρ

If one assumes that the random vector (Xi, Yi) follows a
bivariate normal distribution with zero means, equal variances
σ2 and correlation coefficient ρ, then, on noting that (Xi+Yi)
∼ N (0, 2σ2(1+ρ)) , (Xi−Yi) ∼ N (0, 2σ2(1−ρ)), and that
(Xi + Yi) and (Xi − Yi) are independently distributed for
i = 1, . . . , n, one has

∑n
i=1(Xi + Yi)

2/(2σ2(1 + ρ))∑n
i=1(Xi − Yi)2/(2σ2(1− ρ))

∼ Fn,n . (8)

Letting D+ =
∑n

i=1(Xi+Yi)
2 and D− =

∑n
i=1(Xi−Yi)2,

a 100(1−α)% confidence interval for ρ can be determined as
follows from the pivotal quantity given in the left-hand side
of (8). First, one has

Pr
(
F1−α

2 ,n,n <
D+

D−
1− ρ

1 + ρ
< Fα

2 ,n,n

)
= 1− α

or

Pr
(D−
D+

F1−α
2 ,n,n <

1− ρ

1 + ρ
<

D−
D+

Fα
2 ,n,n

)
= 1− α .

Then, letting θ1 = D−
D+

F1−α
2 ,n,n and θ2 = D−

D+
Fα

2 ,n,n , where
θ1 and θ2 are greater than zero and noting that θ1 < 1−ρ

1+ρ is

equivalent to ρ < 1−θ1
1+θ1

, it follows that

ρ <
1− D−

D+
F1−α

2 ,n,n

1 + D−
D+

F1−α
2 ,n,n

.

Similarly,

θ2 >
1− ρ

1− ρ

leads to

ρ >
1− D−

D+
Fα

2 ,n,n

1 + D−
D+

Fα
2 ,n,n

,

so that

Pr

(
1− D−

D+
Fα

2 ,n,n

1 + D−
D+

Fα
2 ,n,n

< ρ <
1− D−

D+
F1−α

2 ,n,n

1 + D−
D+

F1−α
2 ,n,n

)
= 1− α .

Thus,
(
D+ − d− Fα

2 ,n,n

D+ + d− Fα
2 ,n,n

,
D+ − d− F1−α

2 ,n,n

D+ + d− F1−α
2 ,n,n

)
(9)

is a 100(1− α)% confidence interval for ρ, Fα,n,m denoting
the (100 (1 − α))th percentile of an F distribution having n
and m degrees do freedom.

A simulation study confirmed that the coverage probabilities
of this confidence interval are consistently in close agreement
with the set confidence levels. Samples of size 50 were
generated assuming that ρ = 0.5. The coverage probabilities
can be readily deduced from the results presented in Table 1.

TABLE I
NUMBER OF TIMES ρ = 0.5 LIES OUTSIDE THE CI’S FOR n = 50

No. of CI’s α = 5% α = 1%

10000 512 112
100000 5048 1037

In practice, it is seldom the case that one will encounter
a bivariate data set whose underlying distribution satisfies the
assumptions initially made in Section 2. Nevertheless, in terms
of the standardized variables X∗

i and Y ∗
i , one has that

∑n
i=1(X

∗
i + Y ∗

i )
2/(2(1 + ρ))∑n

i=1(X
∗
i − Y ∗

i )
2/(2(1− ρ))

(10)

is approximately distributed as an Fn−1,n−1 random variable
for sufficiently large n. This distributional result can be
justified as follows.

Observe that as n gets large, Var(X∗
i ) → 1 and Var(Y ∗

i ) →
1. Then, approximately,

(X∗
i + Y ∗

i ) ∼ N(0, 2(1 + ρ)) ,

and
(X∗

i − Y ∗
i ) ∼ N(0, 2(1− ρ)) ,

and (X∗
i + Y ∗

i ) and (X∗
i − Y ∗

i ) are nearly independently
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distributed. Thus,
∑n

i=1 (X
∗
i + Y ∗

i )
2

2 (1 + ρ)
∼ χ2

n−1 , approximately,

one degree of freedom being lost since the mean of X +Y is
estimated by X̄ + Ȳ . Similarly,

∑n
i=1 (X

∗
i − Y ∗

i )
2

2 (1− ρ)
∼ χ2

n−1 , approximately.

