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Abstract—The (sub)-optimal soolution of linear filtering problem
with correlated noises is considered. The special recursive form of
the class of filters and criteria for selecting the best estimator are
the essential elements of the design method. The properties of the
proposed filter are studied. In particular, for Markovian observation
noise, the approximate filter becomes an optimal Gevers-Kailath filter
subject to a special choice of the parameter in the class of given linear
recursive filters.
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I. INTRODUCTION

Consider a standard linear filtering problem

xk+1 = Φkxk + Gkwk, (1)

zk+1 = Hk+1xk+1 + vk+1, k = 0, 1, 2, ... (2)

here xk is the n-dimensional system state at k instant,
Φk is the (nxn) fundamental matrix, zk is the p-dimensional
observation vector, Hk is the (pxn) observation matrix, wk, vk

are the model and observation noises. The statistical charac-
teristics of the entering random variables are given as

E[x0] = x̄0, E[x0x
T
0 ] = M0, (3)

E[wk] = 0, E[wkwT
l ] = Qkl, (4)

E[vk] = 0, E[vkvT
l ] = Rkl, E[wkvl] = Kwv(k), (5)

E[(x0 − x̄0)w
T
k ] = Kxw(k), E[(x0 − x̄0)v

T
k ] = Kxv(k). (6)

Denote by x̂k a minimum mean square (MMS) estimator
for the state xk. The Kalman filter (KF) yields the MMS
solution to this filtering problem with white and uncorrelated
process and observation noises [10]. The extension of the
KF to the systems with colored noises that are Markovian is
studied on the basis of innovation process [6]. The filtering
problems with correlated noises are widely encountered in
engineering applications (data assimilation in meteorology and
oceanography [4], GPS position time series [2], halftoning
systems with blue noise [5], speech signal processing [13],
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navigation [14], guidance [3] .... For many practical appli-
cations, the assumption on Markovian noises is nevertheless
not necessary. The filtering problem in the form (1)(2)(3)-
(6) has been considered in [12]. Generally speaking, due to
assumptions (3)-(6) the estimator x̂k+1, written in recursive
form, depends on x̂k and all the observations {z1, ..., zk+1}.
This dependence makes implementation of the optimal filter
extremely difficult for large k.

The present paper aims to overcome the mentioned above
difficulty. The approach follows that reported in [8], with
emphasis on the linear filtering problem considered in [12]
: Given the system dynamics and observations contaminated
by correlated noises, the task is to construct an algorithm
providing an (sub)-optimal filtered estimate of high quality.
Concretely, according to [8], the class of filters {x̃k(nk)} with
nk ≤ k - some positive integer number, is introduced in a
way such that x̃k+1(nk+1) depends on x̃k(nk) and nk+1 latest
observations. One important requirement to the algorithm will
be that the produced estimate x̃k(nk+1) will be truly MMS
if x̃k(nk) = x̂k and nk+1 = k + 1. Such algorithm has
a merit to be studied in more detail, noticing in practice
the time correlation generally becomes weaker as the time
difference increases. More importantly, for a particular case
of the Markovian observation noise with memory m, the
sub-optimal filter becomes truly MMS in the class of filters
being linear functions of the last estimate x̂k and m + 1
last observations. The case of Markovian noise sequence with
memory m = 1 will be studied in detail in section 6.

The paper is organized as follows. In section 2, for the time-
invariant system state, the main theoretical results on MMS
filter optimal in a given class of linear filters are presented.
These results will be extended to the general time-varying
system state in section 3. The properties of the obtained filter
are studied in section 4. Conditions for equivalence of two
estimators obtained on the basis of the last estimator and two
different numbers of latest observations are given in section 5.
Application of the theoretical results to the design of the MMS
filter subject to the Markovian noise sequence with memory
m = 1 is considered in section 6. The conclusions are given
in section 7.

II. PRELIMINARIES RESULTS : TIME-INVARIANT SYSTEM

STATE

For simplifying the presentation, first consider the filtering
problem (1),(3)-(5) under assumptions
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Φk = I, Gk = 0, i.e., xk+1 = xk = x. (7)

The system state is then time-invariant. Throughout this
paper, I denotes a unit matrix of the appropriate dimension.
Introduce the notations

zi
k = (zT

i , ..., zT
k )T , zk

k = zk, k ≥ i, (8)

Hi
k = (HT

i , ..., HT
k )T , Hk

k = Hk, k ≥ i, (9)

vi
k = (vT

i , ..., vT
k )T , vk

k = vk, k ≥ i, (10)

V i
k = E(vi

kv
i,T
k ). (11)

Let x̃k(nk) be a sequence of estimators for x given by
{z1, ..., zk} such that each next estimator x̃k+1(nk+1) is a lin-
ear function of x̃k(nk) and nk+1 last observations. According
to notations in [8], we have

x̃k+1(nk+1) = δkξ[x̃k(nk)), z
k+2−nk+1

k+1 ] + γk =
[δk,1, δk,2][ξ

T
k,1, ξ

T
k,2]

T + γk,

ξk,1 := x̃k(nk), ξk,2 := z
k+2−nk+1

k+1 .

For simplicity and without generality, assume that the
sequence {x̃k(nk)} is unbiased. Then one can set γk = 0.
In what follows we will use the following notation for the
sequence {x̃k(nk)}

x̃k+1(nk+1) = Akx̃k(nk) + Bkz
k+2−nk+1

k+1 . (12)

where Ak, Bk are matrices of appropriate dimensions. De-
note by Xk+1(nk+1) the class of all unbiased estimators
having the structure (12), where x̃k(nk) is unbiased estimator
too.

