
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:5, 2020

145

 

 

 
Abstract—This paper mainly studies the path planning method 

based on ant colony optimization (ACO), and proposes heuristic 
integration ant colony optimization (HIACO). This paper not only 
analyzes and optimizes the principle, but also simulates and analyzes 
the parameters related to the application of HIACO in path planning. 
Compared with the original algorithm, the improved algorithm 
optimizes probability formula, tabu table mechanism and updating 
mechanism, and introduces more reasonable heuristic factors. The 
optimized HIACO not only draws on the excellent ideas of the original 
algorithm, but also solves the problems of premature convergence, 
convergence to the sub optimal solution and improper exploration to 
some extent. HIACO can be used to achieve better simulation results 
and achieve the desired optimization. Combined with the probability 
formula and update formula, several parameters of HIACO are tested. 
This paper proves the principle of the HIACO and gives the best 
parameter range in the research of path planning. 
 

Keywords—Ant colony optimization, heuristic integration, path 
planning  

I. INTRODUCTION 

CO is an algorithm inspired by ant colony's foraging 
behavior. This algorithm was proposed by Dorigo [1], 

which is mainly used to solve the discrete combination 
optimization problem [2]. ACO is a kind of evolutionary 
algorithm, which can be used to solve the traveling salesman 
problem. It has the characteristics of self-organization, parallel, 
positive feedback, strong robustness and so on [3]. In addition, 
ACO, as a bionic algorithm inspired by ants' foraging, to a 
certain extent conforms to the future research direction of 
artificial intelligence [4], and provides a good reference for the 
research of other algorithms. 

At present, the main research direction of ACO is robot path 
planning [2], which has achieved excellent results in some 
aspects. But there are still many shortcomings in parameter 
setting, heuristic information adjustment and so on. Most of the 
research on the path planning method of ACO is aimed at the 
problem of traveling salesman, but seldom at the problem of 
finding the shortest path between two nodes. From this point of 
view, this paper explores the algorithm and parameter design 
on the shortest path problem, hoping to further improve the 
current ACO research on the shortest path problem. Aiming at 
the problems of premature convergence, improper exploration 
and convergence to sub optimal path, we propose HIACO, 
which improves probability formula, tabu table mechanism and 
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updating mechanism, and sets more reasonable heuristic 
information. In addition, we further test the parameters of 
HIACO, analyze the function of different parameters, and give 
the optimal range of each parameter. 

II. RELATED WORK 

ACO is a simulated evolutionary algorithm, which is derived 
from foraging model [1]. Different species have different 
convening mechanisms, which can be either direct information 
transmission or indirect. Most ant colonies use pheromones to 
communicate indirectly [2]. When an ant finds food, it drags it 
back to its nest and leaves pheromones along the way. The 
foraging ants choose the path by the pheromone concentration 
in different paths. The higher the concentration of pheromone, 
the more likely the path will be selected. When more and more 
ants choose the same specific path, the path is more attractive 
because more and more pheromones are gathered, so as to 
attract more ants to take the path. This autocatalytic cooperative 
behavior forms a positive feedback mechanism, which makes 
the optimal foraging path more and more ants choose. 

Tabu table is a form used to record the nodes that a single ant 
has passed through in a single iteration [5]. Its survival range is 
only in the process of single ant's path finding in a single 
iteration. In each path finding process, a single ant needs to 
re-initialize the tabu table, and different ants have different 
exclusive tabu tables. When the tabu table is full but the ant has 
not reached the destination and the ant has no nodes other than 
the tabu table to travel, it is necessary to break the tabu table 
and list the nodes in the tabu table as the nodes to be selected. 
Tabu table mechanism is proposed in the ant colony system 
optimization, which is a very important mechanism in the 
ACO. It can avoid the ant's back and forth between two nodes 
and the loop's moving condition between multiple nodes, which 
greatly improves the ant's searching efficiency. 

