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Abstract—The electrical potentials generated during eye 
movements and blinks are one of the main sources of artifacts in 
ElectroEncephaloGram (EEG) recording and can propagate much 
across the scalp, masking and distorting brain signals.    In recent 
times, signal separation algorithms are used widely for removing 
artifacts from the observed EEG data.   In this paper, a recently 
introduced signal separation algorithm Mutual Information based 
Least dependent Component Analysis (MILCA) is employed to 
separate ocular artifacts from EEG.  The aim of MILCA is to 
minimize the Mutual Information (MI) between the independent 
components (estimated sources) under a pure rotation. Performance 
of this algorithm is compared with eleven  popular  algorithms 
(Infomax, Extended Infomax, Fast ICA, SOBI,  TDSEP, JADE, 
OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the 
actual independence and uniqueness of the estimated source 
components obtained for different sets of EEG data with ocular 
artifacts by using a reliable MI Estimator. Results show that MILCA 
is best in separating the ocular artifacts and EEG and is 
recommended for further analysis.  

Keywords—Electroencephalogram, Ocular Artifacts (OA),  
Independent Component Analysis (ICA), Mutual Information (MI), 
Mutual Information based Least dependent Component Analysis 
(MILCA) 

I. INTRODUCTION 

LECTROENCEPHALOGRAM is a recording of electric 
fields of signals emerging from neural currents within the 
brain and is measured by placing electrodes on the scalp. 

The electrical dipoles of eyes change by eye movements and 
blinks, producing a signal known as electrooculogram (EOG). 
A fraction of EOGs contaminate the electrical activity of the 
brain and these contaminating potentials are commonly 
referred to as ocular artifacts (OA). In current data acquisition, 
these OA are often dominant over other electrophysiological 
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contaminating signals (e.g. heart and muscle activity, head and 
body movements), as well as external interferences due to 
power sources. Hence, devising a method for successful 
removal of OA from EEG recordings is still is a major 
challenge. Fig 1 shows EEG signals corrupted with ocular 
artifacts. Since ocular artifacts decrease rapidly with the 
distance from the eyes, the most severe interference occurs in 
the electrodes placed on the patient’s forehead. Notice the 
large dips on frontal channels FP1-F3, FP2-F4, FP1-FP7 and 
FP2-F8. Blink artifacts are so prominent on these channels 
because they are located nearest to the eyes. 

A variety of methods have been proposed for correcting 
ocular artifacts and are reviewed in [1],[2]. One common 
strategy is artifact rejection. The rejection of epochs 
contaminated with OA is very laborious and time consuming 
and often result in considerable loss in the amount of data 
available for analysis. Eye fixation method in which the 
subject is asked to close their eyes or fix it on a target is often 
unrealistic. Widely used methods for removing OAs are based 
on regression in time domain [3] or frequency domain [4] 
techniques. All regression methods, whether in time or 
frequency domain depend on having one or more regressing 
(EOG) channels. Also both these methods share an inherent 
weakness, that spread of excitation from eye movements and 
EEG signal is bidirectional. Therefore regression based 
artifact removal eliminates the neural potentials common to 
reference electrodes and to other frontal electrodes. 

Another class of methods is based on a linear 
decomposition of the EEG and EOG leads into source 
components, identifying artifactual components, and then 
reconstructing the EEG without the artifactual components. 
Lagerlund et.al [5] used Principal Component Analysis (PCA) 
[6] to remove the artifacts from EEG. It outperformed the 
regression based methods. However, PCA cannot completely 
separate OA from EEG, when both the waveforms have 
similar voltage magnitudes. PCA decomposes the leads into 
uncorrelated, but not necessarily independent components that 
are spatially orthogonal and thus it cannot deal with higher 
order statistical dependencies. 
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Fig.1 EEG recording corrupted by ocular-artifacts 

 
An alternative approach is to use Independent Component 

Analysis (ICA), which was developed in the context of blind 
source separation problems to obtain components that are 
approximately independent [7]. ICA has been used to correct 
for ocular artifacts, as well as artifacts generated by other 
sources [8], [9], [10]. ICA is an extension of PCA which not 
only decorrelates but can also deal with higher order statistical 
dependencies. However, the ICA components lack the 
important variance maximization property possessed by the 
PCA components. ICA algorithms are superior to PCA, in 
removing a wide variety of artifacts from the EEG, even in the 
case of comparable amplitudes. The component based 
procedures used for artifact removal [5], [8], [9], [10] are not 
automated, and require visual inspection to select the 
artifactual components to decide their removal. An ICA based 
method for removing artifacts semi automatically was 
presented by Delorme et.al [11]. It is automated to flag trials 
as potentially contaminated, but these trials are still examined 
and rejected manually via a graphical interface. Carrie Joyce 
et.al [12] used SOBI algorithm along with correlation metrics 
and Nicolaou et.al [13] used TDSEP along with Support 
Vector Machine (SVM) for automatic removal of artifacts. 
The results of these studies does not imply that SOBI/TDSEP 
is the overall best approach for decomposing EEG sensor data 
into meaningful components, and has not been completely 
validated by the authors.  

