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Abstract— In the present work steady inviscid hypersonic flows 

are calculated by approximate Method. Maslens' inverse method is 
the chosen approximate method. For the inverse problem, parabolic 
shock shape is chosen for the two-dimensional flow, and the body 
shape and flow field are calculated using Maslen's method. For the 
axisymmetric inverse problem paraboloidal shock is chosen and the 
surface distribution of pressure is obtained. 
 

Keywords— Hypersonic flow, Inverse problem method  

I. INTRODUCTION 
The flow field between the shock wave and the body shape 

is defined as the shock layer, and for hypersonic speeds this 
shock layer is quite thin. Analysis of this shock layer is called 
"thin shock layer theory". This can create some physical 
complication, such as combining of the shock wave itself with 
a thick, viscous boundary layer growing from body surface, a 
problem that can become important at low Reynolds number. 
At high Reynolds number where the shock layer becomes 
essentially inviscid, thin shock layer approximation can be 
used advantageously. By thin shock layer theory, what is 
meant is, determination of the shock shape, for the given body 
shape, and the flow field between them. Maslen's method is 
chosen here because of its simplicity, and also because of its 
frequent application - even today for approximate analysis of 
the hypersonic inviscid shock layer. This method is used for 
the determination of the flow field over blunt body as well as 
on bodies having pointed nose - and is a bridge between 
classical methods like Newtonian, Modified Newtonian, 
Shock expansion and the more modem computational methods 
like Time marching method or methods of Characteristics. 

Hypersonic flow is a topic of current interest. Many 
countries are involved in the design of hypersonic vehicles. 
Hence understanding of hypersonic flow is important. It is 
interesting that in the hypersonic limit (M     ∞) certain 
simplifications of the flow are possible resulting in simple 
techniques for the calculation of the load, consisting of lift and 
drag. Coefficients of pressure lift and drag become 
independent in the above mentioned limit and as seen in the 
Fig. 1 are accurately predicted by the well known Newtonian 
law. Newtonian and modified Newtonian methods are 
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important for the estimation of load in the preliminary stages 
of the design of the hypersonic vehicle. The other techniques 
are the Tangent wedge, Tangent Cone and Shock expansion 
methods. It's to be pointed out that the Shock expansion 
method predicts surface value of coefficient of pressure more 
accurately in the hypersonic regime than in supersonic regime. 
 

 

 
Fig. 1 CD and L/D for cone-cylinder Based on Newtonian Theory, 

Mach No. 6.9 
 
    Unfortunately none of the above methods can predict the 
shock shape, which the body generates in the hypersonic flow. 
Hypersonic shocks are strong even for a slender body, and are 
in general highly curved making the flow rotational behind the 
shock. Also it is important that the governing equations are 
nonlinear even for a slender body or thin airfoil in the 
hypersonic flow. This is entirely unlike where for a thin airfoil 
or slender body, shock waves could be replaced by Mach 
lines, and the flow is governed by the linear small perturbation 
equation. 
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    The question may arise is finding the shock shape?  To 
answer this question the following important fact about the 
hypersonic flight is to be mentioned. In low speed or 
hypersonic speed the aerospace vehicle or the aircraft can be 
conveniently divided as consisting of the wing, the lift 
producing unit, the fuselage for the providing the space or 
volume for payload, and the power plant for thrust. The 
performance of the above components can be evaluated 
independently and then combined. The total force produced by 
the combination will not be sum of the above individual units, 
since there are the forces of interaction. There are generally 
small, and can be taken into account. The above procedure 
cannot be applied for the hypersonic aircraft, since hypersonic 
flow is governed by nonlinear equation.  
   It is clear that the information regarding shock shape is 
necessary to locate the remaining part of engine appropriately. 
Also wing geometry and its location depend on the shock 
shape produced by the fuselage. So the determination of the 
shock shape becomes important. 

