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 
Abstract—Chaotic analysis has been performed on the river flow 

time series before and after applying the wavelet based de-noising 
techniques in order to investigate the noise content effects on chaotic 
nature of flow series. In this study, 38 years of monthly runoff data of 
three gauging stations were used. Gauging stations were located in 
Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time 
series was estimated with the aid of Gaussian kernel algorithm. This 
step was found to be crucial in preventing removal of the vital data 
such as memory, correlation and trend from the time series in 
addition to the noise during de-noising process. 
 

Keywords—Chaotic behavior, wavelet, noise reduction, river 
flow. 

I.INTRODUCTION 

ANY natural phenomena such as earthquakes, floods, 
rain, solar radiation and in a wider range, most 

geophysical events can be studied within the time series 
framework. Studying natural events as time series gives the 
ability to investigate their embedded dynamical features in 
time variant scales. The data driven from natural dynamical 
systems like observed hydrological time series are prone to 
noise [1], [2]. The measured time series always contain some 
noise due to random influences (dynamical noise) and 
inaccuracies (additive noise) [3]. The performance of 
modeling techniques, prediction and control of hydrological 
systems is heavily affected by noise. The chaotic 
characteristics of time series are also influenced by noise 
components [4]. As reported in some studies, raw time series 
of natural events do not show any chaotic deterministic 
properties until being de-noised [1]. Also, some studies have 
compared the noise effects on chaotic behavior and 
predictability of hydrological time series [5]. To reveal the 
chaotic behavior of the hydrological time series, noise removal 
or noise reduction is a necessary step. Moving average, low-
pass filters, nonlinear smoothing and wavelet-based de-noising 
algorithms are the common noise reduction techniques [4]. 
This study focuses on the influence of the wavelet based de-
noising techniques and analyzes the chaotic behavior of river 
flow time series. Wavelets have been shown to be an 
indispensable tool for scale variant representation and analysis 
of temporal data [6]. The suitability of the wavelet analysis 
roots in its capability in analyzing all types of the signal 
classes. Fourier Transform (FT) and Fast Fourier Transform 
(FFT) have commonly been used for time series analysis. 
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Employing harmonic sine and cosine transforms repeating 
constantly in a (-∞, +∞) domain, FT and FFT can yield the 
frequency contents of a signal. However, the Fourier 
transform is not fully efficient in analyzing the frequency 
contents of fBm signals [7]. Another deficiency of the Fourier 
transform is its incapability to determine the occurring time of 
each frequency beside its amplitude [6]. Although using Short-
Time Fourier Transform (STFT), which maps a signal into a 
two dimensional function of time and frequency can cope with 
some of these shortcomings, the problem still remains for non-
stationary signals. 

Wavelet Transform (WT) has overcome the problems 
working with FFT and STFT. In WT, while analyzing the 
signal frequency with scale variations, the calculation time 
will be also reduced significantly. Besides, while the other 
methods can just analyze the stationary time series, WT 
efficiently analyze the non-stationary ones as well. Another 
important feature of WT is its ability to decompose signals at 
different orders, which is done in a preprocessing step. In 
wavelet multi-resolution analysis, time series are treated on 
different scales. WT decomposes the signals into coefficients 
of coarser scales defining approximation signals and 
coefficients of finer scales, the so-called detail signals. 
Decomposing a signal into the approximation signal, revealing 
the signal’s basic trend, and the detail signal indicating the 
noise components, is an effective technique in data processing 
as it leads to noise separating approach. WT provides a 
mechanism to exclude the noise term from the signal or reduce 
it to a level which does not affect the time series predictability 
or chaotic behavior remarkably if it possesses any. Continuous 
Wavelet Transform (CWT) and Discrete Wavelet Transform 
(DWT) are two wavelet approaches to perform the noise 
removal. Hydrological processes studied by some researchers 
[8]-[16], which have shown low chaotic dimensionality, are 
assumed to be chaotic systems. These non-linear dynamic 
systems might be better understood if we use non-linear 
chaotic models to analyze them instead of stochastic ones 
[17]. 

The chaotic behavior of the stream flow time series has 
been investigated by many researchers [12]-[21]. Some studies 
have demonstrated that chaotic approach is better than the 
traditional stochastic approaches for analyzing dynamic 
hydrological systems [22]-[24]. However, the effect of the 
wavelet based de-noising techniques on the chaotic behavior 
of the river flow time series has not yet been fully explored 
and understood.  
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The special feature of this study is the comprehensive 
analysis of wavelet based noise reduction effects on the 
different chaotic aspects of the time series. 