The estimated source signals (obtained from any ICA 
algorithm) should be as independent as possible (or least 
dependent on each other) for better removal of artifacts from 
EEG. Since, either by visual inspection, or by automated 
procedure, only the estimated sources are classified as EEG or 
artifacts. But, the actual independence of the components 

(estimated sources) obtained from ICA/BSS algorithms used 
in [8], [9], [10], [11], [12], [13] are not tested for their 
independence and uniqueness. 

        In this paper, a recently introduced signal separation 
algorithm Mutual Information based Least dependent 
Component Analysis (MILCA) [14] is employed to separate 
ocular artifacts from EEG.  The aim of MILCA is to minimize 
the Mutual Information (MI) between the independent 
components (estimated sources) under a pure rotation. 
Performance of this algorithm is compared with eleven  
popular  algorithms (Infomax [15], Extended Infomax [16], 
Fast ICA [17], SOBI [18],  TDSEP [19], JADE [20], OGWE 
[21], MS-ICA [22], SHIBBS [20], Kernel-ICA [23], and RADICAL 
[24]) for the actual independence and uniqueness of the 
estimated source components obtained for different sets of 
EEG data with ocular artifacts by using a reliable MI 
Estimator [25]. Results show that MILCA is best in separating 
the ocular artifacts and EEG and is recommended for further 
analysis.  

 
The paper is organized as follows: Theoretical review of the 

ICA/BSS algorithms used for removing ocular artifacts are 
discussed in section 2. In section 3, the algorithm for 
estimating mutual information is given. Results are discussed 
in Section 4 and the paper is concluded in Section 5. 
   

II. INDEPENDENT COMPONENT ANALYSIS & BLIND SOURCE 
SEPARATION  

 Independent Component Analysis (ICA) [7] is a novel 
statistical technique that aims at finding linear projections of 
the data that maximize their mutual independence.  ICA has 
received attention because of its potential applications in 
signal processing such as in feature extraction, and blind 
source separation (BSS) with special emphasis to 
physiological data analysis and audio signal processing. The 
goal of BSS is to recover the source signals given only sensor 
observations that are linear mixtures of independent source 
signals.  ICA is a statistical technique for obtaining 
independent sources, S   from their linear mixtures, X , when 
neither the original sources nor the actual mixing, A are 
known.  

               

 

 
This is achieved by exploiting higher order signal statistics 

and optimization techniques. The result of the separation 
process is a demixing matrixW , which can be used to obtain 

the estimated unknown sources, S
)

 from their mixtures. This 
process is described by Equation 1 and a schematic illustration 

Fig. 2 Basic BSS model. Unobserved signals: s , Observations: x , 

Estimated source signals: ŝ  
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of the mathematical model in shown in Fig 2. 

             X AS=  ⎯⎯→   S WX=
)

                                (1) 
 

III.          THEORETICAL REVIEW OF THE ICA/BSS ALGORITHMS 
A brief description of various algorithms used in this paper 

is given below. 
 

A. Infomax and Extended Infomax Algorithm 
Bell and Sejnowski [15] have proposed an adaptive 

learning algorithm that blindly separates mixtures, X  of 
independent sources, S  using information maximization 
(infomax) and is described by the following steps: 

i)  The demixing matrix W  is initialized to an identity 
matrix. 

ii)  The signal sources are estimated by equation (1) and 
then they are transformed by a nonlinear transfer function. For 
a sigmoidal transfer function, the resulting signals Y   are 
expressed as 

( )( ) 1/1 oS wY g S e− += = +
))

                      (2) 

where ow  is a vector of bias weights which is initialized to 
a zero vector. 

iii)  The nonlinearly transformed signals Y  are processed by 
a learning rule which maximizes their joint entropy that can 
approximately minimize their mutual information. This is 
achieved by changing the weight matrix by an amount W∆ , 
where   
                  1[ ] (1 2 )T TW W y x−∆ = + −            (3) 
The change in the bias weight is expressed by                   

1 2ow y∆ = −                                             (4) 
iv) The ICA algorithm is trained by repeating steps (ii) and 

(iii). After each iteration, the demixing matrix W  is updated 
by W∆  until convergence is achieved.                                               

 The algorithm stops training when the rate of change 
falls below a predefined small value, e.g 61.0 10−× . The rate 
of change is computed by squaring the difference between 
corresponding elements of the demixing matrix before and 
after each iteration and then summing the values. 

 The  algorithm of Bell and Sejnowski [15] which uses a 
sigmoidal activation function is specifically suited to separate 
signals with super-Gaussian distribution (i.e. positive 
kurtosis). Lee and Sejnowski [16] proposed an extension of 
ICA that is able to separate with sub and as well as super 
Gaussian distribution. This preserves the ICA architecture of 
Infomax algorithm [15], but it uses a learning rule derived by 
Girolami and Fyfe [26].  It determines the sign changes 
(positive to negative and vice versa) required by the algorithm 
to handle both sub and super Gaussian distributions. This is 
achieved by considering the normalized fourth-order kurtosis 
of the estimated signal sources. In extended ICA, the amount 
of change W∆  required to update the demixing weight 

matrix W  is given by  
 

( ( ) / ) TW H Y W W W∆ = ∂ ∂ ×  

4[ ( )(1 2 ) ]T TI sign k y s ss W= − − −) ))
                   (5) 

 
where TW W  is the “natural gradient” of Amari et.al [27] 
used for speeding up the convergence. 
 