Definition 1. We shall call x̃k+1 := x̃k+1(nk+1) an optimal
MMS estimator in the class Xk+1(nk+1) if it satisfies

(i) E[x̃k+1] = E(x);
(ii) x̃k+1 = arg minx′∈Xu

k+1

J(x′),

J(x′) = tr[E(x′ − x)(x′ − x)T ]

where Xu
k+1 = {x′ ∈ Xk+1(nk+1) : E(x′) = E(x)}, tr (.)

denotes the trace operator.
In the present paper, for simplicity, we assume the existence

of all figured inverse matrices.
Lemma 1. Let x̃k(nk) = x̂, Pk be its error covariance matrix

(ECM). Then x̃k+1 is defined by

x̃k+1(nk+1) = x̂ + Kk+1[z
∗

k+1(nk+1) − H∗

k+1x̂], (13)

z∗k+1(nk+1) = zk+1 − Σ21Σ
−1
11 z

k+2−nk+1

k , (14)

H∗

k+1 = Hk+1 − Σ21Σ
−1
11 H

k+2−nk+1

k , (15)

Kk+1 = (PkHT
k+1 − Nk+1)Σ̃

−1
22 , (16)

Σ̃22 = [Σ22 − Σ21Σ
−1
11 Σ12]

−1, (17)

Σ22 = Rk+1 + Hk+1PkHT
k+1

−Hk+1Nk+1 − (Hk+1Nk+1)
T , (18)

Σ11 = V
k+2−nk+1

k − H
k+2−nk+1

k E
k+2−nk+1

k , (19)

Σ21 = ΣT
12, (20)

Σ12 = K̄
k+2−nk+1

k − H
k+2−nk+1

k Nk+1, (21)

Nk+1 = E[(x̂k − x)vT
k+1], (22)

E
k+2−nk+1

k = E[(x̂k − x)v
k+1−nk+1,T
k ] =

PkH
k+2−nk+1,T
k , (23)

K̄
k+2−nk+1

k = E[v
k+2−nk+1

k vT
k+1], (24)

Pk = E[(x̂k − x)(x̂k − x)T ], (25)

Pk+1(nk+1) = E[(x̃k+1 − x)(x̃k+1 − x)T ] =

Pk − Kk+1(PkHT
k+1 − Nk+1)

T . (26)

Proof: The proof is similar to that presented in [8]: From
the requirement (i) on unbiasedness of x̃k+1 we have Ak =

I − BkH
k+2−nk+1

k+1 . Substituting Ak into (12) and taking the
gradient of J(.) with respect to Bk leads to the equation for
finding Bk. Thus,

Ak = I − BkH
k+2−nk+1

k+1 , Bk = −Σ3Σ
−1
1 . (27)

where Σ1, Σ3 are defined in (29). We have the ECM Pk+1,

Pk+1(nk+1) = BkΣ1B
T
k + BkΣ2 + Σ3B

T
k + Σ4, (28)

Σ1 = H
k+2−nk+1

k+1 Pk(H
k+2−nk+1

k+1 )T +

V
k+2−nk+1

k+1 + ΔΣ1,

ΔΣ1 = −H
k+2−nk+1

k+1 E
k+2−nk+1

k+1 −

(H
k+2−nk+1

k+1 E
k+2−nk+1

k+1 )T ,

Σ2 = −H
k+2−nk+1

k+1 Pk + (E
k+2−nk+1

k+1 )T ,

Σ3 = ΣT
2 , Σ4 = Pk, (29)

E
k+2−nk+1

k+1 is defined by (23). Using Ak from (27) the
estimator x̃k+1 can be rewritten as

x̃k+1 = x̂k + Bk[z
k+2−nk+1

k+1 − H
k+2−nk+1

k+1 x̂k]. (30)

Compute the matrix Bk. Since z1
k = H1

kx + v1
k , the

MMS estimate x̂k = Tkz1
k, Tk = PkH1

kV
1,−1
k , Pk =

(H1
kV

1,−1
k H

1,T
k )−1, V 1

k = E(v1
kv

1,T
k ) is an unbiased estimate,

TkH1
k = I . Hence

E
k+2−nk+1

k+1 = E{[Tk(H1
kx + v1

k) − x](v
k+2−nk+1

k+1 )T } =

= TkE{v1
k(v

k+2−nk+1

k+1 )T }. (31)

Let

V 1
k = [V T

k (1), ..., V T
k (k)]T , Vk(i) = E[vi(v

1
i )T ],

V
1,−1
k = [Ṽk(1), ..., Ṽk(k)].

Then we have Vk(i)Ṽk(j) = Iδij where δij is the
Kronecker symbol. But E[v

k+2−nk+1

k v
1,T
k ] =[V T

k (k + 2 −
nk+1), ..., V

T
k (k)]T hence
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E
k+2−nk+1

k = TkE[v1
k(v

k+2−nk+1

k )T ] =

([V T
k (k + 2 − nk+1), ..., V

T
k (k)]T [Ṽk(1), ..., Ṽk(k)]

H1
kPk)T = [(O, I)

{
H1

k+1−nk+1

H
k+2−nk+1

k

}
Pk]T =

PkH
k+2−nk+1,T
k . (32)

Taking into account (29)(31)(32) one can write

Bk = −Σ3Σ
−1
1 =

[E
k+2−nk+1

k+1 − PkH
k+2−nk+1,T
k+1 ]Σ−1

1 =

−[(E
k+2−nk+1

k , Nk+1) − (PkH
k+2−nk+1,T
k , PkHT

k+1)]Σ
−1
1 =

(0, PkHT
k+1 − Nk+1)Σ

−1
1

or

Bk = (PkHT
k+1 − Nk+1)Σ̃22(−Σ21Σ

−1
11 , I), (33)

here Nk+1 is defined as in (22) and for

Σ1 =

{
Σ11 Σ12

Σ21 Σ22

}
, Σ−1

1 =

{
Σ̃11 Σ̃12

Σ̃21 Σ̃22

}
, (34)

the Lemma on Inversion of block matrix [10] yields

Σ̃22 = [Σ22 − Σ21Σ
−1
11 Σ12]

−1

which shows (17). Substituting (33) into (30) yields (13)
with Kk+1 defined in (16). The formula (26) is obtained by
using (27),(28) and (33).