II. LITERATURE SURVEY 
    In the present work the method chosen for the determination 
of the shock is the Maslen's method [1] and Anderson [2]. 
This method is approximate but could be extended to the 
general case of body producing asymmetric shock [3]-[4]. 
Chemical reaction effects, which are important in the 
hypersonic flow, could also be accommodated in this method. 
Maslen's method is basically an inverse method i.e. calculate 
the body shape for the assumed shock critically depends on 
the fact that hypersonic shock layers are thin. In the present 
work for the case of parabolic and paraboloidal shocks, the 
body shapes and the flow fields are determined. As will be 
seen, contrary to what is found in the literature, Maslen [1] 
and Anderson [2] it appears that Maslen's methods is not 
suitable for the study of hypersonic flow past blunt bodies. As 
Milton Van Dyke points out in [5], hypersonic blunt body 
problem proved to be notoriously difficult, and the several 
attempts made to solve it prior to 1960 are given in [6]. 
However as Anderson points out, Moretti and Abbett's paper 
completely changed the state of art [7]. 

III. DESCRIPTION OF MASLEN'S METHOD 
    As mentioned earlier Maslen's method is an inverse method, 
that is, calculation starts with assumed shock shape, and the 
flow field and the corresponding body shape are determined. 
In the following, the method is explained for the case of two-
dimensional flow.  
    The essential fact on which Maslen's method is based is that 
the pressure behind the shock is more than the pressure on the 
surface of the body due to the curvature of the streamlines. 
Curvature of the streamlines generates centrifugal force field 
and in the Fig. 2, the pressure behind shock at the point 1 
should be more than pressure on the surface of the body at the 
point 3. However this argument fails on the stagnation 
streamline oo' and hence must fail in the neighborhood of 
stagnation streamline, due to the continuity of the flow. As can 
be seen, on the stagnation streamline the pressure behind the 
shock Po is less than Po', the pressure on the body.  
 

 
Fig. 2 2-Dimensional Geometry of Flow 

 
    Now the assumptions made by Maslen will be examined. In 
the shock layer, the velocity component normal to the shock is 
assumed to be very small compared to the tangential velocity 
component and is neglected. That, this is the case in the 
hypersonic limit, can be seen follows. The order of magnitude 
of the tangential and normal velocity components in the shock 
layer are given by. 
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    In the hypersonic regime shock lies close to the body, and 
hence, as seen Fig. 2 Shock angle is nearly same as the angle 
made by the tangent to the body with the x-axis, at the 
corresponding point. For points away from the stagnation 
point is less, and hence the shock angle at the corresponding 
point on the shock is also less. Hence sin β  becomes small. 
Then v << u for points far away from stagnation point, is 
justified. It is interesting that when high temperature effects 
like vibrational relaxation and chemical reaction, are taken 
into account γ →  1, the assumption that v << u is even better. 
But this assumption that v << u breaks down on the stagnation 
streamline, and is not correct in the neighborhood of the 
stagnation streamline. In other words, the assumption that v 
<< u is not uniformly valid in the entire flow field, however 
high M∞, is. 
    The other major fact to be noted is that, in Maslen's method 

the centrifugal equation 
R
V

dn
dp 2ρ

=  is integrated along the 

normal to the shock and not along normal to the streamline. 
This is correct in the hypersonic limit, but again not 
uniformly. This assumption breakdowns in the stagnation 
streamline and its neighborhood. New Maslen's method will 
be explained in detail. The other assumption made in the 
method will be examined. In Fig. 2 O1 is the assumed shock 
shape and O' 3 is the body shape to be found , 1-3 is the 
normal to the shock and 1 is just behind the shock and 3 is on 
the body surface. 1-N (in the Fig. N=2) is divided into number 
of intervals N .1-2, 2-3 aren't equispace intervals but are such 
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that ψ2 -ψ1 = ψ3-ψ2 = Δψ where ψ is the stream function. 
OO'3 is stagnation streamline on the body surface. It may be 
noted that: 
 

11 yV∞∞= ρψ                              (3)   
       
And ψn = the stream function on the body, is zero. 