B. Fast ICA Algorithm 
 Fast ICA is based on a fixed-point iteration scheme [17]. 

According to the central limit theorem sum of two 
independent random variables usually has a distribution that is 
closer to gaussian than of the two original random variables. 
Thus, maximizing the nongaussianity yields independent 
components. Approximation of negentropy is used for 
measuring the nongaussianity. The operation of Fast ICA is 
outlined as follows: 

i)   The mean of the mixed signal X  is subtracted so as to 
make X as a zero mean signal E[X]-XX = , where E[X] 
is the mean of the signal. 

ii) Covariance matrix ][ TXXER =  is obtained and eigen 
value decomposition is performed on it and is given by 

TEDER =  where  E  is the orthonormal matrix of eigen 
vectors of R  and D  is the diagonal matrix of eigen values. 
Find the whitening matrix WM  which transforms the 
covariance matrix into an identity matrix.  

)E )Inv(sqrt(DWM T×=                           (6)         
   iii) Choose an initial weight vector w. Find a direction, i.e. a 

unit vector w such that the projection   xwT
  maximizes 

nongaussianity. 

       wxwgExwxgEw TT )}({)}({ ′−=+
              (7)  

 where g is the derivative of the nonquadratic function.   
)2/exp()(),tanh()( 2

211 uuuguaug −==               (8)   
where    21 1 ≤≤ a     

iv) The variance of Tw x+  must be made unity. Since x   is 

already whitened it is sufficient to constrain the norm of w+   
to be unity.   

                          
++= www /

                                  (9) 
If   w   not converges means (i.e. the old and new values of 

w   does not point to the same   direction) go back to step (iv). 

v) The demixing matrix is given by  TW W WM= ×  and 

Independent components are obtained by S W X= ×
)

                        
      

C.  SOBI Algorithm 
SOBI algorithm exploits joint-diagonalization of time 

delayed second order correlation matrices [18]. The operation 
of SOBI is given below: 
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i) Step (ii) discussed in FastICA algorithm is performed and 
the Whitening Matrix WM is obtained.     
             )E )Inv(sqrt(DWM T×=                             (10)        

ii)   Obtain the time delayed cross correlation matrix of the 
mixed signals. 

 )()()( τττ += txxxR T                                   (11) 

where   ....   denotes the time average and    τ   is the 

certain time lag. 
iii) The diagonal elements of this matrix are formed by the 

values of the autocorrelation functions and the off diagonal 
elements are the respective cross correlations. 
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where   φ  denotes the correlation function. 

iv) Symmetrize the time delayed cross correlation matrix  
)(xRτ  

           2/))()(()(~ xRxRxR T
τττ +=                        (13) 

    v) It is obvious that, if the signals are independent over time 
then all time delayed correlation matrices should be diagonal 
because the cross correlations of independent signals will 
vanish. Hence obtain the matrix U  by joint diagonalizing the 
set of  p  correlation matrices 1,2.......{ ( ) / }i pi

R xτ =
%  

   TUsRUxR ).(.)(~
ττ =                            (14) 

 
vi) Then the demixing matrix is given by  TW U WM= ×  

where WM  is the whitening matrix. Independent 

Components are obtained by                     S W X= ×
)

. 

D.  TDSEP Algorithm 
Temporal Decorrelation source SEParation  (TDSEP) [19] 

is proposed by Andreas Ziehe and Klaus miller and it employs 
first whitening step and then an approximate simultaneous 
diagonization of several time delayed second order correlation 
matrices. The operation of TDSEP is outlined as follows: 

i)  Step (ii) discussed in FastICA algorithm is performed 
and the Whitening Matrix WM is obtained.                    

)E )Inv(sqrt(DWM T×=                                 (15) 
ii)  Minimize the generalized cost function. 

2 2

,
1

( ) ( ) ( ) ( ) ( )
N

i j i j i j k
i j k i j

l c x x t x x tτ τ τ τ
≠ = ≠

= + + +∑ ∑∑              (16)                                                                         

 After whitening the first term in the cost function becomes 
zero explicitly. The cost function then can be minimized by 
approximate simultaneous diagonalization of several 
correlation matrices through several JACOBI rotations. 
     )()()( k

T txxxR
k

τττ +=               (17) 

iii) Obtain the rotation matrix Q  by a sequence of 
elementary rotations each trying to minimize the off diagonal 
elements of the respective correlation matrices )(xR

kτ . 

iv) Demixing matrix is given by TW Q WM= ×  and 
Independent Components are given by                   

S W X= ×
)

                        
 

E. JADE Algorithm 
Yet another signal source separation technique is the Joint 

Approximation Diagonalisation of Eigen matrices (JADE) 
algorithm [20]. This exploits the fourth order moments in 
order to separate the source signals from mixed signals. The 
operation of JADE follows as given below: 

i) Step (ii) discussed in FastICA algorithm is performed and 
the Whitening Matrix WM is obtained.                  