II .THEORY 

A. Wavelet Analysis 

Wavelet concept provides a method to overcome the 
limitations of Fourier analysis. Fourier analysis consists of 
breaking up a signal into sine waves of various frequencies 
while wavelet analysis is the breaking up of a signal into 
shifted and scaled version of the original wavelet which is 
called the mother wavelet [25]. Clearly a signal with sharp 
edges and changes would be better analyzed with an irregular 
wavelet than with a smooth sinusoid. Employing WT, time 
information and frequency contents of a signal can be 
accessed simultaneously, in other words, wavelet transform is 
a time-frequency representation of a signal. 

The mother wavelet should have properties that lead to a 
meaningful interpretation of the decomposition [6]. It should 
be able to split the signal recursively into a trend and a 
fluctuation called approximation and detail signals. The 
smooth part of the time series is the actual trend 
(approximation) in each time scale and the residuals or 
fluctuations are the noise (detail). 

The CWT of a function f is an integral transformation of 

the form  
 

      
R

ba dxxxfbafw ,, ,
                     (1) 

 

In which a  is scale and b  is the translation parameter that 

depict the location.  xba,  is defined by 
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This transformation is called continuous because a and b 

are real numbers. Applying the CWT to a function f for 
different pair of parameters a and b make different 
information on f . Therefore, after the wavelet decomposition 

the signal frequency can be obtained at different scales.  
The CWT is useful for theoretical purposes but for 

practically analyzing signals it is not a suitable choice. It needs 
a great amount of computation time and resources. The DWT 
which corresponds to the transform (1) for discrete values of a 
and b, reduces the computation time significantly and is 
simpler to implement. It is defined as follows: 
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B. Power Spectral Density (PSD) Analysis 

 The PSD method is used for evaluating the fractal 
properties of time series and is based on the bias of the 

periodogram attained by the Fast Fourier Transform (FFT) 
algorithm. A time series can be analyzed in the frequency 
domain using the PSD which is the signal power 
representation within the frequency band. The presented 
relation by Mandelbrot and Van Ness for the self-affine 
fractals [26] is expressed in the frequency domain as follows: 

 

  f
fS 1                                      (6) 

 
As reported by the author the length and class of time series 

have a direct influence on the fractal analyzing tool [27]. The 
PSD method is chosen for its adaptation with the nature of the 
flow time series that are applied in this research according to 
the given flowchart [27]. The power spectral density is utilized 
for the time series continuous spectrum. The integral of the 
PSD over a given frequency band computes the average power 
in the signal over the frequency band. The power spectral 

density of a random process nX  is mathematically related to 

the correlation sequence by the discrete-time Fourier 
transform. In terms of normalized frequency, it is given by 
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The average power of a signal over a particular frequency 

band  21 , ,   210 , can be obtained by 

integrating the PSD over that band in which  xxp  

represents the power contents of a signal in an infinitesimal 
frequency. 
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C. Phase Space Reconstruction 

A time series is composed of a long-term trend plus various 
periodic and random components. The apparently random 
components of a time series can be truly random whereby the 
measurements are based on some underlying probability 
distribution or they may not be random at all, but rather, 
chaotic [28].  

Although a chaotic time series appear to be randomly 
distributed and non-periodic, it is actually characterized by the 
values that are the result of a completely deterministic process. 
In fact, chaotic time series display some stochastic conducts in 
time domain and depict some determined behavior in 
embedding phase space [28]. An important step in analyzing 
the chaotic behavior of any dynamic system is to reconstruct 
the phase space of the time series. The trajectories of a phase 
space depict the evolution of a dynamic system from some 
initial known state and therefore represent the history of the 
system [29]. The concept of embedding a single-variable 
series in a multi-dimensional phase space is the key to 
revealing the underlying chaotic dynamics. The method 
employed to reconstruct the phase space is the method of 
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delays [30]-[32]. Accordingly, for a hydrological time series 

such as a stream flow series, iX , in which Ni ,...,2,1 , and 

its successive delays as coordinates of a new vector time series 
the reconstructed phase space would be presented as 

 

  )1(2 ,...,,,  mttttt xxxxY                     (12) 

 
 where   indicates the delay time and m  is the embedding 
dimension term. The embedding dimension is the adequate 
dimension for recovering the geometric object without 
deforming any of its topological properties. Each point in the 
phase space represents the state of the dynamic system at a 
given time.  