 
STEP 1: 

ψΔ is calculated: as,                                   
    

N
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ψ                          (4) 

 
    At point 1 which is behind the shock flow quantities are 
known from the following oblique shock relations. 
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STEP 2: 
    Pressure at point 2 is calculated as follows. The momentum 
equation normal to a streamline is, 
 

R
V

dn
dp 2ρ

=                                                                       (9) 

 
And         
                         

V
N

d ρψ
=                                                                        (10) 

 
From (9) & (10) we find that       
 

R
Vddp ψ

=                                                             (11) 

 
As mentioned earlier V is approximated by u. 
    Maslen further assumes that R the radius of curvature of 
any streamlines lying between I and 3 to be constant and equal 
to the radius of curvature of the shock at 1, which is intuitively 
obvious in the hypersonic limit. Hence equation (11) reduces 
to, 
 

sR
uddp ψ

=                                                                    (12) 

 
    A further assumption made by Maslen's for integration of 
equation along the normal 1-3 is that u=us =u1, where us is 

tangential velocity behind the shock. This is difficult to justify, 
but it simplifies the calculation. Then (12) can be integrated 
as:   
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    It is to be mentioned that only for getting pressure in (13) u 
is assumed to be constant equal us. Subsequently u is treated as 
a variable and is calculated. In (13) making ψ =ψ2 and p=p2, 
results in: 
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    From the assumed equation of the shock, curvature of the 
shock at the point 1 is found. Hence p2 is known. 

 
STEP 3: 
As is clear from Fig. 2, 2-2' being streamline ψ2

’ = ψ2 , ψ2 is 
known. From Fig. 2 we find that 
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    Hence the location of the intersection point of streamline 2-
2' and shock is known. Using oblique shock theory, the 
entropy S2' is found. 2-2' being streamline S2=S2’, 
 

          Δs = s2’-s∞.= s2 - s∞                                                       (16) 
 

    From the first and second laws of thermodynamics we find 
that [8], 
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   From the known values of Δs from (17), and p2 from (14), T2 
is found from the following thermodynamic relation. That is,      
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Then the density ρ2 is found from the equation of state as,   
 

2
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   Since the total enthalpy is the same for the entire flow field, 
finally u2 is determined from  
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    At this stage all the flow variables are known at 2, except its 
coordinates, which will be found in the next step. 
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STEP 4: 
From the continuity equation it follows that:  
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   The only unknown Δn is found at this stage. Δn Being 
normal to the shock shape, and since the shock shape is known 
(assumed). x2 and y2 can be found from following equation: 
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    Having found the flow quantities at 2, the method described 
above is applied to calculate flow variables at the next grid 
point on the normal. The procedure is repeated till the body 
surface is reached (for which  ψ =0). 
In the same fashion, calculations are carried out along various 
normal. Hence the entire flow field and body shape are 
determined. 

IV. AXISYMMETRIC FLOW 
(paraboloidal shock) 

    In this section the flow field and the body shape are 
determined for the case of paraboloidal shock. In this case M∞, 
is assumed to be ∞. This case has been solved by Maslen and 
the result of present calculations can be compared with the 
ones available in [1]. Equation of the shock is,  
 
 rs

’ = (2x’)1/2                                                           (25) 
 
    Noting that M∞ = ∞ , the limiting non dimensional flow 
variables behind the shock are given by, 
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    Starting from the known values of flow variables behind the 
shock, the values at any point are determined, by marching 
from the shock to the body, along the normal to the shock. As 
the details are same as two- dimensional flow, are not given 
for this case. The equations for the various flow quantities are 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= )11 '

'
''

s
s kpp

ψ
ψ                                                         (30) 

 
Where;   
                    

)
21

2(
4

1
'

'

x
xk

+
+

=
γ                                                      (31) 

 
γ

ψργ
γ
γρ

/1
'' )21(

2
1

1
1

⎥⎦
⎤

⎢⎣
⎡ +

+
−
+

= s
                                      (32) 

 
2/1

2 1
2

)1(
4

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

=
ργ

γ
γ

γ pu                                             (33)  

   The radial coordinate (Fig. 3) of the point to which the 
above flow quantities belong, is determined by integration of 
the continuity equation, which is given by, 
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Fig. 3 Axisymmetric Geometry of Flow 

 
    All the above equations are given in [1]. The equations were 
re-derived, and found to be free of mistakes. 