)E )Inv(sqrt(DWM T×=                                     (18) 
ii) The fourth cumulants of the whitened mixtures are 

computed. Their n  most significant eigen values iλ  and their 

corresponding eigen matrices iM  are determined. An 

estimate of the unitary matrix V̂  is obtained by maximizing 
the criteria    iiMN λ=    by means of joint diagonalisation. 

If N  cannot be exactly jointly diagonalised, the 
maximization of the criteria defines a joint approximate 
diagonalisation.   

 
iii)  An estimate of the demixing matrix is obtained by 

ˆW WM V= ×   and Independent Components are given by  

S W X= ×
)

.       
 
                             

        F.OGWE Algorithm: 
 

   In OGWE (Optimized Generalized Weighted Estimator) 
[21], the marginal entropy contrast function (ΦME)  is written 
in terms of second-order and fourth-order cumulants, and then 
it is minimized for all possible distributions for the sources S 
[28], it follows that 

2
24

1 1( ) ( ) ( )
48 48

ME ME
iiii

i

Cϕ ϕ≈ = − ∑ YY Y                    (19) 

where, for zero-mean signals, 4 2[ ] 3 [ ]Y
iiii i iC E Y E Y= − are the 

marginal cumulants or autocumulants [29]. 
In the two dimensional case, the pair of normalized sources 
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[ ( ) ( )]p qls s t s t Τ=  in polar coordinates may be written as 
(r(t),α(t)) so that the outputs yield 

 
( ) ( ) cos( ( ))

( ) ( )
( ) ( )sin( ( ))

p
t

q

Y t r t t
Z

Y t r t t
β

θ θ
β

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

R R              (20) 

 
where Zt=[Zp(t) Zq(t)]T are the whitened mixtures, and matrix 
E performs a rotation of θ so that ρ(t) = θ + β(t) is the angle of 
vector y.  Note that ideally, at separation θ + β(t) = α(t). 
 
(i)  The whitening matrix WM is computed as given in step 

(ii) of FastICA Algorithm to whiten the vector X and the 
vector Y = WM x X is formed. 

(ii)  One Sweep.  For all g = m (m-1)/2 pairs, i.e., for 
1≤p≤q≤m, the following steps have to be done: 

 
 (a) The Given angle θpq = θGWE is computed, (with [zp 

zq]T=[yp yq]T) as follows: 
 
$ 1

( , ) ( (1 ) ),4
0 1, 1,

G W E r r r
r

θ ω ω ω ω ξ ω ξξ ξ ξ η
ω ω γξ

= ∠ + −

< < ±
             (21) 

$ $ 3( , )
7

SICA GWEθ θ γ=                                                        (22) 

where ∠(.) supplies the principal value of the argument. 
4 ( )4[ ( ) ]

2 ( )2 4[ ( ) ]
4[ ( )] 8

j tE r t er j tE r t e

E r t

βξ
βξη

γ

=

=

= −

                                            (23)    

 (b) If θpq > θmin, the pair (Zp,Zq) is rotated by θpq 
according to Equation (19) and also the rotation matrix R is 
updated.  The value of θmin

  is selected in such a way that 
rotations by a smaller angle are not statistically significant.  
Typically θmin= 10-2/ N  where N is the number of samples. 

(iii) End if the number of iterations nit satisfies nit
 ≥ 1 + 

M  or no angle θpq has been updated, stop. Otherwise go to 
step(ii) for another sweep. 

(iv) Then the demixing matrix W = R x WM and the 

independent sources are estimated as S W X= ×
)

     

        G.    ICA-MS Algorithm 
     Molgedey and Schuster [22] proposed an approach 

based on dynamic decorrelation which can be used if the 
independent source signals have different autocorrelation 
functions.  The main advantage of this approach is that the 
solution is simple and constructive, and can be implemented 
in a fashion that requires the minimal user intervention 
(parameter tuning). 

Let Xτ be the time shifted version of the mixed vector X.  
The delayed correlation approach is based on solving the 
simultaneous eigenvalue problem for the correlation matrices 
XτXT and XXT [21].  This is implemented by solving the 

eigenvalue problem for the quotient matrix Q ≡ XτXT(XXT)-1.  
From, XXT = ASSTAT and XτXT = ASτSTAT are obtained. 

If the sources furthermore are independent, the diagonal 
source cross-correlation matrix is obtained at lag zero in the 
limit 1lim

N
N − Τ

→∞
=SS C(0) . Similarly, 1lim

N
N τ

− Τ

→∞
=S S C(τ)  

produces the diagonal cross correlation matrix at lag τ.  
Hence, to zeroth order in 1/N, 

 
T T -1 T T -1 -1 -1 ( )   ( )τ ≈X X XX AC(τ)A A C(0) A         (24) 

 
with C(τ)C(0)-1 being a diagonal matrix.  If the eigenvalue 
problem is solved for the quotient matrix [30]. 
 