D. Correlation Dimension Analysis 

 Correlation dimension algorithm is presented by 
Grassberger and Procaccia [33] for the first time. It expresses 
the dynamics of a system upon its relevant time series using 
the phase space concept. The correlation dimension stated as 

2D  quantifies the complexities and irregularities of the 

reconstructed system. Correlation dimension algorithm works 
well for noise free data sets but for noisy systems the 

estimations are absolutely unreliable. The estimate of 2D of a 

noisy data set does not converge with increasing m  but 2D of 

a chaotic system converges to a finite value as m  grows. The 
correlation dimension can be calculated from a time series by  
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The slope of the linear portion in the plot of )(log C  vs. 

log  would estimate 2D . Chaos can be detected within a 

time series through plotting the correlation dimension versus 

the embedding dimension. For random processes 2D  increase 

linearly with increasing the embedding dimension but chaotic 

systems depict a saturation value for 2D . If 2D  reaches a 

constant value for a defined value of m (saturation value) the 
system is assumed to be chaotic. Correlation dimension, as a 
chaotic assessment tool, is employed to investigate the chaotic 
behavior of the river flow time series before and after the 
wavelet based noise reduction processing. 

E. Noise Level Estimation 

Noise is almost always present in real data sets. The first 
and most important step before noise reduction is presenting a 
method for the estimation of noise level. The estimation of 
noise is basically the estimation of its standard deviation. 
Presence of the noise can strongly affect chaotic behavior of 
time series and can influence performance of the prediction 
techniques. The imprints of noise can be found when dealing 
with the determination of correlation integral for natural time 
series. Equation (18) is generally appropriate for noise free 

signals. Noise tends to increase the slope of  C  vs.   in 

the log-log plot. This slope for a noise free time series and for 
small values of  is constant and is equal to the correlation 
dimension of the time series. The presence of noise strongly 
affects the correlation integral. One of the main contributions 
to the investigation of the effect of noise on correlation 
integral was made by Schreiber [34] who used maximum 
norm to define correlation integral and obtained the following 
equation for the correlation integral of time series infected 
with Gaussian noise. 
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where , is the standard deviation of the Gaussian 
distribution and “erf” denotes the error function, and 
m specifies the embedding dimension. 

A simpler form for the correlation integral has been 
presented by Schouten et al. [35]. It is also based on the 

maximum norm. Using the upper bound of radius  as 0  

and  as the maximum noise amplitude they have obtained 
the correlation integral as follows: 
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In fact, correlation integral can also be measured using 

Euclidian norm [36] or a Gaussian kernel [37]. Each form can 
then be utilized to determine the correlation integral in the 
presence of noise. The final relationships for correlation 
integral usually contain correlation dimension and the standard 
deviation of noise which can be determined by a nonlinear 
regression technique. Yu et al. [38] has presented an efficient 
implementation for the Gaussian kernel estimation algorithm 
to obtain the noise level from noisy data. As demonstrated, the 
method is computationally efficient and can give reasonable 
estimations for the standard deviation of noise, [38]. 

The Gaussian kernel correlation integral  hTm  for the 

noise-free case scales is: 
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In the present study Gaussian kernel estimation method as 

presented by Yu et al. [38] has been used to estimate the 
standard deviation of noise and the noise level of time series. 
Following the same definition as the one made by Yu et al. 
[38] for the noise level, thereafter, noise level is considered as 
the ratio of the estimated standard deviation of noise to the 
standard deviation of noisy time series. In the present study, 
based on the estimated standard deviation of noise (noise 
level), number of de-noising stages using the wavelet 
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technique was determined. The estimated noise level is used to 
control the amount of details which wavelet de-noising 
techniques removes from the noisy time series. The standard 
deviation of removed details (the cumulative sum of the 
removed details up the level in which noise level is supposed 
to calculate is considered) should not be more than the 
estimated noise level to avoid removal of a part of clean time 
series (original signal). This way we control that part of the 
original series which is going to be removed in order not to 
contain significant information that affects the series natural 
essence. Further control can be done by analyzing the chaotic 
dynamics of the time series before and after applying de-
noising technique. 

III. RESULTS AND DISCUSSION 

A. Study Site Description  

Ghar-e-Aghaj river flow basin located in Fars province in 
Iran was chosen as the case study. Thirty eight years of 
monthly recorded stream flow data (1971-2009) from three 
gauging stations in the site area have been used for this 
research. The selected gauging stations were Band-e-Bahman 
station, Aliabad station and Tang-e-Karzin station. The river’s 
basin has a half mountainous half plane nature and its area 

exceeds 3000
2km .  