To show (18)-(20), noticing from (29) that Σ1 can be written
as the ECM of the following random vector

Σ1 = E(ξξT ), ξ := H
k+2−nk+1

k+1 (x̂k − x) + v
k+2−nk+1

k+1 .

Represent ξ = (ξT
1 , ξT

2 )T , from (34) one sees that

Σ11 = V
k+2−nk+1

k + H
k+2−nk+1

k Pk(H
k+2−nk+1

k )T−

H
k+2−nk+1

k E
k+2−nk+1

k − (H
k+2−nk+1

k E
k+2−nk+1

k )T

Σ22 = Rk+1 +Hk+1PkHT
k+1 −Hk+1Nk+1 − (Hk+1Nk+1)

T ,

Σ12 = ΣT
21 = K̄

k+2−nk+1

k + H
k+2−nk+1

k PkHT
k+1−

Hk+1Nk+1 − (Hk+1Nk+1)
T ,

K̄
k+2−nk+1

k is defined by (24). These formulas imply (18)-
(20) noticing from (32) that Σ11, Σ12 can be simplified.

Comment 1. As shown by [8], when Σ1 in (27) is singular,
the matrix Bk is defined by Bk = −Σ3Σ

+
1 . The solution x̃k+1

then exists and is unique (almost surely). The uniqueness of
x̃k+1 for non-singular Σ1 follows automatically.

Comment 2. The estimate x̃k+1 can be obtained in the
following way [9]: Interpreting z∗ := x̂k as the ”observation”
available before arriving zk+1,

z∗ = x + εk, E(εk) = 0, E(εkεT
k ) = Pk, z∗ = x̂k (35)

and introducing z̃ = (z∗,T , zT
k+2−nk+1

, ..., zT
k+1)

T , one has
the following system of observations

z̃ = H̃x + ṽ, (36)

z̃ = (z∗,T , zT
k+2−nk+1

, ..., zT
k+1)

T ,

H̃ = (I, HT
k+2−nk+1

, ..., HT
k+1)

T ,

ṽ = (εT
k , vT

k+2−nk+1
, ..., vT

k+1)
T , Ṽ = E(ṽṽT ).

Then with probability 1 the estimator x̃k+1 in Lemma 1 is
equal to

x̃k+1 = (H̃T Ṽ −1H̃)−1H̃T Ṽ −1z̃. (37)

Really, the estimator (37) is a linear function of x̂k and
z

k+2−nk+1

k+1 . From Theorem 6.1.11 of [1] it is the BLUE
(unbiased and of minimum variance). Thus (37) must be also
a MMS estimator by Definition 1.

Theorem 1. Let {x̃k(nk)} be a sequence of unbiased es-
timators for the unknown vector x such that each estimator
is obtained on the basis of the previous one and the nk

latest observations. Let these estimators be MMS according
to Definition 1 subject to nk+1 ≤ nk + 1. Then

x̃k+1(nk+1) = x̃k(nk) + Kk+1[z
∗

k+1 − H∗

k+1x̃k(nk)]

where z∗k+1, H
∗

k+1, Kk+1 = Bk are determined by the
formulas similar to (14),(15),(27),(29), only now we have
x̃k(nk), Pk(nk) instead of x̂, Pk,

Pk(nk) = E{[x̃k(nk) − x][x̃k(nk) − x]T }.

The proof of Theorem 1 is analogous to the proof of Lemma
1, noticing from Comment 2,

x̃k(nk) = Tk(nk)zk(nk),
Tk(nk) = Pk(nk)HT

k (nk)V −1
k (nk),

Pk(nk) := [HT
k (nk)V −1

k (nk)Hk(nk)]−1,

zk(nk) = Hk(nk)x + vk(nk), Vk(nk) = E{vk(nk)vT
k (nk)},

zk(nk) = [
x̃k−1(nk−1)

z̃k+1−nk

k

], Hk(nk) = [
I

Hk+1−nk

k

],

vk(nk) = [
ε̃k−1

ṽk+1−nk

k

],

and from nk+1 ≤ nk+1 the matrix E
k+2−nk+1

k is simplified
to the form (32). Thus the condition nk+1 ≤ nk + 1 is
introduced only for having the compact formulas (14)-(26).

As will be seen later, the case nk+1 = 2 is of special interest
and it is formulated in the form of the following Corollary

Corollary 1. Let in Theorem 1, nk+1 = 2. Then the
following relations hold for the estimator x̃k+1(2) satisfying
Definition 1,

x̃k+1(2) = x̃k(nk) + Kk+1(2)[z∗k+1 − H∗

k+1x̃k(nk)], (38)

z∗k+1 = zk+1 − Σ21Σ
−1
11 zk, (39)

H∗

k+1 = Hk+1 − Σ21Σ
−1
11 Hk, (40)

Kk+1(2) = [Pk(nk)HT
k+1 − Nk+1]Σ̃22, (41)

Σ̃22 = [Σ22 − ΣT
12Σ

−1
11 Σ12]

−1, (42)

Σ11 = Rk − HkPk(nk)HT
k , Σ12 = Rk,k+1 − HkNk+1, (43)

where Nk+1, Σ22 are defined in Theorem 1.
Mention that the structure of the filter (38)-(43) is similar

to that of the Gevers-Kailath filter [6].
Corollary 2. Let x̃k(nk) = x̂k . For nk+1 = k +1, Theorem

1 yields x̃k+1 = x̂k+1 and the following equality holds
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ΔΣ22 := −ΣT
12Σ

−1
11 Σ12 = L1 − L2,

L1 := K̄T
k V

1,−1
k H1

kPkH1,T V
1,−1
k K̄k, L2 := K̄T

k V
1,−1
k K̄k.

(44)
Here K̄k = K̄1

k and K̄i
k is defined by (24).

The equality (44) will be used in the further.