T T -1 -1 -1  ( )   ≡ ≈Q XX XX AC(τ)C(0) A               (25) 
then the direct scheme is obtained to estimate A, S.  Let 

 QΦ = Λ Φ                                   (26) 
 

and Φ = A and Λ = C(τ)C(0)-1 up to scaling factors are 
identified.  

 Then the demixing matrix W is the inverse of the mixing 

matrix A. The sources can be estimated as S W X= ×
)

  
  

      H.  SHIBBS Algorithm: 
 

   Another signal separation technique is Shifted Block 
Blind Seperation (SHIBBS) [20] to estimate the demixing 
matrix W. 
 

(i) A fixed set X = {X1, . . . ,Xm} of m × n matrices is 
selected. A Whitening matrix WM and set Z WM X= ×  are 
estimated. 

(ii) The set Z
m

ˆ{ ( )|1  p  M}≤ ≤Q X of M cumulant 
matrices is estimated and a joint diagonalizer R of it is found. 

(iii) If R is close enough to the identity transform, stop. 
Otherwise, the data is rotated using the equation T=Z R Z  
and step (ii) is repeated. 

(iv) Then the demixing matrix W R WM= ×  is used to 

estimate the independent components  S W X= ×
)

  
 
The SHIBBS algorithm is implemented in the same way as 
JADE is done.  But the joint diagonalization of the significant 
eigen matrices is done without going through the estimation of 
the whole cumulant set and through the computation of its 
eigen-matrices. 

 
        I. Kernel-ICA Algorithm: 
 

  The Kernel-ICA algorithm [23] uses the contrast 
functions based on Canonical Correlation Analysis (CCA) 
[31] in a Reproducing Hilbert Kernel Space (RKHS). The 
outline of Kernel Canonical Correlation Analysis (KCCA) is 
given as follows: 
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(i)    Let x1,x2,…..,xm be the data vectors and K(xi ,xj) be the 

kernel. 
(ii) Data is whitened and the whitening matrix WM is 

obtained. 
(iii) The contrast function C(W) is minimized with respect to 

W. 
(iv) The contract function is minimized in the following way: 

a) The centered Gram matrices [23] K1,K2,….,Km of the 
estimated sources {y1,y2,….,ym}, where yi = Wxi are 
computed. 
b) The minimal eigenvalue of the generalized 
eigenvector equation 

1
ˆ ( ,....., )F mK Kκλ  is defined as 

K Dκ κα λ α=                      (27) 
c) Then 1

1 12
ˆˆ( ) ( ,......, ) log ( ,...., )

F m F mC I κ
λ λ= = −W K K K K  

(v) The demixing matrix W, is then formed W W WM= ×
 and the independent components are estimated by    

S W X= ×
)

  
 
         J.   RADICAL Algorithm: 
 

 The RADICAL (Robust, Accurate, Direct Independent 
Component Analysis Algorithm) [24] estimates the 
independent sources using differential entropy estimator based 
on ‘m’-spacing estimator.  The contrast function in equation 
(28) is to be minimized by RADICAL is almost equivalent to 
Vasicek estimator [32], 

1 1 ( ) ( )1ˆ ( ,....., ) log( ( )
1

N m N i m iNH Z Z Z ZRADICAL N m mi

− + +≡ −∑
− =

      (28) 

  
The data vectors X1,X2,…..,XM are whitened. Let m be the 

size of spacing. The value of ‘m’ is taken as N  where N is 
the number of samples in each source. 

Let ℜ be the number of replicated points per original data 
point to eliminate the local minima problem [24].  Let σ be the 
standard deviation of replicated points. For N < 1000, σ = 
0.35 and for N ≥ 1000, σ = 0.175, where N is the number of 
samples in each source before replication. Let K be the 
number of angles for which cost function has to be evaluated.  
The optimum value of K here is 350. 
 
(i)  For each of M-1 sweeps (or until convergence), where M 

is the number of sources. 
(ii)  For each of M(M-1)/2 jacobi rotations for dimensions 

(p,q). 
(a)  A pair of whitened mixture is taken (Zp,Zq). 
(b)  Create Z’ by replicating ℜ points with Gaussian 

noise for each original point. 
(c)  For each θ in K number of angles,  the augmented 

data are rotated to this angle  
         = ( )   'θ ×Y R Z                                             (29) 

  and the contrast function is evaluated. 
(d) The Jacobian matrix for the optimal θ is formed and 

it is incorporated into the rotation matrix R.  The 

optimal θ is one which yields the minimum vasicek 
estimator value [32] for the rotated pair.  

(iii)  The final rotational matrix R is the accumulation of all 
the jacobi rotations of optimal θ. 

(iv)  The demixing matrix W R WM= × and the estimated 

sources S W X= ×
)

  are obtained. 
 