B. Results of the Noise Level Estimation and Wavelet Based 
De-Noising 

In order to de-noise the studied river flow time series both 
CWT and DWT techniques were used. The CWT based 
approximation and detail signals are depicted in Figs. 1 (a), 
(b). In the present study, the noise level estimation and, 
subsequently, de-noising were pursued for all considered 
stations. The different stations showed different behavior 
dealing with the noise level estimation, i.e., the estimated 
noise level in Band-e-Bahman station was equal to 0.3922 
where in Tang-e-Karzin it was 0.448. Therefore, the de-
noising processes continued 9 levels in Tang-e-Karzin and just 
2 levels for Band-e-Bahman station to de-noise the signal up 
to the estimated noise level. In fact, the standard deviation of 
the detail signal in the corresponding de-noising stage was 
controlled. 

This value should not exceed the estimated noise standard 
deviation. At each level of de-noising that this constraint is 
satisfied, the level is supposed to be an allowable de-noising 
level. In the present study the allowable de-noising level is 
calculated according to the noise level that the Gaussian kernel 
estimation algorithm yields. Results depicting the noise level 
and the corresponding de-noising stage are presented in Table 
I.  

The variation of the noise level and the estimated standard 
deviation of noise with embedding dimensions can also be 
found in Figs. 2 (a), (b). As it can be seen for large embedding 
dimensions the curve approaches a fairly constant value for 
the standard deviation of noise and the noise level which have 
been considered for determination of the de-noising level 
based on the wavelet technique. 

C. Results of the Power Spectral Density as Well as 
Average Signal Power Analysis 

The PSD analysis has been preformed to obtain the Hurst 
exponent of the time series of the original signals as well the 
CWT and DWT (de-noised) signals (Figs. 3 (a)-(c)). The 
average power has also been obtained for the aforementioned 
signals (Figs. 4 (a)-(c)).  

The average signal power variations due to decomposition 
(de-noising) are completely remarkable. Studying the changes 
in the average power showed that a considerable amount of 
the signal’s total energy is the noise energy which signifies the 
irregularities like jumps or sharp spikes in the original signal. 
Moreover, the signals average power and correlation seemed 
to have an inverse relationship. Actually, wavelet based de-
noising procedures which result in the energy reduction in the 
signal can potentially lead to an increase in the signal's long 
term memory.  

D. Results of the Phase Space Reconstruction  

The phase space patterns of the time series have been 
depicted before and after decomposing by CWT and DWT 
techniques in Figs. 6 (a)-(c). 

Therefore, it can be seen that the chaotic behavior of the 
signals is under the influence of decomposing process. The 
random behavior embedded in the signal phase space pattern 
tended to chaotic one after the signal decomposition (de-
noising). The signals’ trend was more clarified when the 
random components of time series were removed. This is 
traceable through the Lyapunov exponents as well as the phase 
space pattern [39]. The chaotic behavior can be easily 
distinguished in the de-noised signals’ pattern, especially in 
contrast to the random behavior of the original signal’s phase 
space pattern. 

Mapping time series data into a phase space allows one to 
view the temporal series in a spatial manner. One of the most 
interesting procedures for checking the presence of chaos is 
based on the ability of recovering the attractor of a system in 
the phase space. The size of a pattern (i.e., an attractor) is one 
of the critical factors that govern the accuracy of prediction. A 
smaller magnitude of fluctuating trajectories in the phase 
space can reduce the uncertainty in the projectile facing the 
target dimension. Another factor that governs the accuracy of 
prediction is the orientation of a pattern. For example, when 
the prediction is considered along the “y” dimension only, a 
unique and precise projectile instruction pointing to the 
estimation side (i.e., y-dimension) is determined. Therefore, 
the orientation of a pattern with wide input facing along the x-
dimension and limitation on the projectile facing along the y-
dimension would not give sufficient information about the 
process. Such an orientation seriously affects the prediction 
accuracy. Thus, it can be concluded that a seemingly strange 
attractor is not always capable of providing a less mean square 
error of prediction; the size and the orientation of a pattern 
may impair its predictability. 
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TABLE I 
 NOISE LEVEL ESTIMATION FOR THE THREE STATIONS 

Station Noise  De-noising Level Standard deviation of detail signal 

Band-e-Bahman Noise Level 0.3922 1 2.707 

 Estimated standard deviation 5.6625 2* 4.42 

   3 6.17 

Aliabad Noise Level 0.3385 1 2.368 

 Estimated standard deviation 6.348 2 4.079 

   3* 5.433 

   4 6.636 

Tang-e-Karzin Noise Level 0.448 1 2.501 

 Estimated standard deviation 13.1082 2 4.458 

   3 6.367 

   4 7.88 

   5 9.2 

   6 10.37 

   7 11.48 

   8 12.05 

   9* 12.95 

   10 13.87 

* denotes the last allowable de-noising stage where the estimated standard deviation of noise is equal or more than that of the detail signal which would be 
removed from the main signal. The detail signal is a part of the signal which is obtained after de-composition process, in each stage, by Wavelet based de-noising 
technique and can be considered as noise. This procedure is to assure part of the main signal is not removed instead of the noise. 
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(a)                                                                                              (b) 