Accordingly, the ratio given in (10) has approximately an
Fn−1,n−1 distribution.

It follows from Equation (7) that
n∑

i=1

(X∗
i − Y ∗

i )
2 =

(n− 1)S2
X

S2
X

+
(n− 1)S2

Y

S2
Y

− 2 (n− 1)R

= 2 (n− 1) (1−R) .

Similarly,
n∑

i=1

(X∗
i + Y ∗

i )
2 =

(n− 1)S2
X

S2
X

+
(n− 1)S2

Y

S2
Y

+ 2 (n− 1)R

= 2 (n− 1) (1 +R) .

Thus, one has
∑n

i=1(X
∗
i + Y ∗

i )
2/(2(1 + ρ))∑n

i=1(X
∗
i − Y ∗

i )
2/(2(1− ρ))

=
(1− ρ)

(1 + ρ)

∑n
i=1(X

∗
i + Y ∗

i )
2

∑n
i=1(X

∗
i − Y ∗

i )
2

=
(1− ρ)

(1 + ρ)

2 (n− 1) (1 +R)

2 (n− 1) (1−R)

=
(1− ρ)

(1 + ρ)

(1 +R)

(1−R)
, (11)

which is approximately distributed as an Fn−1,n−1 random
variable. A derivation analogous to that employed for obtain-
ing the confidence interval given in (9) leads to the following
approximate confidence interval for ρ at confidence level 1−α:
(
D+ −D− Fα/2,n−1,n−1

D+ +D− Fα/2,n−1,n−1
,
D+ −D− F1−α/2,n−1,n−1

D+ +D− F1−α/2,n−1,n−1

)
,

(12)
where D+ = (1 +R) and D− = (1−R).

In a small-scale simulation study, 10,000 and 100,000
samples of size 50 were generated assuming that ρ = 0.5.
The resulting coverage probabilities can be deduced from the
results included in Table 2.

TABLE II
NUMBER OF TIMES ρ = 0.5 LIES OUTSIDE THE CI’S FOR n = 50

No. of CI’s α = 5% α = 1%

10000 464 79
100000 4810 915

IV. ALTERNATIVE DENSITY APPROXIMATIONS FOR R

Two approximations to density function of R are proposed
in this section. The first one is obtained by applying the change

of variable technique to the quantity specified by Equation
(11). Let u(ρ) = 1−ρ

1+ρ , and x = u(ρ) 1+r
1−r , which, which, as

explained in the previous section, is approximately distributed
as an Fn−1,n−1 random variables. Since the probability den-
sity function of the Fn,m distribution is

fn,m(x)=
Γ
(

n+m
2

)(
n
m

)n
2

x
n
2 −1

Γ
(

n
2

)
Γ
(

m
2

)(
1 + nx

m

)n+m
2

,

one has

fn−1,n−1(x) =
Γ(n− 1)x

n−3
2

(
Γ
(

n−1
2

))2
(1 + x)n−1

.

Noting that dx
dr = 2u(ρ)

(1−r)2 , the resulting approximation to the
density function of R is given by

hR(r)=
2Γ(n− 1)
(
Γ
(

n−1
2

))2 u(ρ)
n−1
2

(1− r2)
n−3
2

(1− r + u(ρ) (1 + r))n−1
.(13)

Alternatively, an approximate density function can be de-
rived as follows from Fisher’s Z-transform, that is, Z =
1
2 ln
(

1+R
1−R

)
. Let

z =
1

2
ln
(1 + r

1− r

)
,

so that
r =

e2z − 1

e2z + 1
.

Then,

dr

dz
=

2e2z

e2z + 1
− 2e2z(e2z − 1)

(e2z + 1)2
=

4e2z

(e2z + 1)2
,

(1− r2)
n−3
2 =

[
1−

(e2z − 1

e2z + 1

)2]n−3
2

=
( 4e2z

(e2z + 1)2

)n−3
2

,

(1−r+u(ρ)(1+r))n−1=
(
1−e

2z − 1

e2z + 1
+u(ρ)

(
1+

e2z − 1

e2z + 1

))n−1

and the density of Z is

gZ(z) =
2Γ(n− 1)

(Γ(n−1
2 ))2

( ez(u(ρ))
1
2

1 + u(ρ)e2z

)n−1

.