        K.     MILCA  Algorithm: 
 
         As described in section II Independent component 
analysis (ICA) is a statistical method for transforming an 
observed multi-component data set 

(t)) x..., (t), x(t),(x  X(t) n21=  into components that are 
statistically as independent from each other as possible. In 
theoretical analyses, certain model for the data is assumed, for 
which the decomposition into completely independent 
components is possible, but in real life applications the latter 
will not be true i.e. least dependent components are only 
possible. Depending on the assumed structure of the data, a 
parameterized guess is made about how they can be 
decomposed (linearly or not, using only equal times or using 
also delayed superpositions, etc.) and then fixes the 
parameters by minimizing some similarity measure between 
the output components. Using mutual information (MI) would 
be the most natural way to solve this problem.  This idea leads 
to the new signal separation algorithm Mutual Information 
based Least Dependent Component Analysis (MILCA) [14] 

based on 
thk  closest neighbour statistics. The aim of MILCA 

algorithm is to minimize ).X . . I(X N1  under a pure rotation 
R. Any rotation can be represented as a product of rotations 
which act only in some 2 × 2 subspace,      

∏=
ij ijRR )(φ                         (30) 

where ).............().............)(( '''
11 njinjiij xxxxxxxxR =φ   

with jii xxx φφ sincos' +=   and  jii xxx φφ sincos' += . 

For such a rotation using grouping property of MI 
),(),()())(( ''

jijiij XXIXXIXIXRI −=−φ         (31) 

i.e., the change of ).X . . I(X N1  under any rotation can be 
computed by adding up changes of two-variable MIs. To find 
the optimal angle φ  in a given  j) (i,  plane, 

),(ˆ)(ˆ ''
jiij XXII =φ  is calculated for typically 150 different 

angles in the interval  /2] [0,π  and these values are fitted by 
typically 3-15 Fourier components, and then the minimum of 
the fit is taken. 
 
The resulting MILCA-algorithm can be summarized:  
 
i) Whitening Matrix WM is obtained.  
ii) For each pair  j) (i, with n  . . . 1  j i, =  find the angle φ  

which minimizes a smooth fit to ),(ˆ)(ˆ ''
jiij XXII =φ . 
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iii) If )....(ˆ ''
1 nXXI  has not yet converged, go back to   step 

(ii), else an estimate of the demixing matrix is obtained by 
WMRW ×=   and Independent Components are given by   

S W X= ×
)

.                                      
 

In this algorithm, thk  closest neighbour should be selected 
and the value of k  value must be chosen properly. Depending 
on the k  value the algorithm minimizes either the statistical 
errors or the systematic errors. The higher the value of k , the 

lower is the statistical error of Î .The systematic error shows 
exactly the opposite behavior. Thus, to keep the balance 
between these two errors, the best choice for k would lie in 
the middle range. But for some cases this may deviate, e.g. 
finding the most independent signal sources. In this case the 
true values of the MI are small and thus also the systematic 
errors for all k  so it is better to use large k in order to reduce 
statistical errors, but too large values of k  should be avoided 
since then the increase of systematic errors outweighs the 
decrease of statistical ones. On the other hand, when the data 
files are very long there is no need to worry about statistical 
errors so it is better to choose small k . In this application  k  
value is taken as 14.     

IV. ESTIMATING MUTUAL INFORMATION 

If X  and Y are two random variables with joint 
distribution ),( yxµ and marginal distributions 

)(xxµ and )(yyµ , then Mutual Information ),( YXI  

between X  and Y is defined as   

( , ) ( , ) log( ( , ) / ( ) ( ))x yI X Y x y x y x y dxdyµ µ µ µ= ×∫∫        (32) 

The algorithm proposed by Kraskov et.al [25] estimates 
),( YXI from the set }{ iZ alone without explicit estimation 

of the unknown densities and is outlined below. 
 For any set of N  bivariate measurements ),( iii yxz = , 

the thk  closest neighbour of each iZ is found according to 
the metric 

||z - z || = max{||x- x ||, ||y - y ||}′ ′ ′        (33) 

The thk  nearest neighbor is then projected onto the X  and 
Y axes giving the distances 2/)(ixε and 2/)(iyε . The 

estimate for MI is given by  
ˆ( , ) ( ) (1/ ) ( ) ( ) ( )x yI x y k k n n Nψ ψ ψ ψ= − − + +   (34) 

Where )(inx and )(iny  be the number of points with  

2/)(ixx xji ε≤−  and   2/)(iyy yji ε≤− and (.)ψ  is 

the digamma function )/)(()()( 1 dxxdxx Γ×Γ= −ψ  

and ∑
=

−=
N

i

iEN
1

1 )][.......(.... . 