The pheromone updating mechanism is divided into two 
parts: local updating mechanism and global updating 
mechanism [6], [7]. The local updating mechanism updates the 
pheromone concentration in each iteration. In the ant system, 
every ant will leave pheromones on the path it passes. 
However, in the ant ranking system, considering that ants with 
short path should have a higher priority to update pheromone 
concentration, elite ants can leave more pheromones, while ants 
with lower rank can update a small amount of pheromones or 
even not. Global updating does not exist in every iteration, but 
depends on the global shortest path [8]-[10]. Only when the 
global shortest path changes, the global updating formula is 
used to update the pheromone concentration.  

There are two main uses of pheromone volatilization 
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mechanism, one is pheromone volatilization, while the other is 
to limit the upper and lower limits of pheromone concentration 
[6]. The “two bridge experiment” shows that ant colony 
converges to a solution quickly, which makes the time of 
exploring a new path very short. In order to promote the ant 
colony to explore more new paths and avoid premature 
convergence, scholars put forward the mechanism of 
pheromone volatilization, which makes the original pheromone 
volatilize a certain amount in each iteration. 

Path selection mechanism is determined by heuristic 
information and pheromone concentration [2]. In different 
application areas, ACO has some differences in the 
construction of this formula, but most of them only have 
different definitions of pheromone concentration and heuristic 
information. For example, in the traveling salesman problem, 
the heuristic information is 1/d, that is, the reciprocal of the 
length d of the currently available path. The structure and 
parameter setting of probability calculation formula will 
directly affect the solution efficiency of ACO. The slight 
change of some parameters may greatly affect the convergence 
speed and exploration ability of ACO. 

III. HIACO 

Aiming at premature convergence, convergence to sub 
optimal path, improper exploration and other problems, this 
part proposes HIACO, which makes a series of theoretical 
analysis and corresponding optimization for the original ACO. 
Optimization can be divided into two parts. The first part is 
referential optimization, including some optimizations of tabu 
table mechanism, local updating mechanism and global 
updating mechanism. Because some improvement ideas are not 
compatible with each other, we must have selective reference 
according to specific problems, and make further improvement 
on the basis of reference, in order to achieve the best 
improvement effect. The second part is the original 
optimization. After referring to the existing optimization 
algorithm, we reconstruct the probability calculation formula, 
integrate two heuristic parameters, and enumerate some 
characteristics of the optimization formula. 

A. Referential Optimization 

In the original ACO, there is no specific measure to break the 
tabu table. In some studies [5]-[8], the method of random 
selection is used to break the tabu table; that is, randomly set a 
tabu node that the current ant can access as an accessible node, 
and move to this node. When we use this method for 
simulation, we find that this situation is not properly handled in 
some details. When there are fewer alternative routes for ants, it 
is likely that ants will reciprocate between two nodes. Since no 
additional processing mechanism is set, the probability of ant 
selecting the last node is likely to be higher than that of 
accessing other nodes, and selecting the last node returns to the 
previous state. This will cause ants to reciprocate between two 
nodes or increase unnecessary searching time. In order to solve 
this problem, we add a special processing mechanism, which 
allows ants to choose the node that is not the previous node 
first, and return to the previous node only when there is no node 

that is not the previous node accessible. This mechanism not 
only improves the ant's exploring ability, but also reduces the 
ant's searching loop to a certain extent. 

 
𝑃௞ሺ𝑡 ൅ 1ሻ𝜖 

ቐ
𝑁௜

௞ሺ𝑡ሻ െ 𝑇௞ሺ𝑡ሻ, if 𝑁௜
௞ሺ𝑡ሻ ⊈ 𝑇௞ሺ𝑡ሻ

𝑁௜
௞ሺ𝑡ሻ, if 𝑁௜
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ሼ𝑃௞ሺ𝑡 െ 1ሻሽ, if 𝑁௜
௞ሺ𝑡ሻ ⊆ 𝑇௞ሺ𝑡ሻ and 𝑁௜

௞ሺ𝑡ሻ െ ሼ𝑃௞ሺ𝑡 െ 1ሻሽ ൌ ∅
(1) 

 
In (1), 𝑃௞ሺ𝑡ሻ is the node where the ant with number k is 

located at time t, 𝑇௞ሺ𝑡ሻ is the tabu table set of ant with number k 
at time t, and 𝑁௜

௞ሺ𝑡ሻ is the node set where the ant on node i with 
number k can access at time t. 

