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Abstract—The objective of this research is to calculate the 
optimal inventory lot-sizing for each supplier and minimize the total 
inventory cost which includes joint purchase cost of the products, 
transaction cost for the suppliers, and holding cost for remaining 
inventory. Genetic algorithms (GAs) are applied to the multi-product 
and multi-period inventory lot-sizing problems with supplier 
selection under storage space. Also a maximum storage space for the 
decision maker in each period is considered. The decision maker 
needs to determine what products to order in what quantities with 
which suppliers in which periods. It is assumed that demand of 
multiple products is known over a planning horizon. The problem is 
formulated as a mixed integer programming and is solved with the 
GAs. The detailed computation results are presented. 
 

Keywords—Genetic Algorithms, Inventory lot-sizing, Supplier 
selection, Storage space. 

I. INTRODUCTION 
OT- sizing problems are production planning problems 
with the objective of determining the periods where 

production should take place and the quantities to be produced 
in order to satisfy demand while minimizing production and 
inventory costs [1]. Since lot-sizing decisions are critical to 
the efficiency of production and inventory systems, it is very 
important to determine the right lot-sizes in order to minimize 
the overall cost.  

Lot-sizing problems have attracted the attention of 
researchers. The multi-period inventory lot-sizing scenario 
with a single product was introduced by Wagner and Whitin 
[2], where a dynamic programming solution algorithm was 
proposed to obtain feasible solutions to the problem. Soon 
afterwards, Basnet and Leung [3] developed the multi-period 
inventory lot-sizing scenario which involves multiple products 
and multiple suppliers. The model used in these former 
research works is formed by a single-level unconstrained 
resources indicating the type, amount, suppliers and 
purchasing time of the product.  
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This model is not able to consider the capacity limitations. 

One of the important modifications we consider in this paper 
is that of introducing storage capacity. In this paper based on 
Basnet and Leung [3] genetic algorithms (GAs) are applied to 
the multi-product and multi-period inventory lot-sizing 
problem with supplier selection under storage space. Also a 
maximum storage space for the decision maker in each period 
is considered. The decision maker needs to determine what 
products to order in what quantities with which suppliers in 
which periods. The objective of this research is to calculate 
the optimal inventory lot-sizing for each supplier and 
minimize the total inventory cost.  

II.  METHODOLOGY  

A. Genetic Algorithms Approach  
The genetic algorithms (GAs) approach is developed to find 

optimal (or near – optimal) solution. Detailed discussion on 
GAs can be found in books by Holland [4], Michalewicz [5], 
Gen and Cheng [6] [7], Davis [8] and, Goldberg [9]. In this 
section, we explain GAs procedure is illustrated in Fig. 1. 
Topics covered include (1) Chromosome structure (2) Initial 
population (3) Evaluation (4) Selection (5) Crossover (6) 
Mutation, and (7) Termination rule.  
 

 
Fig. 1 The genetic algorithm procedure 
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1. Chromosome Structure 
In this problem, we take each chromosome as a model 

solution, where I, J and T are the number of products, 
suppliers and periods, respectively, and each chromosome is a 
real values vector (we make it by X) by length of (I x J x T) 
and a binary values vector are 0 or 1 (we make it by Y) by 
length of (J x T), appropriate by each ijtX  and jtY  (decision 
variables). For example, the representation of a chromosome 
is illustrated in Fig. 2. 

 
 
 
 

Fig. 2 Chromosome structure 
 

2.  Initial Population 
The population initialization technique used in the GAs 

approach is a randomly generate solutions for the entire 
population. Population size depends only on the nature of 
problems and it must balance between time complexity and 
search space measure. More population size may increase the 
probability of finding optimal solution, but may induce a 
longer computer time. In this paper, we use a population size 
is set not less than twice the length of the vector of the 
chromosomes [10]. 

3. Evaluation or Fitness Function 
It is evaluated by the chromosome structure which results in 

positive value in [11]. Fitness value defines the relative 
strength of a chromosome compared with the others, and the 
optimality of the solution to the problem. The fitness function 
of this model is an objective one (to minimize cost). 

