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Abstract—We are interested in solving Liouville-type problems to 

explore constancy properties for maps or differential forms on 
Riemannian manifolds. Geometric structures on manifolds, the 
existence of constancy properties for maps or differential forms, and 
energy growth for maps or differential forms are intertwined. In this 
article, we concentrate on discovery of solutions to Liouville-type 
problems where manifolds are Euclidean spaces (i.e. flat Riemannian 
manifolds) and maps become real-valued functions. Liouville-type 
results of vanishing properties for functions are obtained. The original 
work in our research findings is to extend the q-energy for a function 
from finite in Lq space to infinite in non-Lq space by applying 
p-balanced technique where q = p = 2. Calculation skills such as 
Hölder's Inequality and Tests for Series have been used to evaluate 
limits and integrations for function energy. Calculation ideas and 
computational techniques for solving Liouville-type problems shown 
in this article, which are utilized in Euclidean spaces, can be 
universalized as a successful algorithm, which works for both maps 
and differential forms on Riemannian manifolds. This innovative 
algorithm has a far-reaching impact on research work of solving 
Liouville-type problems in the general settings involved with infinite 
energy. The p-balanced technique in this algorithm provides a clue to 
success on the road of q-energy extension from finite to infinite. 
 

Keywords—Differential Forms, Hölder Inequality, Liouville-type 
problems, p-balanced growth, p-harmonic maps, q-energy growth, 
tests for series. 

I. INTRODUCTION 

HE study of Liouville-type problems in Differential 
Geometry is to discover constancy properties for maps or 

differential forms between the domain and the target on 
Riemannian manifolds. Existence of constancy properties is 
determined by geometric structures on manifolds and energy 
growth for maps or differential forms.  

Liouville-type problems have been studied in two directions. 
One of the research directions is to study all kinds of manifolds 
equipped with various metric structures. Manifolds can be 
classified according to their curvature values. Flat manifolds 
such as Euclidean Spaces are manifolds with curvature values 
equal to zero. Non-flat manifolds are curved manifolds with 
non-zero curvature values varying from positive to negative. 
Mathematicians have been interested in investigating all 
possible manifold metric structures to assure existence of 
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constancy properties for maps or differential forms. The other 
research direction is to study energy growth for maps or 
differential forms. Most research work was to study q-energy 
for maps or differential forms. Many Liouville-type results 
have been obtained by mathematicians in the context of finite 
q-energy for maps or differential forms in Lq space.  

Liouville-type results are summarized as follows: In 1976, 
Schoen and Yau solved Liouville-type problems for harmonic 
maps and obtained the constancy property on manifolds with 
non-negative Ricci curvature values [1]. In 1981, Greene and 
Wu obtained Liouville-type results of vanishing property for 
harmonic 1-forms with finite q-energy in Lq space on 
non-negatively curved manifolds for q > 1 [2]. In 1994, Kawai 
discovered Liouville-type results for p-harmonic maps from 
p-parabolic manifolds to manifolds with non-positive curvature 
values when 2p  [3]. In 1995, Cheung and Leung proved 

Liouville theorems for p-harmonic maps for 2p  with finite 

q-energy in Lq space where 1 pq on the target space of 

Cartan-Hadamand manifolds [4]. In 2001, Zhang proved 
Liouville-type Theorems for closed and p-co-closed differential 
1-form (p > 1) with finite q-energy in Lq space (q > 0) on 
positively curved manifolds [5]. In 2008, Pigola et al. explored 
Liouville-type results for p-harmonic maps on curved 
manifolds, provided the domain manifolds support a Sobolev–
Poincaré Inequality [6].  

In this article, we focus on solving Liouville-type problems 
where manifolds are Euclidean spaces and maps are real-valued 
functions. Our research goal is to break constraints of finite 
q-energy into compound energy inequalities to obtain 
Liouville-type results. In particular, we apply the p-balanced 
energy technique for functions to generalize q-energy from 
finite to infinite. More precisely, we apply Hölder's Inequality 
and Tests for Series to evaluate limits and integrations for 
function energy in the computational method. Liouville-type 
result of vanishing properties for functions is obtained.  