In the original local updating mechanism, all ants participate 
in the updating of pheromone concentration. However, 
considering the theory of "better solution is close to the best 
solution" [11], the ants in the lower rank are likely to play a 
negative role in exploring the shortest path to a large extent. In 
the early stage, if the ants at the bottom of the ranking can 
update pheromones, it will undoubtedly slow down the 
convergence speed of path finding; in the later stage, the ants at 
the bottom of the ranking are basically similar to the ants at the 
bottom of the ranking, so the updating of ants at the bottom of 
the ranking is even more meaningless. We set the number of 
ants that can update the pheromone concentration to n; that is, 
the ants in the top n can update the pheromone. 

 
𝛥𝜏௜௝ሺ𝑡ሻ ൌ ∑ 𝛥𝜏௜௝

ఙ ሺ𝑡ሻ௡
ఙୀଵ         (2) 

 
In (2), 𝜏௜௝ሺ𝑡ሻ is the pheromone concentration between node i 

and j at time t, and σ is the ant label. In addition, we also 
adjusted the increment of pheromone concentration of ants in 
different rank to make the total updating amount of all ants 
constant. We assign the pheromone concentration increment to 
the top n ants in proportion, and the increment formula is shown 
in (3): 

 

𝛥𝜏௜௝
ఙ ሺ𝑡ሻ ൌ ቊ

ଶఙఛబ

௡మା௡
, if 𝜎 ∈ ሼ1,2, … , 𝑛ሽ

0, else 
     (3) 

 
In (3), τ0 is the preset upper limit of pheromone 

concentration increment in single updating. If the routes of n 
ants contain the same road section, the pheromone 
concentration increment of this road section in this iteration is 
τ0. 

In the original global updating mechanism, whether the 
global optimal solution is updated in the current iteration or not, 
the program will call the global update formula [8]. In this way, 
the current global optimal solution is always strengthened 
without considering the discovery time of the optimal solution, 
and the possibility that the global optimal solution may be a 
local optimal solution is ignored. In this case, if a local optimal 
solution is found in the early stage of the iteration, but no better 
solution is found in the subsequent iteration process, the 
pheromone concentration on the path of the local optimal 
solution will be continuously strengthened, which will affect 
the ant colony to further develop the better solution. Therefore, 
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we optimize the call of global updating mechanism. Only when 
the current iterative optimal solution is smaller than the 
historical optimal solution, can we call the global updating 
formula. In addition, we also improve the global updating 
formula by adding the parameter k, and adjust k according to 
the actual problem. The global updating formula is as follows: 

 

𝛥𝜏௜௝ሺ𝑡ሻ ൌ ቊ
௞

௙൫ௗ∗ሺ௧ሻ൯
, if ሺ𝑖, 𝑗ሻ ∈ 𝑑∗ሺ𝑡ሻ

0, else 
      (4) 

 
where d*ሺtሻ is the length of the global shortest path. The new 
global updating mechanism reduces the possibility of 
continuously strengthening the local optimal solution, and 
improves the exploration of ant colony to a certain extent. 

B. Heuristic Integration 

Probability formula is the core formula of ACO. Since it was 
proposed, no matter the ant colony system, the maximum and 
minimum system, the fast ant system or the ant ranking system, 
the probability calculation formula in them has not been greatly 
improved. 

But the calculation formula of probability is not fixed. The 
earliest probability formula only includes the prior effect 
(heuristic information) and the posterior effect (pheromone 
concentration) and balances them. There is no strict 
mathematical proof for the construction of the formula. To a 
large extent, the formula is biased to empirical formula, and 
there is a lot of room for improvement. 