III. TIME-VARYING SYSTEM STATE

Consider the filtering problem in its general formulation
(1)(3)-(5). A natural way to generalize (12) in this case is to
introduce the class of recursive filters

x̃k+1(nk+1) = Akx̃k+1/k(nk+1) + Bkz
k+2−nk+1

k+1 ,

x̃k+1/k(nk+1) := Φkx̃k(nk) (45)

where {x̃k(nk)} is a sequence of filtered estimates for the
system state xk, k = 1, 2, .... The results to be presented below
can be established by the same technique as done in section
2.1.

Introduce the notations: Let Φ(i, j) be the transition matrix
for the system (1). Then [10]

xj = Φ(j, i)xi −
i−1∑
l=j

Φ(j, l + 1)Γlwl, i > j, (46)

H̃1
k+1 = (HT (1, k + 1), HT (2, k + 1), ...,

HT (k + 1, k + 1))T , H(j, i) = HjΦ(j, i), (47)

w(i, k + 1) = vi −
∑k

l=i HiΦ(i, l + 1)Γlwl,
∑k

l=k+1 = 0,

w̃1
k+1 = [wT (1, k + 1), ..., wT (k + 1, k + 1)]T =

(η1,T
k , vT

k+1)
T , (48)

E(w̃1
k+1) = 0,

E[w̃1
k+1w̃

1,T
k+1] = W 1

k+1 (49)

E(η1
k) = 0, E[η1

kη
1,T
k ] = Λ1

k. (50)

Using the notations above we have

zj = H(j, k + 1)xk+1 + w(j, k + 1), j = 1, 2, ..., k + 1, (51)

z
k+2−nk+1

k+1 = H̃
k+2−nk+1

k+1 xk+1 + w̃
k+2−nk+1

k+1 , (52)

z1
k+1 = H̃1

k+1xk+1 + w̃1
k+1, (53)

H̃1
k+1 = [H̄1,T

k , HT
k+1]

T , H̄1
k = H̃1

kΦ(k, k + 1), (54)

η1
k = w̃1

k − H̄1
kΓkwk. (55)

In the further, according to [11] we will refer to the model
(53) as of high initial uncertainty if the information on xk+1

is contained only in the observation vector z1
k+1 (equivalently

to assuming M0 = ∞ - there is no a priori information on
xk+1). For the case (3)-(5)(7) are given, from (1) xk+1 =
Φ(k + 1, 0)x0 +

∑k
l=0 Φ(k + 1, l + 1)Γlwl and

x̄k+1/0 = Φ(k + 1, 0)x̄0, Pk+1/0 = E[(εk+1/0)(εk+1/0)
T ],

εk+1/0 := x̄k+1/0 − xk+1.

This information can be represented by the additional ”ob-
servation” z∗ := x̄k+1/0 (Comment 2) and instead of (53) we
have the following model

z
(1)
k+1 = H̃

(1)
k+1xk+1 + w̃

(1)
k+1. (56)

z
(1)
k+1 =

⎧⎨
⎩

x̄k+1/0

......

z1
k+1

⎫⎬
⎭ , H̃

(1)
k+1 =

⎧⎨
⎩

I

......

H̃1
k+1

⎫⎬
⎭ ,

w̃
(1)
k+1 =

⎧⎨
⎩

εk+1/0

......

w̃1
k+1

⎫⎬
⎭ .

As the model (56) includes the information (3)-(5) in the
form of z∗, it can be considered as that of high initial
uncertainty. Later on, for simplicity we shall derive the filtering
algorithms for the vector xk+1 in the model (53) remembering
that the similar results can be deduced for xk+1 in the model
(56).

Application of Theorem 1 to the model (53) leads to the
following

Theorem 2. Consider the class of recursive filters (45) and let
{x̃k+1(nk+1)} be a sequence of unbiased estimators for xk+1

such that each estimator x̃k+1 = x̃k+1(nk+1) is a function of
the previous x̃k(nk) and nk+1 last observations. Assume that
these estimators are optimal in the sense of Definition 1. Then
we have

x̃k+1(nk+1) = Φkx̃k(nk) + Kk+1[z
∗

k+1 − H∗

k+1Φkx̃k(nk)],
z∗k+1 = z

k+2−nk+1

k+1 , H∗

k+1 = H̃
k+2−nk+1

k+1

and Kk+1 can be determined as done in the proof of Lemma
1.

Corollary 3. Let x̃k+1/k = x̂k+1/k = Φkx̂k. Then

x̃k+1(nk+1) = x̂k+1/k + Kk+1[z
∗

k+1 − H̃∗

k+1x̂k+1/k],
x̂k+1/k = [H̃1,T

k Λ1,−1
k H̃1

k ]−1H̃
1,T
k Λ1,−1

k z1
k, Λi

k = E[ηi
kη

i,T
k ],

z∗k+1 = zk+1 − Σ21Σ
−1
11 z

k+2−nk+1

k ,

H∗

k+1 = Hk+1 − Σ21Σ
−1
11 H̃

k+2−nk+1

k+1 ,

Kk+1 = (Mk+1H
T
k+1 − Nk+1)Σ̃22,

Σ̃22 = [Σ22 − ΣT
12Σ

−1
11 Σ12]

−1,

Σ22 =
Rk+1 + Hk+1Mk+1H

T
k+1 − Hk+1Nk+1 − (Hk+1Nk+1)

T ,

Σ11 = Λ
k+2−nk+1

k − H̃
k+2−nk+1

k E
k+2−nk+1

k

Σ12 = K̄
k+2−nk+1

k − H̃
k+2−nk+1

k Nk+1,

Nk+1 = E[ek+1/kvT
k+1],

E
k+2−nk+1

k = E[ek+1/kη
k+2−nk+1,T
k ],

ek+1/k := x̂k+1/k − xk+1,
K̄

k+2−nk+1

k = E[η
k+2−nk+1

k vT
k+1],

Pk+1(nk+1) = Mk+1 − Kk+1(Mk+1H
T
k+1 − Nk+1)

T ,

Mk+1 = [H̃1,T
k Λ1,−1

k H̃1
k ]−1,

ηi
k = (ηT

i , ..., ηT
k )T = (wT (i, k + 1), ..., wT (k + 1, k + 1))T .