The original work in our research findings as Liouville-type 
results is to extend the q-energy for a function from finite in Lq 
space to infinite in non-Lq space by applying p-balanced 
technique where q = p = 2. Computational methods and energy 
estimation techniques applied to functions in Euclidean spaces, 
which are presented in this article, can be generalized as a 
successful algorithm applied to maps or differential forms on 
Riemannian manifolds. This algorithm can play an important 
role in solving Liouville-type problems in the general settings 
with energy approaching to infinite. The p-balanced energy 
technique in this innovative algorithm has a far-reaching 
impact on research work of q-energy generalization from finite 
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to infinite.  

II. PRELIMINARY 

In this section, we give definitions of p-harmonic maps, 
differential forms, q-energy and p-balanced energy for maps or 
differential forms respectively. We also recall Bochner- 
Weitzenbock Formula on manifolds, Hölder's Inequality, 
Cauchy-Schwarz Inequality, and Tests for Series in Calculus.  

Let M be an n-dimensional complete non-compact 
Riemannian manifold with volume element dv and );( 0 rxB

(or )(rB ) be a geodesic ball of radius r centered at a point 0x  

on M.  
Let )()( * VMTC kk A  be the space of smooth 

k-forms on M with values in the vector bundle MV : . Let 

)()( 1   kkd: AA be the exterior differential operator and 

)()( 1*   kk:d AA be the adjoint differential operator of d 

given by  


n

j ej j
eid

1

* )( where }{ je is a local 

orthonormal frame at ,Mx  and i(X) is the interior product by 

X given by ),,,(),,)()(( 1111   kk YYXYYXi    for any

,MTX x  )( kA  and ,MTY xl  .11  kl  In 

particular, if ),(1  A  *d is also defined by

.divtrace*  d  The Hodge Laplacian ∆ is defined 
on the V-valued differential forms by 

).()(:)( ** VVdddd kk AA   The norm of  is 

denoted by 2

1

,||   . More details can be found in [7]. 

Definition 1. A differential form  is said to be harmonic if

,0)( **   dddd  closed if ,0d  co-closed if 

.0* d  

Definition 2. A differential form  is said to be p-pseudo-co- 

closed (p > 1) if .0)|(| 2*   pd  

Definition 3. A function or a differential form f has finite 

q-energy (for q > 0) in Lq-space if  
M

q dvf || . Otherwise, f 

has infinite q-energy (for )0q  in non-Lq-space if

 
M

q dvf || .  

The concept of p-balanced growth for 1p consists of 5 

cases: p-finite growth, p-mild growth, p-obtuse growth, 
p-moderate growth, and p-small growth. A function or a 
differential form f is said to be with p-balanced growth 
provided f has one of “p-finite, p-mild, p-obtuse, p-moderate, 
and p-small” growth where p > 1. Otherwise, a function or a 
differential form f is said to be with p-imbalanced growth [8].  
Definition 4. A function or a differential form f has p-finite 
growth if f satisfies  
 

 
 );( 0
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1
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rxB

q
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dvf
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and has p-infinite growth otherwise for p > 1 and q > 0. 
A function or a differential form f has p-mild growth if there 

exists Mx 0 , and a strictly increasing sequence of 
0}{ jr

going to infinity, such that for every 00 l , we have 
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and has p-severe growth otherwise for p > 1 and q > 0. 

A function or a differential form f has p-obtuse growth if 
there exists Mx 0  such that for every 0a , we have 
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and has p-acute growth otherwise for p > 1 and q > 0. 

A function or a differential form f has p-moderate growth if 
there exists Mx 0  and )(rF F, such that 
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(Notice that functions or differential forms in F are not 
necessarily monotone.) and has p-immoderate growth 
otherwise for p > 1 and q > 0. 

A function or a differential form f has p-small growth if there 
exists Mx 0  such that for every 0a , we have 

 
















 





dr
dvf

r
p

a

rxB

q

1

1

);( 0
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and has p-large growth otherwise for p > 1 and q > 0. 

The above definitions of “p-finite, p-mild, p-obtuse, 
p-moderate, and p-small” and their counter-parts “p-infinite, 
p-severe, p-acute, p-immoderate, and p-large” growth depend 
on q, and q will be specified in the context in which the 
definition is used.  

Here, it is obvious for us to observe that a function or a 
differential form f has the vanishing p-finite growth if f has 
finite q-energy, that is: 
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q dvf || . 
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Definition 5. The p-energy (p > 1) functional for a map u is 

given by 
M

p
p dvdu

p
uE ||

1
)( where du denotes the 

differential of u. 
Definition 6. A map u is said to be p-harmonic ( 1p ) if it is 

a critical point of p-energy functional )(uEp . Equivalently, u is 

p-harmonic if it is a solution to 0)|(|div 2   uu p . u is said 

to be harmonic (i.e. p-harmonic for )2p if it is a solution to

0)(div  uu . 