4. Selection 
The selection of parents to produce successive generations 

plays an extremely important role in the GAs. The goal is to 
allow the fittest individuals to be selected more often to 
reproduce. However, all individuals in the population have a 
chance of being selected to reproduce the next generation. In 
this paper, the roulette wheel selection technique is used [12]. 

5. Crossover Operator 
Crossover operators combine information from two parents 

in such a way that the two children (solutions for the next 
population) resemblance to each parent. There are several 
available methods to do so [13]. This paper adapts two point 
crossover operators to solve GAs [12]. 

6. Mutation Operator 
Mutation operators alter or mutate one chromosome by 

changing one or more variables in some way or by some 
random amount to form one offspring. For mutation, we use a 
linear mutation by probability (1/I x J x T) for mutating X 
vector and bit-wise mutation by probability (1/J x T) for Y 
vector [14], [15]. 

 

7. Termination Rule  
The GAs moves from generation to generation selecting 

and reproducing parents until a termination criterion is met. 
The most frequently used stopping criterion is a specified 
maximum number of generations. In this paper, there are two 
stop criteria. First, the process is stopped when the number of 
interations has reached the maximum generations. Second, the 
process is stopped when the maximum time exceeds (set at 
120 minutes) [3]. 

B. Formulation 
We also make the following assumptions and mathematical 

for the model: 
Assumptions 

• Demand of products in period is known over a planning 
horizon. 

• All requirements must be fulfilled in the period in which 
they occur: shortage or backordering is not allowed. 

• Transaction cost is supplier dependent, but does not depend 
on the variety and quantity of products involved. 

• Holding cost of product per period is product-dependent. 
• Product needs a storage space and available total storage 

space is limited. The storage space is for finished goods. 
Base on the above assumption of model, Fig. 3 shows the 

behavior of the model considering the scenario of multi-period 
inventory lot-sizing problem with supplier selection under 
storage space. The characteristics of the model used to 
determine what products i , with which suppliers j , and in 
which periods t  to order )( ijtX . 

 

Fig. 3 Behavior of the model in period 
 

Mathematical Modeling 
This paper is built upon Basnet and Leung [3] model. We 

formulate the multi-product and multi-period inventory lot-
sizing problem with supplier selection under storage space 
using the following notation: 
Indices: 
i       =     1,…., I   index of products 
j        =     1,…., J   index of suppliers 
t       =     1,…., T   index of time periods 
Parameters: 

Chromosome 111X  112X  … ijtX  … 1−IJTX IJTX
11Y  12Y  … jtY  … 1−JTY JTY
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itD    =     demand of product i  in period t  
ijP     =     purchase price of product i  from supplier j  
iH     =     holding cost of product i per period 
jO     =     transaction cost for supplier j  
iw     =     storage space product i    

S       =    total storage space   
Decision Variables: 

ijtX   =     number of product i  ordered from supplier j  in 
period t   

jtY     =     1 if an order is placed on supplier j  in time period 
t , 0 otherwise 
Intermediate Variable: 

itR     =     Inventory of product i , carried over from period t  
to period t  + 1 

Regarding the above notation, the mixed integer 
programming is formulated as follows: 

 

Minimize (TC) ++∑∑∑∑∑
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j, tjt Y ∀=                         1or0             (5) 

 
i, j, tijt  X ∀≥                    0            (6) 

 
The objective function as shown in (1) consists of three 

parts: the total cost (TC) of 1) purchase cost of the products, 
2) transaction cost for the suppliers, and 3) holding cost for 
remaining inventory in each period in    t+ 1.  

Constraint in (2) all requirements must be filled in the 
period in which they occur: shortage or backordering is not 
allowed. Constraint in (3) there is not an order without 
charging an appropriate transaction cost. Constraint in (4) 
each products have limited capacity. Constraint in (5) is 
binary variable 0 or 1 and Constraint in (6) is non-negativity 
restrictions on the decision variable. According to a large 
optimal problem, a GAs approach is applied to solve this 
problem. 