Corollary 4 (Case nk+1 = 2). Under the conditions of
Corollary 3, for nk+1 = 2

x̃k+1(2) = x̂k+1/k + Kk+1[z
∗

k+1 − H∗

k+1x̂k+1/k],
z∗k+1 = zk+1 − Σ21Σ

−1
11 zk,

H∗

k+1 = Hk+1 − Σ21Σ
−1
11 Hk+1,k,

Kk+1 = (Mk+1H
T
k+1 − Nk+1)Σ̃22,
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Σ̃22 = [Σ0
22 − ΣT

12Σ
−1
11 Σ12]

−1,

Σ11 = Λk
k − Hk+1,kMk+1H

T
k+1,k,

Σ12 = K̄k
k − Hk+1,kNk+1.

Other variables in Corollary 4 are defined as in Corollary
3.

Corollary 5. Under the conditions of Corollary 3, for
nk+1 = k + 2,

x̃k+1(k + 2) = x̂k+1,

ΔΣ22 := −Σ21Σ
−1
11 Σ12 = L1 − L2

L1 := K̄T
k Λ1,−1

k H̃1
kMk+1H̃

1,T
k Λ1,−1

k K̄k,

L2 := K̄T
k Λ1,−1

k K̄k, K̄k = K̄1
k . (57)

Comment 3. It is important to stress that Eq. (46) is valid
under hypothesis of existence of the inverse of the fundamental
matrix of the system dynamics. That is usually the case when
the discretized system is obtained from a differential equation.
Even then for many practical filtering problems, the difficulties
arise when the matrix Φk exists only in a numerical form or
when it is of very high dimension as a result of discretization
from the set of partial differential equations [4]. In such
situations, instead of Eq. (46) it would be better to express
xj , j = k + 1 − nk+1, ..., k + 1 as a function of xk+1−nk+1

.
By this way we need only to integrate the direct model to
generate the predictor for the system state xk+1.

IV. PROPERTIES OF THE FILTER

Property 1. For all nk+1, 1 ≤ nk+1 ≤ nk+1,

tr Pk+1(nk+1) ≤ tr Pk(nk),

i.e. the estimator x̃k+1 is better than x̃k in MMS sense.
The proof of this fact follows immediately from (26) since

the matrix Kk+1(nk+1)[Pk(nk)HT
k+1−Nk+1] is non-negative

definitive.
In the further the symbol A ≥ 0 (or A ≤ 0) signifies that

the matrix A is non-negative (or non-positive) definitive.
Property 2. For all mk+1, nk+1, 1 ≤ mk+1 ≤ nk+1 ≤ k+2

the following inequality holds

Pk+1(nk+1) ≤ Pk+1(mk+1), or (58)

trPk+1(nk+1) ≤ trPk+1(mk+1) (59)

In order to prove (59) we need some auxiliary results.
Lemma 2. Let S be a square matrix

S =

{
S11 S12

ST
12 S22

}
,

where S11, S22 are symmetric matrices of dimensions (n×
n) and (m × m) respectively. Then S ≥ 0 if and only if
(iff) S11 ≥ 0, S11S

+
11S12 = S12, S22 − S+

12S11S12 ≥ 0. Here
the symbol ”+” denotes the operation of pseudo-inversion of
matrix.

Lemma 2 is the statement (a) in Theorem (9.1.6) of [1].
In what follows for simplicity we use the notation Σ = Σ22,

Σ̃ := Σ−1
22 , Σ22 is defined by (17). The notation C(mk+1)

signifies that this matrix corresponds to the matrix C defined

in the recursive filter with the estimates depending on mk+1

latest observations. Let

Σ(mk+1) := Σ̃−1(mk+1).

Lemma 3. For all nk+1 ≥ mk+1,

Σ(nk+1) − Σ(mk+1) ≤ 0. (60)

Proof:
It is not hard to see that one can represent

Σ21(mk+1)Σ
−1
11 (mk+1)Σ12(mk+1) =

Σ21(nk+1)Σ
nk+1

11 (mk+1)Σ12(nk+1), (61)

Σ
nk+1

11 (mk+1) =

{
0 0
0 Σ−1

11 (mk+1)

}
. (62)

The obtained expressions (61)(62) allow us to present the
difference Σ(mk+1) − Σ(nk+1) in the form

ΔΣk+1(n; m) = Σ(mk+1) − Σ(nk+1) =

ΣT
12(nk+1)AΣ12(nk+1), (63)

A := Σ−1
11 (nk+1) − Σ

nk+1

11 (mk+1). (64)

Denote by Σ̃11(nk+1) the inverse matrix for Σ11(nk+1),

Σ−1
11 (nk+1) = Σ̃11(nk+1) =

{
Σ̃1 Σ̃2

Σ̃3 Σ̃4

}
. (65)

The formulas (65)(62) imply

A =

{
Σ̃1 Σ̃2

Σ̃T
2 Σ̃4 − Σ−1

11 (mk+1)

}
.

The Lemma will be proven if we can show that A ≥ 0.
According to Lemma 2, we need to establish

(a) Σ̃1 ≥ 0,
(b) Σ̃1Σ̃

+
1 Σ̃2 = Σ̃2,

(c) [Σ̃4 − Σ−1
11 (mk+1)] − Σ̃T

2 Σ̃+
1 Σ̃2 ≥ 0.