V. NUMERICAL RESULTS 
(For two dimensional flow) 

    The flow field and body shape are calculated for parabolic 
shock shape, given by the equation: y2 =x. The free stream 
conditions correspond to ones at the altitude 20 km. they are 
given by:ρ∞ = 0.0886 Kg /m3, P∞= 5480 N/m2, T∞ = 216.65 K. 
The free stream Mach no is assumed to be 5.8. For this free 
stream condition and assumed parabolic shock shape, the flow 
field and the corresponding body shape are calculated. 
    A program computer is used for the calculation. The results 
presented in Fig. 4 shows the assumed parabolic shock shape 
and the calculated body shape. The shock shape is divided into 
30 points; the corresponding number of points on the body 
also is 30. It is important to note that the body shape obtained 
is not blunt as it should be. In a way this is expected because 
as seen earlier the important assumptions made in the Maslen's 
method break down on the stagnation streamline and its 
neighborhood.  
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Fig. 4 Assumed shock shape and corresponding body shape, Mach 

No. 5.8 
 
   As mentioned for the assumed shock shape, the flow 
quantities are obtained by numerical integration marching 
from the shock shape to the body. Integration stops where ψ = 
0, which is on the body.  In the Fig. 5 the grid points are 
shown on the various normal to the shock. In this figure each 
normal is divided into 20 intervals. All flow variables are 
calculated and the hence are known at the 20 grid points. In 
Fig. 6 the shock shape, calculated body shape, and the sonic 
line are shown. Above the sonic line flow is supersonic, and is 
subsonic below the sonic line. In Fig. 7 convergence of x and 
y coordinates of a point on the body is examined. 

 
Fig. 5 Grid Point Distribution, Mach No. 5.8 

 

 
Fig. 6 Shock shape, body shape and the sonic line, Mach No. 5.8 

 
   The corresponding point on the shock is such that the shock 
angle is 40. It is seen that for the division of normal into 
intervals, both x, y coordinates have converged. The same 
thing is shown in Fig. 8 where the only charge- is that the 
location of the point on the body is such that, for the 

corresponding point on the shock, shock angel is 80. Unlike 
for, the β=80, and it is seen that division of normal into 20 
intervals is required for the convergence. In Figs. 9 & 10 
Mach number independence of Cp is verified, for two points 
on the converged body shape. These two are the same as the 
ones chosen earlier, in Fig. 7 and Fig. 8, for the convergent 
study. As can be seen Cp becomes independent of the free 
stream Mach number, when it is about 10. Since the point on 
the body in Fig. 10 is closer to the nose, than the point in the 
Fig. 9., the asymptotic value of Cp in Fig. 10 is 1.55. In Fig. 
11 surface value of P/Po is plotted as a function of x.  
 

 
Fig. 7 Convergence of x and y coordinate of the Body Shape for the 

Shock Angle Beta, Mach No. 5.8 
 

 
Fig. 8 Convergence of x and y coordinate of the Body Shape, for the 

Shock Angle Beta=80 Mach. No. 5.8 
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Fig. 9 Variation of Cp on the Body Surface for X=0.355 Y= 0.596 

(Mach. No. Independence) 
 
 

 
Fig. 10 Variation of Cp on the Body Surface for X=0.00778 Y= 0.088 

(Mach No. Independence) 
 

 
Fig. 11 Variation of Surface Pressure / Stagnation Pressure ,   Mach 

No. 5.8 

VI.  
NUMERICAL RESULTS FOR AXISYMMETRIC 

METHOD 
    The computer program is written for determination of body 
shape and other flow variables. The distribution of P/Po on the 
surface is shown in the Fig. 12. The result available in [1] for 
this case is given in Fig. 13. 
 

 
Fig. 12 Pressure / Stagnation pressure on the Body Surface along X-

axis Mach No. Infinity 
 

 
Fig. 13 Surface Pressure on Body Supporting a parabolodial Shock; 
From Anderson [2] γ= 1.4, M∞= ∞ 

VII. CONCLUSION 
    Contrary to what is found in the literature Maslen's methods 
does not appear to be suitable for the study of hypersonic flow 
past blunt bodies. Actually for the cases of parabolic and 
paraboloidal shocks, the body shapes must be blunt. However 
for the parabolic shock, Maslen's method does not give a blunt 
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nosed body. For the paraboloidal shock though present 
calculation based Maslen's methods gives a blunt body, this is 
not same as given in Maslen's method [1]. This is because the 
algorithm used for present calculation of the coordinates of 
body surface for the axisymmetric case is not same as given 
by Maslen. The reason for the change is that, certain serious 
difficulties were encountered with Maslen's algorithm. This 
portion (calculation of coordinates for axiymmetric case) of 
the work needs closer scrutiny. 
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