In this section, according to the core theory of ACO, we 
adjust the structure of probability calculation formula. Based on 
the new formula, we adjust the pheromone concentration and 
heuristic information to optimize the balance between them. 
The original probability calculation formula is defined as [2]: 

 

𝑝௜௝
௞ ሺ𝑡ሻ ൌ ቐ

ఛ೔ೕ
ഀ ሺ௧ሻఎ೔ೕ

ഁ ሺ௧ሻ

∑ ఛ೔ೠ
ഀ ሺ௧ሻఎ೔ೠ

ഁ ሺ௧ሻ
ೠ∈ಿ೔

ೖሺ೟ሻ

, if 𝑗 ∈ 𝑁௜
௞ሺ𝑡ሻ

 0, else 

     (5) 

 
where k represents ant sequence number, i and j are node 
numbers, p is the transfer probability between two nodes, τ is 
the pheromone concentration between i and j, α is the 
pheromone enhancement coefficient, η is heuristic information 
(1/d for path planning problem), β is the heuristic enhancement 
coefficient. 

It is not difficult to see from (5) that the values of α and β 
determine the influences of pheromone concentration and 
heuristic information on probability calculation. The value of 
both does not directly affect the size of single path probability 
calculation, but on the whole, it will make probability have 
preference. The higher α is, the greater the effect of pheromone 
concentration on probability is, and vice versa; β is similar to 
this. 

In the case of determining the effect of a posteriori effect, the 
calculation of a priori effect can be analyzed. It can be 
determined that the prior effect of different road sections cannot 
be exactly the same in this probability formula, because the 

identical η will cause the prior effect in the probability formula 
to disappear (the molecule and denominator eliminate ηβ at the 
same time). 

In order to find the shortest path, we can further analyze the 
prior effect. According to the original probability formula, η is 
the inverse ratio of the length of the road section to be selected, 
which conforms to the traveling salesman problem. But for 
finding the shortest path problem, this method is likely to have 
a negative effect on the problem solving. 

 

 

Fig. 1 Two different situations that ant colony may encounter 
 

As shown in Fig. 1, assuming the map is designed according 
to this, the initial position of ant is A, and the terminal position 
is B. In the early stage of ACO, ants will randomly select red 
and blue road sections, and the selection of the two paths is 
random. If most ants choose the blue path as the initial path, the 
pheromone concentration will tend to this path. Although 
random exploration will make the red path possible to be 
developed, due to the influence of pheromone, the ant colony 
will eventually converge to the blue path, which will not have a 
negative impact on the shortest path searching. However, if 
most ants choose the red path as the initial path, the pheromone 
concentration and heuristic information will tend to the red 
path. Although the total length of the red path is far greater than 
the total length of the blue path, the length of each section in the 
path is shorter. In this case, pheromone and heuristic 
information will have the same preference, and ant colony will 
choose the suboptimal solution which is quite different from the 
optimal solution. And because of the positive feedback 
mechanism, the ant colony will continue to strengthen the 
attraction of red path to the subsequent ants, which makes it 
difficult for the ant colony to find the optimal solution. 

To solve the above problem, we improve the probability 
formula and propose HIACO. We change the combination of 
prior effect and posterior effect in the original formula from 
multiplication to addition, and integrate the heuristic 
information.  

 

𝑝௜௝
௞ ሺ𝑡ሻ ൌ ቐ

ఛ೔ೕ
ഀ ሺ௧ሻାு∗

∑ ఛ೔ೠ
ഀ ሺ௧ሻାு∗

ೠ∈ಿ೔
ೖሺ೟ሻ

, if 𝑗 ∈ 𝑁௜
௞ሺ𝑡ሻ

 0, else 
     (6) 

 
The probability formula of HIACO has the following 

characteristics: 
1) Disturbance factors and heuristic information are unified. 

In the research of ACO, the disturbance factor is also a 
very important parameter. In order to make the ACO more 
random and exploitable, some scholars proposed to add the 
disturbance factor to the ACO. On the one hand, this kind 
of processing is closer to the real ant foraging behavior, 
which is in line with the development direction of artificial 
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intelligence. On the other hand, ant colony can avoid 
premature convergence and lose the ability to develop new 
paths. In HIACO, new heuristic information plays a role of 
disturbance. 