First mention that from the existence of Σ−1
1 (nk+1) we have

Σ1(nk+1) > 0. The structure (34) implies then Σ11(nk+1) > 0
hence Σ̃11(nk+1) > 0. This fact and (65) prove Σ̃1 > 0 and
we have (a), (b). It remains to show (c). In fact the left-hand
side of (c) is equal to 0. First mention that by construction,

Σ11(nk+1) = [Sij ]
2
i,j=1

where Sij are block matrices of appropriate dimension,
with S22 = Σ11(mk+1). Now, as Σ̃−1

11 (nk+1) = Σ11(nk+1),
according to Lemma on inversion of block matrix [10] we have
S22 = Σ11(mk+1) = (Σ̃4− Σ̃T

2 Σ̃−1
1 Σ̃2)

−1 or Σ−1
11 (mk+1) =

Σ̃4− Σ̃T
2 Σ̃−1

1 Σ̃2 or [Σ̃4−Σ−1
11 (mk+1)]− Σ̃T

2 Σ̃−1
1 Σ̃2 = 0. Thus

all three conditions (a)-(c) hold.
The property 2 follows immediately from the formulas

similar to (26)(16)(17) and Lemma 3.
Analogously one can establish the properties 1-2 for the

filter in section 3.
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V. ON EQUIVALENCE OF TWO ESTIMATORS BASED ON

DIFFERENT NUMBERS OF LAST OBSERVATIONS

Consider two estimators x̃k+1(nk+1) and x̃k+1(mk+1) de-
rived according to Theorem 1 on the basis of nk+1 and mk+1

last observations respectively, with nk+1 > mk+1.
Definition 2. Two estimators x̃k+1(nk+1) and x̃k+1(mk+1)

are called equivalent if the following equality holds

trPk+1(nk+1) = trPk+1(mk+1). (66)

The Definition 2 is correct since the solution of the problem
in Theorem 1 (Definition 1) is unique (see Comment 1).

In what follows a new definition, equivalent to Definition
2, will be introduced. This new definition allows us to easier
examine the equivalence of two estimators. First we need some
preliminary results.

Lemma 4. Let the matrix C = A − B ≥ 0 be symmetric.
Then

tr C = 0 iff A = B.

Proof: It is well known if S is an orthonormal matrix then
tr (ST CS) = tr (C). Let S be orthonormal matrix diagonal-
izing C. Then tr (C) = tr (ST CS) = tr (Λ) =

∑n
i=1 λi(C)

where λi(C) are the eigenvalues of C, λi(C) ≥ 0, n is the
dimension of C. Suppose tr (C) = 0. Then

∑n
i=1 λi(C) = 0

or λi(C) = 0, ∀i = 1, ..., n. The last means that C = 0 since
the number of non-zero eigenvalues of C is equal to the rank
of C. Hence A − B = 0 or A = B.

The inverse implication is trivial.
According to Property 2, for nk+1 > mk+1 we have

tr [Pk+1(nk+1)] ≤ tr [Pk+1(mk+1)] or
Pk+1(mk+1) − Pk+1(nk+1) ≥ 0.

Taking into account Lemma 4 and the properties of
Pk+1(nk+1), Definition 2 can be replaced by the following

Definition 3. Two estimators x̃k+1(nk+1) and x̃k+1(mk+1)
are called equivalent if the following equality holds

Pk+1(nk+1) = Pk+1(mk+1). (67)

Lemma 5. Let A − B ≥ 0 be symmetric matrix. Then
CT (A − B)C = 0 iff (A − B)C = 0 .

Proof: According to the definition of a symmetric non-
negative definitive matrix [1] there exists a matrix D such that
A−B = DT D. But then CT DT DC = 0 and this takes place
iff DC = 0. We have then DT DC = 0 or (A − B)C = 0.
The inverse implication is trivial since from DT DC = 0 it
follows CT DT DC = 0.

Proposition 1. Two estimators x̃k+1(nk+1) and
x̃k+1(mk+1), obtained from Corollary 2, are equivalent
iff

ΔΣk+1(n; m)Σ−1(mk+1)[Pk(nk)HT
k+1 −Nk+1]

T = 0 (68)

where ΔΣk+1(n; m) is defined by (63)(64).
Proof: Inserting Pk+1(nk+1), Pk+1(mk+1) into (67),

from (26) it follows

A[Σ−1(nk+1) − Σ−1(mk+1)]A
T = 0,

A := Pk(nk)HT
k+1 − Nk+1

According to Lemma 3, Σ(nk+1) ≤ Σ(mk+1) hence
Σ−1(nk+1) − Σ−1(mk+1) ≥ 0. Using Lemma 5 one can see
that

[Σ−1(nk+1) − Σ−1(mk+1)]A
T = 0. (69)

As

Σ−1(nk+1) − Σ−1(mk+1)
= −Σ−1(nk+1)ΔΣk+1(n; m)Σ−1(mk+1),

the condition (68) follows from substituting of the last
equality into (69).

Proposition 2. Two estimators x̃k+1(nk+1) and
x̃k+1(mk+1), obtained from Corollary 3, are equivalent
iff

ΔΣk+1(n; m)Σ−1(mk+1)[Mk+1H
T
k+1 − Nk+1]

T = 0 (70)

where ΔΣk+1(n; m) are defined as in Proposition 1,
Mk+1, Nk+1 are computed from Proposition 1 too.

VI. APPLICATIONS

A. Optimal in MMS filtering with the Markovian observation
noise

Consider the filtering problem (1)(2) with the following
conditions

Qij = Qiδij , Kxw(i) = 0, Kxv(i) = 0, Kvw(i) = 0, ∀i, j, (71)

vi+1 = Ψivi + ξi, (72)

where v0 is uncorrelated with {wi}, {xii}, x0 is a random
vector, {ξi} is a white random sequence with

E(v0) = 0, E(v0v
T
0 ) = R0 (73)

E(ξi) = 0, E(ξiξ
T
i ) = Ξiδij (74)

The filtering problem (1)(2)(71)-(74) is studied in [6]. On
the basis of the results in section 3 we will derive here the
solution to the filtering problem (1)(2)(71)-(74).

