
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

827

Abstract—In Knowledge and Data Engineering field, relational

database is the best repository to store data in a real world. It has
been using around the world more than eight decades. Normalization
is the most important process for the analysis and design of relational
databases. It aims at creating a set of relational tables with minimum
data redundancy that preserve consistency and facilitate correct
insertion, deletion, and modification. Normalization is a major task in
the design of relational databases. Despite its importance, very few
algorithms have been developed to be used in the design of
commercial automatic normalization tools. It is also rare technique to
do it automatically rather manually. Moreover, for a large and
complex database as of now, it make even harder to do it manually.

This paper presents a new complete automated relational database
normalization method. It produces the directed graph and spanning
tree, first. It then proceeds with generating the 2NF, 3NF and also
BCNF normal forms. The benefit of this new algorithm is that it can
cope with a large set of complex function dependencies.

Keywords—Relational Database, Functional Dependency,
Automatic Normalization, Primary Key, Spanning tree.

I. INTRODUCTION
ORMALIZATION as a method of producing good
relational database designs is a well-understood topic in

the relational database field [9]. The goal of normalization is
to create a set of relational tables with minimum amount of
redundant data that can be consistently and correctly modified
[4]. The main goal of any normalization technique is to design
a database that avoids redundant information and update
anomalies [2], [7]. Normalization is often performed as a
series of tests on a relation to determine whether it satisfies or
violates the requirements of a given normal form. Three
normal forms called first (1NF), second (2NF), and third
(3NF) normal forms were initially proposed. In practice,
however, databases are normalized up to and including 3NF.
Therefore, higher order normalization is not addressed in this
paper. The first normal form states that every attribute value
must be atomic, in the sense that it should not be able to be
broken into more than one singleton value. As a result, it is not
allowed to have arrays, structures, and as such data structures
for an attribute value. Each normal form is defined on top of
the previous normal form. That is, a table is said to be in 2NF
if and only if it is in 1NF and it satisfies further conditions.
Except for the 1NF, the other normal forms of our interest rely
on Functional Dependencies (FD) among the attributes of a
relation. Functional Dependency is a fundamental notion of
the Relational Model [3]. Functional dependency is a

Chetneti Srisa-an is with the faculty of Information Technology, Rangsit

University, Pathumthani Thailand (e-mail: chetneti@rsu.ac.th).

constraint between two sets of attributes in a relation of a
database.

Given a relation R, a set of attributes X functionally
determines another attribute Y, also in R, (written as X Y)
if and only if each X value is associated with at most one Y
value. It is customarily to call X the determinant set and Y the
dependent attribute. Given that X, Y, and Z are sets of
attributes in a relation R, one can derive several properties of
functional dependencies. Among the most important ones are
Armstrong's axioms. These axioms are used in database
normalization:

Subset Property (Axiom of Reflexivity)
: If Y is a subset of X, then X Y
Augmentation (Axiom of Augmentation)
: If X Y, then XZ YZ
Transitivity (Axiom of Transitivity)
: If X Y and Y Z, then X Z
By repeated application of Armstrong’s rules all functional

dependencies can be generated. These functional dependencies
provide the bases for database normalization.

In Section II, Step1: we use dependency graph diagrams
such as Fig. 1 to represent functional dependencies of a
database and then Step2: we have generated the spanning tree
graph using depth first search method. A few algorithms have
been developed to be used in the design of commercial
automatic normalization tools [5], [6]. In Section III, by
applying Spanning Tree, a new algorithm is introduced to
produce normal forms of the database. Section IV is
conclusion.

II. REPRESENTING DEPENDENCIES
We will use two structures, Function Dependency Graph

(DG), and Spanning tree (STG) Graph, to represent and
manipulate dependencies among attributes of a relation.