Since u(ρ) = 1−ρ
1+ρ , the density of Z can also be expressed as

follows:

gZ(z)=
2Γ(n− 1)

(Γ(n−1
2 ))2

(u(ρ))
n−1
2

( 4e2z

(e2z+1)2 )
n−3
2

( 2(1+u(ρ)e2z)
e2z+1 )n−1

4e2z

(e2z + 1)2

=
2Γ(n− 1)

(Γ(n−1
2 ))2

( ez

1 + u(ρ)e2z

)n−1

(u(ρ))
n−1
2

=
2Γ(n− 1)

(Γ(n−1
2 ))2

(
exp
(
− z +

1

2
ln
(1 + ρ

1− ρ

))

+ exp
(
z − 1

2
ln
(1 + ρ

1− ρ

)))−n+1

. (14)

Clearly, as defined above, Z is not normally distributed,
which is consistent with a remark made by [7]. Nevertheless,
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we observed that Z tends to a normal distribution with mean
1
2{ln[(1+ρ)/(1−ρ)]} and variance 1/(n− 2) . For comparison
purposes, Z∗ = 1

2{ln[(1 + R)/(1 − R)]}, that is, Fisher’s
Z-transform applied to R, is known to be asymptotically
distributed as a N ( 12{ln[(1+ρ)/(1−ρ)]}, 1/(n−3)) random
variable. Upon inversion via the change of variable technique,
an approximation to the density function of R = (e2Z

∗ −
1)/(e2Z

∗
+ 1) can be obtained as follows. Since

z∗ =
1

2
ln
(1 + r

1− r

)
,

dz∗

dr
=

1

1− r2
,

and given that the approximate density of Z∗ is

f(z∗) =
√
n− 3√
2π

exp
(
− n− 3

2

(
z∗ − 1

2
ln
(1 + ρ

1− ρ

))2)
,

one has the following approximate density function for R:

g∗(r) =
√
n− 3√

2π(1− r2)
exp
(
− n− 3

2

(1
2
ln
(1 + r

1− r

)

−1

2
ln
(1 + ρ

1− ρ

))2)
. (15)

Interestingly, an equal mixture of the approximate densities
given in (13) and (15) provides more accurate approximations
than either one of them, as (15) overestimates the variance
while (13) underestimates it. This is graphically illustrated in
Figures 1 and 2.

Fig. 1. Exact density of R from Equation (2): solid line, and two approximate
densities from Equation (13): long dashes and Equation (15): dashed line, for
ρ = 0.2, 0.5 and 0.9 (left to right) and sample sizes 15 and 25 (top and
bottom graphs).

Another approximation to the density of R is now obtained
by multiplying the proposed approximate density hR(r) by
pd(r), a polynomial of degree d, so that the first d moments
of the resulting density,

hpd(r) = hR(r) pd(r) , (16)

coincide with those of R. This approach is discussed for
instance in [8]. Letting pd(r) =

∑d
j=0 ξj r

j , the coefficients ξj

are determined as follows, assuming a polynomial adjustment
of degree d = 7.

Fig. 2. Exact density of R from Equation (2): dotted line, and mixture of
the approximate density functions specified by (13) and (15): dashed line for
ρ = 0.2, 0.5 and 0.9 (left to right) and sample sizes 15 and 25 (top and
bottom graphs).

Fig. 3. Exact density of R from Equation (2): dotted line, and the
approximate density from Equation (16) with d = 7: dashed line) for
ρ = 0.2, 0.5 and 0.9 (left to right) and sample sizes 15 and 25 (top and
bottom graphs).

First, letting mi denote the ith moment of the distribution
specified by hR(r), we evaluate the 8 × 8 matrix M whose
jth row is (mj−1,mj , . . . ,mj+6), j = 1, 2, . . . , 8, as well
as its inverse M−1. We then multiply M−1 by (μ0, ..., μ7)

′,
the vector of exact moments of R, in order to determine the
polynomial coefficients (ξ0, ..., ξ7)′. The resulting approximate
density, that is, hp7(r) = hR(r)

∑7
j=0 ξjr

j , is plotted in
Figure 3 for certain values of ρ and n. Manifestly, this
approximation proves to be remarkably accurate.
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