C. A Numerical Example 
In this section we solved a numerical example of the model 

using real parameter genetic algorithms. We consider a 
scenario with three products over a planning horizon of five 
periods whose requirements are as follows: demands of three 
products over a planning horizon of five periods are given in 
Table I. There are three suppliers and their prices and 
transaction cost, holding cost and storage space are show in 
Table II and Table III, respectively. 

 
TABLE I 

DEMANDS OF THREE PRODUCTS OVER A PLANNING HORIZON OF FIVE 

PERIODS )( itD  

 
 

Products 

Planning Horizon (Five Periods) 

1 2 3 4 5 

A 12 15 17 20 13

B 20 21 22 23 24 

C 20 19 18 17 16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE III 

HOLDING COST OF THREE PRODUCTS  A, B, C )( iH  AND STORAGE SPACE OF 

THEM )( iw  

 
 

Products 

Products 

A B C 

Holding Cost 1 2 3 

Storage Space 10 40 50 

The total storage space )(S is equal to 200.  

 
The results of applying the proposed method are shown in 

Table IV. The solution of this problem (I = 3, J = 3, and T = 
5) is to place the following orders. All other ijtX = 0:  

 
 
 
 
 
 
 
 
 
 
 

  TABLE II 
PRICE OF THREE PRODUCT BY EACH OF THREE SUPPLIERS X, Y, Z )( ijP AND 

TRANSACTION COST OF  THEM )( jO .  

 
 

Products 

Price 

 
1 2 3 

A 30 33 32 

B 32 35 30 

C 45 43 45 

Transaction Cost 110 80 102 
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TABLE IV 
ORDER OF THREE PRODUCTS OVER A PLANNING HORIZON OF FIVE 

PERIODS )( ijtX  

 
 

Products 

Planning Horizon (Five Periods) 

1 2 3 4 5 

A X131 =  12 X132 =  15 X113 =  37 - X135 =  13

B X231 =  20 X231 =  21 X213 =  22 X234 =  23 X235 =  24

C X131 =  12 X132 =  15 X113 =  37 - X135 =  13

 
Cost calculation for this solution: 

Purchase cost for product 1 from supplier 1, 3 
= (37×30) + (12+15+13) × 32 = 2,390.    

Purchase cost for product 2 from supplier 1, 3 
= (22×32) + (20+21+23+24) × 30 = 3,344.  

Purchase cost for product 3 from supplier 1, 3 
= (18×45) + (20+19+17+16) × 45 = 4,050.    

Transaction cost from supplier 1, 3  
=  (1×110) + (4×102) = 518. 

Holding cost for product 1 
1311313  D-XR               =   = 37 − 17 = 20. 

=  ∑ tRH 11      = 1× (0 + 0 + 20 + 0 + 0) = 20. 
Thus, the total cost for this solution 

= 2,390 + 3,344 + 4,050 + 518 + 20 
= 10,322. 

III. RESULTS 
Computation Results 

In this section the comparison of the two methods solved 
problem size is using a commercially available optimization 
package like LINGO12 and GAs code is developed in 
MATLAB7. Experiments are conducted on a personal 
computer equipped with an Intel Core 2 duo 2.00 GHz, CPU 
speeds, and 1 GB of RAM. The transaction costs are 
generated from int [50; 200], a uniform integer distribution 
including 50 and 200. The prices are from int [20; 50], the 
holding costs from int [1; 5], the storage space from int [10; 
50], and the demands are from int [10; 200]. 

 

 

 

 

 

 

 

 

 

 

The result in Table V shows the GAs comparing with 
LINGO12 for the nine problem sizes. A problem size of I; J; 
T indicates number of suppliers = I, number of products = J, 
and number of periods = T.  Computation time limit is set at 
120 minutes. For comparison, the percentage error is 
calculated by (7) and (8).  