2) Compared with the original formula, the optimization 
formula does not break out the balance between 
pheromone concentration and heuristic information. The 
original formula is balanced by multiplication combining 
pheromone and heuristic information. Although the 
optimization formula breaks the original multiplication, it 
is rebuilt by addition. However, by adjusting the 
parameters, the new algorithm does not affect the balance 
of the two and will not reduce the efficiency of the ACO. 

3) The value of new heuristic information is more flexible. 
The heuristic information of the original formula needs 
different values in different choices. And it is difficult for 
the original formula to adapt to some situations where 
heuristic information is needed and different choices are 
expected to have equal possibilities. However, because the 
optimization formula is constructed by addition, it can 
flexibly adjust the new heuristic information value to 
variable value or constant according to specific problems. 

4) On the premise of not affecting the algorithm function, 
parameter debugging is more convenient. ACO belongs to 
artificial intelligence algorithm, with a lot of uncertainties. 
The core of the algorithm is reflected in the positive 
feedback mechanism. On the basis of not violating this 
core theory, combining two heuristic related parameters 
into one heuristic parameter will undoubtedly reduce the 
difficulty of parameter debugging. 

5) It is convenient to analyze the influence of heuristic 
information on ACO more scientifically. The original 
heuristic information is inversely proportional to the length 
of the road section, and is multiplied by the α power of the 
pheromone concentration after the calculation of the β 
power. Multiple operations make the final probability 
result complex, so it is difficult to analyze the heuristic 
information directly. Only using simulation results to 
indirectly analyze, to a great extent, has affected the 
scholars' further research on ACO. 

6) HIACO solves the problem that the original ACO did not 
deal with the situation described in the previous section 
properly. This feature is also the starting point for the 
optimization of the original formula. In the problem 
described in the previous section, once the ant colony 
choose the red path in the early stage of the algorithm, the 
algorithm will hardly find the optimal path. After 
optimization, because the new heuristic information is not 
affected by the length of the road, it has the same heuristic 
effect on different paths, and it will not lead to the 
pheromone concentration and heuristic information having 
a common preference for a path. Even if the initial route of 
the ant colony is wrong, it is still possible for the ant colony 
to get rid of the wrong path and explore a better solution. 

IV. EXPERIMENTS 

In view of the above problems and optimization scheme, this 
part will verify the performance of HIACO through 
experiments. Because the parameters of HIACO and ACO are 
different, the comparison between HIACO and the original 
algorithm needs to be adjusted separately and then compared. 
This part will first analyze and adjust the performance and 
related parameters of HIACO, and give a better parameter 
configuration according to multiple evaluation indexes. The 
second part of this chapter will analyze the performance of the 
original algorithm in the current environment and adjust the 
appropriate parameters, then compare the performance of ACO 
and HIACO. 

A. Performance in Finding the Shortest Path  

We set up a map with 50 nodes and selectively connected 
some of them. In the set environment, we take the starting node 
as 10 and the ending node as 26, for example. Fig. 2 (a) shows 
the location of the start and end nodes in the map. After 100 
iterations of HIACO, the global shortest path is shown in the 
red path in Fig. 2 (b). Fig. 2 (c) shows the concentration map of 
the final pheromone. The darker the color, the denser the 
corresponding path pheromone. Fig. 2 (d) shows the average 
distance of single iteration and the shortest distance of single 
iteration. 

For HIACO, we need to adjust the pheromone influence 
parameter α and heuristic information parameter H*. Among 
them, the selection range of α is {1, 4, 7, 10}, and the selection 
range of H* is {0.0001, 0.001, 0.01, 0.1} (too large or too small 
α or H* will lead to the ant colony unable to find the shortest 
path or difficult to converge). When evaluating performance, 
we will consider average distance, shortest distance, shortest 
path hit rate, lost rate, distance exploration and node 
exploration. 