V.    RESULTS AND DISCUSSIONS 

   ICA is a statistical method for transforming an observed 
multi-component data set into independent components that 
are statistically as independent as possible. The  components 
estimated  by an ICA algorithm should be least dependent on 
each other,  for better removal of artifacts  from EEG and so 
the  actual dependencies between the obtained components is 
to be estimated and it is most often ignored.  Hence it becomes 
necessary to estimate the actual dependencies between the 
components and to find the best ICA algorithm that transforms 
the observed data set into components that are least dependent 
on each other.   There are various measures to evaluate the 
independence among the estimated sources.  Some of the 
measures are kurtosis, negentropy, Mutual Information, etc 
[33]. Kurtosis is the fourth-order cumulant.  In terms of 
robustness and asymptotic variance, the cumulant based 
estimator tend to be far from optimal.  Intuitively there are 
two main reasons for this.  Firstly, higher order cumulants 
measure mainly the tails of the distributions, and are largely 
unaffected by structure in the middle of the distribution.  
Secondly, estimators of the higher order cumulants are highly 
sensitive to outliers [33].  Their value may depend on only a 
few observations in the tails of distribution which may be 
outliers. Negentropy involves estimation of probability density 
function which is very difficult.  Cumulant-based 
approximations of negentropy are inaccurate and in many 
cases too sensitive to outliers.  Among these measures, Mutual 
Information (MI) is the best choice to measure the 
independence of the estimated sources.  However, MI was not 
extensively used for measuring interdependence because 
estimating MI from statistical samples is not easy.  In the ICA 
literature very crude approximations to MI based on cumulant 
expansions are popular because of their ease of use.   In this 
paper, an efficient methodology to estimate MI  [25] based on 
k-nearest neighbour distances without estimating the 
probability densities is used to assess the actual independence 
of the components obtained from MILCA Algorithm and its 
performance is compared with the popular ICA algorithms 
Infomax, Extended Infomax, Fast ICA, SOBI,  TDSEP, 
JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and 
RADICAL. 
 

EEG data with ocular artifacts are taken from [36], for 
testing various algorithms and to find the best ICA algorithm, 
for removal of ocular artifacts from EEG. The contaminated 
mixed EEG signals and the independent components obtained 
using MILCA algorithm is shown in Figure 3.  

 
To evaluate the reliability of various algorithms,  

 The pairwise MI estimates of the independent 
components and 
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 The difference between the overall MI of the 
contaminated Raw EEG and the  overall MI of the 
independent components  

obtained by various signal separation algorithms are 
compared.   
 

   
 

 
 
 

First, the pairwise MI estimate is given by  )ˆ,ˆ(ˆ ji ssI  for all 

n ..., 1,  j i, = and j i ≠  if ji =  then )ˆ,ˆ(ˆ ji ssI  set as zero. i.e. 

the MI between independent components (1,2), (1,3), 
(1,4)………(2,1),(2,3)………. (9,1),(9,2)…………. and the 
MI between the same independent components i.e. 
(1,1),(2,2)…..is set as zero. Since MI is low for most 
independent components the values of the pairwise MI must 
be low for the best separation algorithm. Fig 4 shows the 
pairwise MI estimates of all the independent components 
obtained by various signal separation algorithms. The pairwise 
MI values are low for MILCA when compared to other 
algorithms, and hence it is clear that the inter dependencies are 
less in case of MILCA.  

 
To evaluate the reliability, next the difference between the 

overall MI of the contaminated EEG and the overall MI of the 
independent components are calculated. The independent 
components for various ICA algorithms   are obtained and MI 
for the mixed signals ),....XX,(X Î N21

and for the components 

)Ŝ,....Ŝ,Ŝ( Î N21 are estimated by using Eqn 

.
ˆ( , ) ( ) (1/ ) ( ) ( ) ( )x yI x y k k n n Nψ ψ ψ ψ= − − + +

  () 

choosing k = 6. Practical considerations for selecting k are 
discussed in [25]. Consider the first data set used in the 
analysis,  

 
Overall MI of the Contaminated EEG      

),....XX,(X Î N21
            - 7.0348 

Overall MI of the estimated Independent 
Components obtained by MILCA   

1 2 N
ˆ ˆ ˆÎ (S ,S ,....S )                      - 0.9652 

Difference between the two estimates      - 6.0696 
                                                 
Ideally, MI is zero, if two random variables are strictly 

independent.  Hence it is expected that 
1 2 N

ˆ ˆ ˆÎ (S ,S ,....S ) will 
decrease when compared to ),....XX,(X Î N21

. So the difference 
between the two estimates is maximum, when the overall MI 
of the independent components is minimum, in other words, 
the obtained components are more independent. This 
difference is expected to be high for best separation algorithm. 
The difference between the overall MI of the contaminated 
EEG and the overall MI of the Independent Components 
obtained by various Signal Separation Algorithms for 10 data 
sets are tabulated in Table 1. Results show that for all EEG 
data sets this difference is high for MILCA algorithm. 

 
 To compare the uniqueness of the independent components 
obtained by various algorithms,  

 Measure the pairwise MI of the obtained independent 
components under rotations in the two dimensional 
plane )(ˆ φijI  

 
 Calculate the square root of variability        

      ( ijσ ) of )(ˆ φijI . 