Percentage error of LINGO12 

100
boundUpper 

boundLower    -  boundUpper                 ×⎥
⎦

⎤
⎢
⎣

⎡
=        (7) 

Percentage error of  GAs 

100
LINGO boundUpper 

GAs  -  LINGO boundUpper                ×⎥⎦

⎤
⎢⎣

⎡
=        (8) 

The solution time of LINGO12 to optimal is a short time as 
the small problem size (with the problem sizes 3 x 3 x 5; 3 x 3 
x 10; 3 x 3 x 15; and 4 x 4 x 10). For large problems sizes 
LINGO12 cannot obtain optimal solutions within limit time 
due to as the larger problem size (with the problem sizes 4 x 4 
x 15; 5 x 5 x 20; 10 x 10 x 50; 10 x 10 x 80; and 15 x 15 x 
50). The GAs can optimally solve when the problem size is 
small (with the problem sizes 3 x 3 x 5; 3 x 3 x 10; 3 x 3 x 15; 
4 x 4 x 10; 4 x 4 x 15; 5 x 5 x 20; and 10 x 10 x 50). There are 
two problems which GAs cannot obtain optimal solutions 
(with the problem sizes 10 x 10 x 80; and 15 x 15 x 50). 

Next, we study differences in the problem sizes between 
solutions from the optimization with LINGO12 and the GAs. 
The results are show in Fig. 4, a plot of the problem size 
versus solution time. LINGO12 uses longer computation time 
more than GAs with seven problem sizes, but uses equal time 
with two problem sizes. As show in Fig. 5 a plot of the 
problem size versus % error when the problem size is very 
large, LINGO12 used a maximum % error from the optimal 
solutions is found to be 4.41% (at the problem size 10 x 10 x  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  TABLE V 

COMPARATIVE RESULTS OF THE TWO METHOD 
 
 

Problem size 
Optimization approach with LINGO12 Genetic Algorithms (GAs) 

 
Total cost 

Solution time 
(minute) 

 
% Error 

 
Total cost 

Solution time 
(minute) 

 
% Error 

3 x 3 x 5 10,322 0.01 0 10,322 0.02 0 

3 x 3 x 10 20,644 0.14 0 20,644 0.21 0 

3 x 3 x 15 30,966 14.35 0 30,966 1.45 0 

4 x 4 x 10 25,436 6.34 0 25,436 0.51 0 

4 x 4 x 15 38,154a , 37,828b      120 0.85 38,154 2.47 0 

5 x 5 x 20 60,218a , 59,527b      120 1.14 60,200 3.36 0.03 

10 x 10 x 50 285,344a , 274,758b      120 3.70 284,940 108.50 0.14 

10 x 10 x 80 456,494a , 436,317b      120 4.41 455,904 120 0.12 
15 x 15 x 50 417,800a , 405,155b      120 2.66 416,473 120 0.31 

aLINGO12 = Upper bound, bLINGO12 = Lower bound. 
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80) which has more % error than GAs. The GAs can solve 
small % error of two problem sizes (at the problem size 10 x 
10 x 80; and 15 x 15 x 50). Fig. 6 and Fig. 7 show compares 
result between LINGO12 and GAs in problem size 3 x 3 x 5. 

Thus, it is evident that GAs is an effective means for 
solving the problem. GAs solution is optimal when the 
problem size is small. For larger problems GAs can find 
feasible solution within time limit for which LINGO12 fails to 
find the optimum. However, the GAs provides superior 
solutions to those from LINGO12 that are close to optimum in 
a very short time, and thus appears quite suitable for 
realistically sized problems. 

Additionally, the computation time when using GAs is also 
short, making it a very practical means for solving the 
multiple products and multi-period inventory lot-sizing 
problem with supplier selection under storage space. 
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Fig. 4 Plot of the problem size vs. solution time (minute) 
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Fig. 5 Plot of the problem size vs. % error 

 
 

 
Fig. 6 The best objective of LINGO 12 

 
 

 
Fig. 7 The fitness value of GAs 

 

IV. DISCUSSION  

In this paper, we present genetic algorithms (GAs) applied 
to the multi-product and multi-period inventory lot-sizing 
problem with supplier selection under storage space. Also a 
maximum storage space for the decision maker in each period 
is considered. The decision maker needs to determine what 
products to order in what quantities with which suppliers in 
which periods. The mathematical model is give and the use of 
the model is illustrated though a numerical example. The 
problem is formulated as a mixed integer programming and is 
solved with LINGO12 and the GAs. As compared to the 
solution of optimization package like LINGO12, the GAs 
solutions are superior. 
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