Lemma 1.  (Bochner-Weitzenbock Formula) For any 
differential form  on M, the following identity holds: 
 

),(||,||
2

1 22  R  

 

where ),( R  denotes the Ricci curvature of M in the 

direction of  . 

Lemma 2. (Hölder's Inequality) Let ),1(, qp  with 

111  qp . For any positive numbers ),,,( 21 naaaa   

and ),,,( 21 nbbbb  in nR , we have 

qn
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1

1

1
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. For any positive functions f and 

g, we have    qqpp dvgdvffgdv
11

  . In particular, for 

p=q=2, we have Cauchy-Schwarz Inequality as a special case 

of Hölder's Inequality:    2

1
22

1
2   dvgdvffgdv . 

Next, let us recall Limit of the n-th Term of a Convergent 
Series and a test for a telescoping series in Calculus.  

Theorem 1. If the series 

1n na  converges, then the sequence 

 na  converges to zero, that is:  
 

If 

1n na converges, then 0lim 
 n

n
a . 

 

Theorem 2. A telescoping series )( 111 







  nn nn n bba  

converges if and only if the sequence  nb  is convergent to a 

finite number L. Furthermore, the sum of the convergent 
telescoping series will approach to the value of Lb 1 , that is: 
 

)( 11 



 nn n bb converges iff Lbn

n



lim . 

 

and the sum LbbbasS n
n

i
n

n
n

 


  111

n

1i

)(lim  limlim .  

III. RESULT AND PROOF 

In this section, we first give a statement of the Liouville 
Theorem for functions. After that, we present the detailed proof 

on how to obtain the vanishing property for a function as 
Liouville-type results of our research findings.  

A. Result of Liouville Theorem for Functions   

Theorem 3. Assume that two functions f and g satisfy the 
following two conditions where gf 0 : 

1. 
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0
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dttg
r

r
 (that is, g has 2-finite growth for q 

= 2). 
Then, we obtain the vanishing property for the function f, that is 

0)( tf . 

B. Proof 

Since r , there must exist an increasing sequence }{ jr  

such that  
 

jj rr 21   or 11 2

1
  jjj rrr . 

 
Letting jra   and 1 jrb , we can rewrite the first 

condition 
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Since gf 0 , via Cauchy-Schwarz Inequality, we have: 
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For simplicity, we define the following notations: 
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We notice that the sequence }{ jA  is bounded since 
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0
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j
 from the second 

condition in assumption that g has 2-finite growth for q = 2. 
Then (1) becomes 
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By squaring on both sides, we have: 
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where we use the fact 11 2

1
  jjj rrr  and the bounded 

sequence KAj 1 (where K is a finite positive number).  

We sum up (2) to get: 
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and KQj 41   in (3).  

Here, we prove that the series 





1

2
1

j
jQ is convergent. By 

Theorem 1, we claim that 0lim 1  j
j

Q , that is .0))((
0

2 


dttf  

Furthermore, we verify 0)( tf if .0))((
0

2 


dttf  We 

obtain a Liouville-type result of the vanishing property for a 
function f in the context of p-finite growth as one case of 
p-balanced technique where q = p = 2.   

IV. CONCLUSIONS 

The original work in our research findings is to explore and 
verify a new energy technology and an innovative algorithm as 
a successful way to extend q-energy from finite in Lq space to 
infinite in non-Lq space. Computational methods and algorithm 
utilized to functions for Liouville-type solutions in flat 
manifolds, which are presented in this article, can be 
successfully applied to maps or differential forms for 
Liouville-type solutions on curved manifolds.  

V. RESEARCH IMPACT 

Both p-balanced energy technique and this innovative 
algorithm have far-reaching research impact on solving 
Liouville-type problems in the general settings with infinite 
energy. As applications of this successful algorithm and the 

p-balanced energy technique, many Liouville-type results for 
maps and differential forms approaching infinite q-energy in 
non-Lq space have been achieved in Wu’s research work 
[9]-[13]. 