A. Function Dependency Graph
With functional dependency such as Fig. 1, we can monitor

all relations between different attributes of tables. We can
graphically show these dependencies by using a set of simple
symbols. In these graphs, arrow is the most important symbol
used. Besides, in our way of representing the relationship
graph, a (dotted) horizontal line separates simple keys (i.e.
attributes) from composite keys (i.e., keys composed of more
than one attribute).

A dependency graph is generated using the following rules.
1. Each attribute of the table is encircled.
2. Each composite key (if any) is encircled and all composite

keys are drowning on top of the graph.

Applying Spanning Tree Graph Theory for
Automatic Database Normalization

Chetneti Srisa-an

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

828

3. All functional dependency arrows are drawn.
4. All reflexivity rule dependencies are drawn using dotted

arrows (for example AB A, AB B).
Consider the functional dependency set of Example 1 [2]

for a relation r.
Example 1. FDs = {A BCD, C D, EF DG,D G}

Fig. 1 Dependency graph diagrams of Example 1

If we are able to obtain all dependencies between

determinant keys we can produce all dependencies between all
attributes of a relation.

Depth-first search (DFS) is an algorithm for traversing or
searching tree or graph data structures. One starts at the root
(selecting some arbitrary node as the root in the case of a
graph) and explores as far as possible along each branch
before backtracking. Since a spanning tree of the graph is a
connected subgraph in which there are no cycles, all nodes
will be visited by using depth first search algorithm. Using
Depth-first search (DFS) Algorithm and Armstrong’s
transitivity rule, a new Spanning Tree Graph (STG) is
constructed. From both graphs will be used for a new
normalization algorithm which we will be discussing in the
following.

Fig. 2 Spanning Tree Graph (STG)

III. THE PROPOSED NORMALIZATION PROCESS
It is assumed that the reader is familiar with the definitions

of different normal forms. Our proposed 2NF and 3NF
normalization process makes use of both dependency and
determinant key transitive dependencies.

A. Second Normal Form (2NF)
The tables of a relational database are assumed to be in 1NF

form to begin with. The resulting 1NF relation is: R2(AB, C,
D, E, F) FDs = {AB CDEF, A EF}

The goal is to discover all partial dependencies. To produce
the 2NF form, we should find all partial dependencies. To do
this, we construct dependency graph and function dependency

Fig. 3 Function Dependency Diagram Graph

Fig. 4 Spanning Tree

From Fig. 4, we can simply construct a new normalize as

following relation.
R21(A,E,F)
F21={A E, F} R22(AB,C,D) F22={AB C,D}

B. Third Normal Form (3NF)
Every non-prime attribute is non-transitively dependent on

every candidate key in the table. The attributes that do not
contribute to the description of the primary key are removed
from the table [1].

R3(A, B,C, D, E, F) FDs = {A B,C,D,E,F, B C,D}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

829

Fig. 5 Function Dependency Diagram Graph

Fig. 6 Spanning Tree

C. The BCNF Normal Form
A relation is in BCNF, if and only if, every determinant is a

candidate key. For a relation with only one candidate key like
example 1, 3NF and BCNF are equivalent [8]. To develop the
process of generating BCNF form, consider the case where
there is more than one candidate key for the table being
normalized.
Example 2. Relation R3(AB, C, D) with dependencies:
F3= {AB CD, C B}

Fig. 7 Equivalent Candidate Key Mapping

To transform the relations to BCNF requires the creation of

new relation for each transitivity dependency. The resulting
BCNF relations are: R31(AC, B,D) and R32(C,B).
Example 3. R4(A,B,C,D,E,F,G,H,I,J,K) and
F4 = {A BCEH, B CDE, CD EFG, DH IJ
I D, J K, K H, IJ DKHL, HI M}

In example 3, we will show how to cope with a large and

complex set of function dependencies that contain a multiple
candidate keys [2].

Fig. 8 Dependency graph diagram of Example 3

It is noticeable that the candidate key will be DH,IL. Firstly,

the spanning tree is generated in Fig. 9. Secondly, we will
identify the equivalent key mapping in Fig. 10.