 Since for unique solutions all the independent components 
are dissimilar, the pair wise MI will change significantly i.e. 
large variability ijσ . But for ambiguous outputs, pair wise MI 

will stay almost constant so ijσ is small. Square root of 

variability ijσ of ( )(ˆ φijI ) the independent components 

obtained by various signal separation are shown in Fig 5. 
From Fig 5 it can be observed that in case of MILCA the 
square root of variability is high hence it gives unique 
components when compared with other signal separation 
algorithms. 

VI. CONCLUSION AND FUTURE SCOPE  

Ocular artifact correction is a challenging task. A variety of 
techniques have been proposed in the literature for   the same. 
However there is no general consensus amongst researchers 
upon the selection of the best, appropriate and feasible 
technique which enables the satisfactory removal of ocular 
artifacts and preservance of EEG information intact. In this 
paper, a recently introduced signal separation algorithm 

Fig. 3 Contaminated EEG Data 
 and the Independent Components obtained  

from Contaminated EEG using MILCA Algorithm 
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Mutual Information based Least Dependent Component 
Analysis (MILCA) is used for separation of ocular artifacts 
from EEG. The performance of this algorithm is compared 
with eleven popular signal separation algorithms for the 
reliability and uniqueness of the decomposition using a 
reliable MI estimator.  Results show that, MILCA algorithm 
performs best at separating the original sources from the 
observed signals.  In [34], it is shown that JADE outperforms 
the well-known ICA/BSS algorithms such as Infomax, 
Extended Infomax, FastICA, SOBI, TDSEP.  In [35], the 
authors has shown that RADICAL is superior compared to 
JADE, OGWE, SHIBBS, ICA-MS and Kernal-ICA. But in 
this paper, it is shown that MILCA has emerged superior 
when compared with JADE and RADICAL on the basis of 
Mutual Information Estimation. Once the components are as 
independent as possible, then the components can be 

classified either as artifacts or EEG and can be removed from 
the mixed signals to obtain the artifact free EEG data.  In this 
paper, the inspection of ocular artifact channel is identified 
visually, once the independent components are separated.  
However as an improvement over the current process, this 
inspection of artifact channel can be automated by using 
Adaptive Thresholding of Wavelet coefficients. The 
advantage of automated correction procedure is that it 
eliminates the subjectivity associated with non-automated 
correction procedures and can be used during on-line EEG 
monitoring for clinical purposes. Further it is our considered 
opinion that the usefulness of the best separation algorithm for 
removing ocular artifacts from EEG can also be justified 
quantitatively by proposing a suitable performance metric for 
validating the de-noised EEG signals. 
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TABLE I  

DIFFERENCE BETWEEN THE OVERALL MI OF THE CONTAMINATED EEG AND  
OVERALL MI OF THE INDEPENDENT COMPONENTS OBTAINED  

BY VARIOUS SIGNAL SEPARATION ALGORITHMS FOR 10 DATA SETS 
 

SET INFOMAX 
EXTENDED 

INFOMAX 

FAST 

ICA 
SOBI TDSEP JADE RADICAL 

ICA-
MS 

 

OGWE 
 

Kernel 
_ICA 

 

SHIBBS 
 

MILCA 
 

1 5.6882 5.7603 5.7967 4.8796 5.6123 5.9614 6.0695 4.9271 5.9328 5.9341 5.8848 6.0696 

2 4.8316 5.3871 5.4945 5.1941 5.1311 5.5925 5.7057 5.0475 5.5388 5.5214 5.5292 5.7774 

3 5.9039 6.0473 6.0987 5.3827 5.7605 6.0056 6.2622 5.2881 6.0751 6.0642 6.0652 6.2689 

4 6.0471 6.0044 6.3819 5.8603 5.8967 6.4160 6.4445 5.9397 6.3642 6.3630 6.41434 6.4790 

5 5.5765 5.6004 5.6041 5.4350 5.5170 5.6371 5.9231 5.4295 5.6572 5.7086 5.6737 5.9532 

6 4.4646 4.5002 4.5048 3.9906 4.2827 4.6565 4.7250 3.8436 4.6621 4.6151 4.6704 4.7259 

7 6.8702 6.7526 6.7607 5.5482 6.2028 6.7526 6.9988 5.6799 6.7835 6.9762 6.8149 7.0546 

8 9.1995 8.9427 9.0852 8.1404 8.7504 9.1859 9.2331 8.1769 9.2062 8.9918 9.1184 9.2615 

9 4.0303 4.3542 4.1389 3.5875 4.1999 4.3447 4.5797 3.5951 4.2867 4.5564 4.3775 4.6991 

10 4.8420 4.8986 4.9295 4.2696 4.7905 4.9831 5.1721 4.4020 4.9305 5.0897 4.9752 5.2013 
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 Fig. 4 Pairwise MI of all the Independent Components Obtained by Various  
Signal Separation algorithms for One Data Set  
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Fig .5 Square root of variability of all the EEG and OA components obtained by  
various signal separation algorithms for one data set 

 
 
 
 