1) The filter for time-invariant system state: Denote by
Ψ(i, j) the transition matrix for the system (72). We have then

vi = Ψ(i, j)vj +

i−1∑
l=j

Ψ(i, l + 1)ξl, i ≥ j + 1. (75)

Lemma 6. The following relations hold

Rij = E(viv
T
j ) = Ψ(i, j)Rj , i ≥ j + 1, (76)

Rj+1 = E(vj+1v
T
j+1) = ΨjRjΨ

T
j + Ξj . (77)

The Lemma 6 is proven by direct calculation of Rij , Rj+1

using the formulas (71)-(74), (75).
We proceed now to demonstrate that the condition (68)

holds for x̃(nk) = x̂k, nk+1 = k + 2, mk+1 = 2. Let us
first compute Σ(k + 2), Σ(2).

Make use of (44) for computing Σ(k + 2). From Lemma 6
and Eq. (24) one has
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K̄T
k = [Ψ(k + 1, 0)R0, ...,Ψ(k + 1, k)Rk] = Ψk[K̄T

k−1, Rk]

For Vk := V 1
k = (V T

k,1, V
T
k,2)

T , V 1
k is defined in (11), Vk,2

has p rows, it is not hard to see that

K̄T
k = ΨkVk,2. (78)

Let V −1
k := (Ṽ T

k,1, Ṽ
T
k,2)

T . Then

Vk,2Ṽk,1 = 0, Vk,2Ṽk,2 = I (79)

hence

K̄T
k V −1

k = (0, Ψk). (80)

Substituting (80) into (44) yields

Σ(k + 1) = Σ22 + ΨkHkPk(ΨkHk)T − ΨkRkΨT
k . (81)

Consider Σ(2) defined by (42)-(43). By Lemma 6 and (22)
it follows

Nk+1 = PkHkΨT
k , (82)

Σ12(2) = (Rk − HkPkHT
k )ΨT

k . (83)

Now the equality Σ(k + 1) = Σ(2) holds by inserting
(83)(43) into (42), taking into account (81). Thus ΔΣk+1(k+
1; 2) = 0 the relationship (68) is valid in this case. It means, in
virtue of Proposition 1, that x̃k+1(2) = x̃k+1(k + 1) = x̂k+1,
i.e. this Corollary yields in this case the optimal in MMS filter
for ni = 2, ∀i. We have hence

Theorem 3. The optimal in MMS filter for the filtering
problem (1)(2)(7)(71)-(74) is given in the form

x̂k+1 = x̂k + Kk+1(z
∗

k+1 − H∗

k+1x̂k),

Kk+1 = PkH
∗,T
k+1Ξk = PkH

∗,T
k+1[H

∗

k+1PkH
∗,T
k+1 + Ξk]−1,

Pk+1 = [P−1
k + H

∗,T
k+1ΞkH∗

k+1]
−1,

H∗

k+1 = Hk+1 − ΨkHk,
z∗k+1 = zk+1 − Ψkzk.

2) The filter for time-varying system state: With the no-
tations (46)(46)(48)-(50) and the assumption (71)-(74), from
Corollary 3 we have (for simplicity, Wk := W 1

k , Λk := Λ1
k)

Λk = Wk + ΔWk, ΔWk =

H̃1
kΦ(k, k + 1)ΓkQk(H̃1

kΦ(k, k + 1)Γk)T , (84)

Wk = Vk + ΔWk, (85)

ΔWk =

{
ΔW11 ΔW12

ΔWT
12 ΔW22

}
, (86)

where ΔW12, ΔW22 are zero matrices, ΔW22 is of (p×p);
H̃1

k is defined by (54) and K̄k remains as before and is defined
by (78). From Matrix inversion lemma [7],

Λ−1
k = W−1

k [I − (I + ΔWkW−1
k )−1ΔWkW−1

k ] =

W−1
k B1 = W−1

k [I − B2ΔWkW−1
k ], (87)

B1 := I − (I + ΔWkW−1
k )−1ΔWkW−1

k , (88)

B2 := (I + ΔWkW−1
k )−1 (89)

and the matrix W−1
k is equal to

W−1
k = V −1

k [I − ΔVk(I + V −1
k ΔVk)−1V −1

k ]. (90)

As (79)(86) imply K̄T
k V −1

k ΔVk = 0, taking into account
(90)(80) we have

K̄T
k W−1

k = (0, Ψk), (91)

K̄T
k Λ−1

k = (0, Ψk)B1. (92)

Let H̃ := H̃1
k . From (88)(84) it implies

B1H̃ = H̃ − B2ΔWkW−1
k H̃ = H̃ − B2B4 = H̃ − B3, (93)

B4 := ΔWkW−1
k H̃ = H̃ΓQΓT (ΦPΦT )−1, (94)

where

B3 := B2B4 = H̃ΓQΓT (ΦPΦT )−1 − B5B4 =
H̃ [I − ΦPΦT M−1ΓQΓT (ΦPΦT )−1]ΓQΓT (ΦPΦT )−1 =

H̃ [I + ΓQΓT (ΦPΦT )−1]−1ΓQΓT (ΦPΦT )−1 =
H̃[I − (I + ΓQΓT (ΦPΦT )−1]−1 = H̃ [I − ΦPΦT M−1].