Fig. 9 Spanning Tree Graph (STG) of Example 3

From Fig. 9, the candidate key is DH and IJ; therefore, we

can group into DHIJ KL as show below. We redraw into
Fig.10.

To transform the relations to BCNF requires the creation of
new relation for each transitivity dependency. The resulting
BCNF relations are:

DH I,J
I D
J K DHIJ KL
K-->H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

830

Fig. 10 Equivalent Candidate Key Mapping

In Fig. 10, Sub Trees represent all normalized tables.

Fig. 11 Sub Tree of Example2

R41 (A,B,H) F41={A B,H}
R42 (B,C,D) F42={B C, D}
R43 (CD,E,F) F43={CD E,F}
R44 (DHIJ,L,K) F44={DHIL J,K}
R45 (HI,M) F45={HI M}

IV. ALGORITHM
There are three steps in our algorithm. Our algorithm starts

with comparing two graphs that are generated in example 1.
There are four links are eliminated by our algorithm as shown
in Figs. 1 and 2. Step2: the determinants in each original
function dependency will be a primary key. This example will
be A,C, EF, and D. Step3: locating a candidate key is to form
BCNF. Finally, all sub trees will be isolated and redrawn as
shown in Fig. 12.

Fig. 12 Sub Trees that represent all normalized tables

R1(A,B,C,D,E) F1= {A BC}
R2(C,E) F2={C E}
R3(E,F,D) F3={EF D}
R4(D,G) F4={D G}

In summary, 3NF/BCNF Decomposition algorithms are as

following steps.
Step1. Construct dependency graph and spanning tree
Step2. For each determinant in the left side, gather all the non

key attributes in the same group of FD.
Step3. Locating a candidate key is to form BCNF.
Step4. Construct all sub trees to form all normalized tables.

V. CONCLUSION
A new complete automated relational database

normalization method is presented. The process is based on
the generation of dependency graph and spanning tree, and
algorithm. In an example 1 and 2, one without multiple
candidate keys and one with multiple candidate keys are
considered and the defined algorithms are applied to produce
the desired final tables. The developed algorithm is a new
technique that will formulate 3NF/BCNF normal form and
distinguish a primary key for every final table that is
generated. In example 2, the benefit of this algorithm is that it
can cope with a large set of complex function dependencies.

REFERENCES
[1] Connoly, Thomas, Carolyn Begg: Database Systems. A Practical

Approach to Design, Implementation, and Management , Pearson
Education, Third edition, 2005.Relational and XML Data, Journal of
Computer System Science, Vol. 73(4): pp. 636-647, 2007..

[2] Date, C.J., An Introduction to Database Systems, Addison-Wesley,
Seventh Edition 2000.

[3] Mora, A., M. Enciso, P. Cordero, IP de Guzman, An Efficient
Preprocessing Transformation for Functional Dependencies Sets Based
on the Substitution Paradigm, CAEPIA2003, pp.136-146, 2003.

[4] Du H., and L. Wery, A Normalization Tool for Relational Database
Designers, Journal of Network and Computer Applications, Volume 22,
No. 4, pp. 215-232, October 1999.

[5] Yazici, A., and Z. Karakaya, Normalizing Relational Database Schemas
Using Mathematica, LNCS, Springer-Verlag, Vol.3992, pp. 375-382,
2006.

[6] Kung, H. and T. Case, Traditional and Alternative Database
Normalization Techniques: Their Impacts on IS/IT Students’
Perceptions and Performance, International Journal of Information
Technology Education, Vol.1, No.1 pp. 53-76, 2004.

[7] Kolahi, S., Dependency-Preserving Normalization of Relational and
XML Data, Journal of Computer System Science, Vol. 73(4): pp. 636-
647, 2007.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

831

[8] M Arenas, L Libkin, An Information-Theoretic Approach to Normal
Forms for Relational and XML Data, Journal of the ACM (JACM), Vol.
52(2), pp. 246-283, 2005.