Regarding research impacts on differential forms, we have 
explored the technique of p-balanced energy in this innovative 
algorithm to overcome difficulties of q-energy extension up to 
infinite [9]-[12]. Starting with the definition of p-balanced 
energy growth, we are interested in a harmonic form on a 
manifold with non-negative Ricci curvature [9], a closed and 
p-pseudo-co-closed differential 1-form on a curved manifold 
with the support of Sobolev-Poincaré Inequality in a mix of 
curvature signs [10], a closed and co-closed differential k-form 
on a complete non-compact manifold [11], a closed and 
p-pseudo-co-closed differential 1-form on a manifold with 
non-negative Ricci curvature [12].  

In a summary, for any differential form   on M and an 
appropriate range of m [9], [10], [12], we consider two 
non-negative functions |||||| 21   mf  and 1||  mg  . 

After that, we figure out that Bochner-Weitzenbock Formula 
applied for differential forms on manifolds has played a 
significant role in guaranteeing the first assumption of Theorem 
3 to be satisfied.  More precisely, we claim that 
Bochner-Weitzenbock Formula works as the foundation to 
establish (4), which initiates the process of this innovative 
logarithm listed as below: 

Since r , there must exist an increasing sequence }{ jr  

such that  
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11 2

1
  jjj rrr . 
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terms of |||||| 21   mf  and 1||  mg  .  In addition,  
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has been modified as  
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where 1C , 2C  are the positive constants and the test function of 

),;( 1 jjj rrx  is a rotationally symmetric Lipschitz 

continuous function with the following properties: 
a. 1i  on );( jrxB  

b. 0i  off );( 1jrxB  

c. 10  i  on );(\);( 1 jj rxBrxB   

d. 
jj

i rr

C




1

||   a.e. on M for a positive constant C, which 

is independent with choices of }{ jr . 

For simplicity, we re-define the following notations: 
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We notice that the sequence }{ jA  is bounded since 
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 from the second 

condition in assumption that the differential form   has 
2-finite growth for q = 2m+2. Then (4) becomes 
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where 3C  is a positive constant. 

As the same proof shown in Theorem 3, we prove that the 

series 
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jQ is convergent. By Theorem 1, we claim that

0lim 1  j
j
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dttf . In the other words, we 

prove .0)|||(| 221 

M

m dv  Based on the fact of

,||||
)1(

4
)|||(| 21

2
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 mm

m
  we verify that 

0|| 1 m  on M and obtain the result of || constant. 

Furthermore, special manifold structures determined by 
curvature properties or Sobolev–Poincaré Inequality have ruled 
out the existence of differential forms equal to non-zero 
constants. Therefore, the existence of differential forms with 
the zero constant property, as Liouville-type results of 
vanishing properties for differential forms ,  has been 
achieved in the context of p-finite growth as one case of 
p-balanced energy technique where p = 2. The detailed proofs 
can be found [9], [10], [12]. 

In [11], we consider 2*2 ||||  ddf   and ||g for 

a differential form  . The same algorithm has been initiated 

from the following inequality: 
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along with the revised notations listed as below: 
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for a positive constant 4C . 

Regarding research impacts on maps, we have applied 
p-balanced energy technique and this innovative algorithm to 
p-harmonic maps to overcome difficulties of q-energy 
generalization leading to infinity [10]. Starting with a definition 
of p-balanced energy growth [10], we focus on the differential 
of a p-harmonic map u (i.e. du) on a manifold supported by 
Sobolev–Poincaré Inequality with the mixed curvature signs. 
Just as the same argument in this innovative logarithm by 
setting du , we obtain ,0du  which indicates u as 
constant. Liouville-type results of constancy property for a 
p-harmonic map have been obtained in the context of p-finite 
growth as one case of p-balanced technique where p = 2.   

VI. FUTURE RESEARCH PLANS 

Mathematicians have been studying Liouville-type problems 
to overcome the challenge of infinite q-energy for many years. 
Many effective research approaches and valuable results have 
been found. In this article, we only discover the p-finite growth 
as one case of the p-balanced energy technique to extend 
q-energy from finite to infinite. Actually, the remaining four 
cases of “p-mild, p-obtuse, p-moderate, and p-small” growth [5] 
in the p-balanced energy technique can be continuously 
explored as effective approaches to overcome difficulties of 
q-energy generalization leading to infinite q-energy. The 
logarithm in the context of p-balanced energy technique for 
cases of “p-mild, p-obtuse, p-moderate, and p-small” growth 
will be our follow-up research work. Furthermore, seeking 
successful algorithms with effective energy estimation 
techniques to solve Liouville-type problems in the general 
settings at all possible infinite energy situations will be our 
research interest in the future. 
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