Fig. 1 Signal decomposing into the approximation and the detail signal using CWT transforms (a) Band-e-Bahman CWT based approximation 
signal (b) Band-e-Bahman CWT based detail signal 
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(a)                                      (b) 

Fig. 2 (a) Variation of the noise level vs. the embedding dimension (b) Variation of the standard deviation of the noise vs. embedding 
dimension 
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                              (a)                                                        (b)                                                            (c) 

Fig.3 PSD analysis and the Hurst exponent calculation. (a) PSD analysis for Band-e-Bahman original time series (b) PSD analysis for Band-e-
Bahman CWT approximation signals (c) PSD analysis for Band-e-Bahman DWT approximation signals 
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                                 (a)                                                     (b)                                                      (c) 

Fig. 4 Average signal power analysis (a) Average signal power for the original time series of Band-e-Bahman station (b) Average signal power 
for CWT approximation signal of Band-e-Bahman station (c) Average signal power for DWT approximation signal of Band-e-Bahman station 
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(a)                                                                             (b)                                                (c) 

Fig. 5 Phase space patterns for the three scenarios (a) Reconstructed phase space of Band-e-Bahman original signal. (b) Reconstructed phase 
space of Band-e-Bahman CWT approximation signal (c) Reconstructed phase space of Band-e-Bahman DWT approximation signal 

 
Accordingly, the phase space pattern of the original signal 

which is obviously larger in size than the other two 
constructed phase spaces demonstrates more uncertainty 
elements in its map and can be assumed to be less predictable. 
Moreover, its orientation pattern in the phase space depicts a 
scattered behavior in both x and y dimensions, while for the 
phase spaces developed for processed signals a kind of 
regularity and a tendency to be ordered through the 
dimensions can be detected. 

 

IV. CONCLUSION 

Chaotic assessments have been performed in order to 
evaluate the influence of the WT preprocessing techniques on 
the inherent behavior of hydrological time series. Wavelet de-
noising approach using CWT and DWT techniques was 
employed in order to preprocess the data series.  

It was emphasized that a crucial step in implementation of 
this method is the determination of noise level as well as the 
standard deviation of noise. The estimated noise level and the 
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standard deviation of noise can then be utilized to assure that 
the clean (original) time series is not corrupted during de-
noising. Removal of details having a standard deviation higher 
than that of the estimated noise can result in loss of important 
information present in time series. A prior knowledge of noise 
level can considerably enhance efficiency of the presented 
technique. Among a number of noise level estimation methods 
which have been presented to date, Gaussian kernel algorithm 
was considered and utilized. The mentioned technique had a 
reasonable accuracy. Therefore, noise level was estimated and 
used as an important criterion to control the results of de-
noising and to determine the number of wavelet based de-
noising stages. 

Noise reduction resulted in a significant change in time 
series chaotic behavior. The average signal power variation 
due to decomposition (de-noising) procedure was remarkable. 
Results indicated that a considerable amount of the signal’s 
total energy can be attributable to the signal's noise content. 
This amount of energy is revealed in the form of irregularities 
like jumps and sharp spikes in the signal [40], [41]. The 
chaotic behavior of signals and their phase space pattern were 
also under the influence of de-noising. Results indicated a 
decrease in the random behavior of the phase space and an 
increase in the chaotic behavior. Lyapunov exponent, as a 
major chaotic criterion, was also influenced by the 
preprocessing. Results depicted a direct relationship between 
excluding the noise components of signals and a decrease in 
the Lyapunov exponents. Correlation dimension varied 
significantly under the influence of noise which confirms its 
efficiency as a noise indicator. Moreover, for the de-noised 
time series, fractal dimension and the correlation dimension 
were almost the same, though they were completely different 
before de-noising. Results depicted that while original time 
series had almost completely random behavior according to 
the correlation dimension analysis, de-noised time series 
showed an evident chaotic behavior.  

Chaotic assessment of time series after applying the wavelet 
based de-noising revealed the potential capabilities of this 
technique for time series preprocessing. Noise reduction was 
understood to be an important stage in studying the chaotic 
behavior of the time series as it was seen that natural time 
series may have completely different behavior than what could 
be considered first. Therefore, suitable analyzing tools are 
needed to reveal the real behavior. Wavelet based de-noising 
technique was found to be an efficient approach to disclose the 
inherent chaotic nature of natural phenomena. 
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