Thus

B3 = H̃[I − ΦPΦT M−1]. (95)

In derivation of (95), for simplicity, the sub-index k is
omitted for the matrices Φ, P, Γ... and the following formulas
have been used

M = Mk+1 = ΦPΦT + ΓQΓT , (96)

B2 := I − B5 = I − H̃ΦPΦT M−1ΓQΓT H̃T W−1,

ΦPΦT M−1 = [I − ΓQΓT (ΦPΦT )−1]−1.

with Mk+1 defined in Corollary 3. The proof of (96) will
be given later. Taking into account (95), the formula (93) is
equivalent to

B1H̃ = H̃ΦPΦT M−1. (97)

Return to (57). Taking into account (95)(97) one can trans-
form L1 in (57) into

L1 = (0, Ψ)B1H̃MH̃T BT
1 (0, Ψ)T =

(0, Ψ)H̃ΦPΦT M−1MM−1ΦPΦT H̃T (0, Ψ)T or

L1 = ΨHkPΦT PM−1ΦPHT
k ΨT . (98)

Let us calculate B2ΔWk using (94)(95),

B2ΔWk = B2H̃ΓQΓT H̃T =
B2H̃ΓQΓT (ΦPΦT )−1ΦPH̃T =

B3ΦPH̃T = H̃ [I − ΦPΦT M−1]ΦPH̃T or

B2ΔWk = H̃[P − PΦT M−1ΦP ]H̃T . (99)

The formula (99) can be used for simplifying L2 as follows

L2 = K̄T
k Λ−1

k K̄k = K̄T
k W−1

k [Wk − B2ΔWk]W−1
k K̄k =

= (0, Ψ)[Wk − H1(P − PΦT M−1ΦPH1,T ](0, Ψ)T =
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= ΨRkΨT − ΨHk(P − PΦT MΦP )HT
k ΦT

k

therefore ΔΣ22(k+1) := L1−L2 = Ψk(HkPHk−Rk)ΨT
k .

Compute ΔΣ22(2) := −ΣT
12(2)Σ−1

11 (2)Σ12(2) from Corol-
lary 4. We have

E[w(k, k + 1)wT (k + 1, k + 1)] =
E{(vk − HkΓwk)vT

k+1} = RkΨT ,
Nk+1 = MH̃T Λ−1

k K̄ = ΦPHT
k ΨT since

K̄T Λ−1
k H̃ = (0, Ψ)B1H̃ = (0, Ψ)H̃ΦPΦT M−1 =

ΨHkPΦT M−1

hence

Σ12(2) = E[w(k, k+)wT (k + 1, k + 1)] − HkNk+1 =
(Rk − HkPHT

k )ΨT ,
Σ11(2) =

Rk + HkΦ−1ΓQΓT Φ−1,T HT
k − HkΦ−1MΦ−1,T HT

k =
= Rk + HkΦ−1(ΓQΓT − M)Φ−1,T HT

k = Rk − HkPHT
k .

It is seen that ΔΣ22(2) = ΔΣ22(k+1) therefore Σ(k+1) =
Σ(2) or ΔΣk+1(k + 1; 2) = 0 and Proposition 2 yields the
optimal in MMS filter in this case. It remains to show that (96)
is valid. Really, let B := ΦPΦT . Then according to (84)-(86)
and Matrix inversion lemma,

M−1 = H̃T Λ−1
k H̃ = H̃T W−1

k (I + ΔWkW−1
k )−1H̃ =

H̃T W−1
k [I − H̃(I + ΓQΓT H̃T W−1

k H̃)−1

ΓQΓT H̃T W−1
k ]H̃ =

B−1 −B−1(I +ΓQΓT B−1)−1ΓQΓT B−1 = (B +ΓQΓT )−1

which proves (96). In deducing the last relations we have
used the relationship (ΦPΦT )−1 = ΦT,−1H̃T W−1

k H̃Φ−1.
Analogously one can prove x̂k+1/k = Φkx̂k. We have thus
proven

Theorem 4. (Optimal in MMS filter for Markovian observa-
tional noise) Optimal in MMS filter for the filtering problem
(1)(2)(71)-(74) is of the form

x̂k+1 = x̂k+1/k + Kk+1(z
∗

k+1 − H∗

k+1x̂k+1/k),
x̂k+1/k = Φkx̂k,

Kk+1 = [Mk+1H
∗,T
k+1 + ΓkQkΓT

k HT (k, k + 1)ΨT
k ]Σ−1(2),

Σ(2) = H∗

k+1Mk+1H
∗,T
k+1 + Ξk − H∗

k+1ΓkQkΓT
k H

∗,T
k+1 +

Hk+1ΓkQkΓT
k HT

k+1,
z∗k+1 = zk+1 − Ψkzk,

H∗

k+1 = Hk+1 − ΨkH(k, k + 1),
Mk+1 = ΦkPkΦT

k + ΓkQkΓT
k ,

Pk+1 =
Mk+1 − Kk+1[Mk+1H

∗,T
k+1 + ΓkQkΓT

k HT (k, k + 1)ΨT
k ]T .

For definition of H(k, k + 1), see (47). We have then
H(k, k + 1) = HkΦ−1

k and for example,

H∗

k+1x̂k+1/k = (Hk+1 − ΨkH(k, k + 1))x̂k+1/k =
Hk+1x̂k+1/k − ΨkHkΦ−1

k Φkx̂k = Hk+1x̂k+1/k − ΨkHkx̂k.

It is not hard to show that for the observation Markovian
noise sequence of memory m the filter in Theorem 2 becomes
MMS if we take the structure for the estimator at k + 1 as a
linear function of x̂k and m + 1 latest observations.

VII. CONCLUSIONS

An approximation approach to the solution of a linear
filtering problems with correlated noises was presented. A new

type of class of linear recursive filters is proposed together with
definition of an optimal MMS estimator among the members
of this class of filters. It was clear that the approximate
filters have interesting and different properties to their truly
optimal MMS filter. Thank to simplified recursive structure,
a substantial reduction in computational burden and storage
requirements is achieved compared to truly optimal MMS
filter. This is important when there are non-Markovian noise
processes. For the Markovian m memory noise sequence, the
proposed sub-optimal filter will yield the truly optimal MMS
estimates if the filter is chosen as a function of the last estimate
x̂k and m + 1 last observations.

There are, no doubt, a wide variety of engineering problems
to which the approximate filters are applicable and that could
be worthy of further scrutiny. This is a subject we plan to set
up, with emphasis on performing the approximate filter along
with the truly optimal one, in order to show the main benefits
of the proposed approximate approach.
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