In the above six evaluation indexes, some attributes such as 
average distance and shortest distance are common evaluation 
indexes, but the evaluation of exploratory and convergence is 
not comprehensive enough. After adding other evaluation 
indexes, the algorithm performance under different parameter 
settings can be evaluated more comprehensively. Some indexes 
are related to each other, such as distance exploration and node 
exploration. And some indexes are antagonistic, such as lost 
rate and shortest path hit rate. However, there is no linear 
relationship between them, so they should be evaluated 
separately. 

In Fig. 3, the average distance of different parameter 
combinations of α and H* in each iteration is drawn. We can 
see that the pheromone effect will decrease with the increase of 
α, and the exploratory ability of ant colony will also increase. 
The smaller α will make the value of pheromone closer, which 
will affect the convergence of the average distance. 
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Fig. 2 Some basic images about the environment 
 

 

Fig. 3 The average distances of different parameter combinations 
 

Fig. 4 shows the shortest distance image of ant colony under 
different parameter combinations. We can see that the smaller 
the values of H* and α, the stronger the convergence of ant 
colony. When the H* and α values increase, the exploratory 
ability of ant colony will also increase, and the ant colony will 
have more opportunities to explore a better path. However, the 
enhancement of exploration will also bring the disadvantages 
of exploring useless paths. In addition, the shortest path hit rate 
and the lost rate represent the exploration efficiency of ant 
colony. Distance exploration and node exploration are based on 
the shortest distance and average distance, which more 
intuitively represents the exploration of ant colony. 

After giving the above six evaluation values, we can average 
the evaluation results of 100 iterations of the specified 
parameters according to the results, and give the overall 
evaluation value. We also add the global shortest distance and 
the number of iterations needed to find the global shortest 
distance, as shown in Table Ⅰ. 

In order to reduce the randomness of the data, we conduct 
100 times of each test (fix starting node and end node), and 
average the results of each index.  

Finally, we choose α = 4, H*= 0.01 as the final parameters of 
HIACO.  

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:5, 2020

150

 

 

 

Fig. 4 The shortest distances of different parameter combinations 
 

TABLE Ⅰ 
THE MEANINGS OF DIFFERENT EVALUATION INDEXES 

Evaluation index Meaning 

Dgs Global shortest distance found by ant colony 

Is The number of iterations required by ant colony to find 
the global shortest path 

Ds The shortest distance found by ant colony 

Davg The average distance of ant colony 

Ps Proportion of ants finding the shortest path  

Pl Proportion of ants unable to reach the destination 

Ed The exploration of ant colony in distance 

En The exploration of ant colony in node 

B. Performance Comparison between HIACO and Original 
Algorithm  

In this part, we first analyze the parameters of the original 
algorithm and choose the more appropriate parameters for the 
original ACO. In the probability formula of the original ACO, 
both pheromone and heuristic information affect the probability 
formula in the form of power function. Therefore, to some 
extent, we can fix one of the pheromones influencing factors 
and heuristic influencing factors, and adjust the balance 
between them by changing one of the parameters. As the 
research focus of this paper is on the influence of exploration 
factors, we fixed the α of the original algorithm to 1. 

After determining the value of α, the next work is to adjust 
the β according to the actual situation. According to the 
properties of power function, the influence of heuristic 
information on probability varies with the change of β. 
According to Fig. 5, when β is small and heuristic information 
is close to 0, the β power of heuristic information changes 
dramatically. This makes ant colony not explore around 
pheromones, but in the direction of heuristic information 
preference. When β takes a larger value, the β power of 
heuristic information will be infinitely close to 0, and the 
difference of them is very small, which will lose exploration. In 

addition, the nature of power function also determines that the 
value of β will also determine that the heuristic information 
close to 0 is favorable or the heuristic information close to 1 is 
more favorable, which has a strong bias. Due to the uncertainty 
of map and nodes, we should consider the possibilities of all 
heuristic information and put them on the same position. So, we 
set the β value to 1.  

 

 

Fig. 5 The image of ηβ when β has different values 
 

After determining the corresponding parameters of HIACO 
and ACO, we can compare the performance of the two 
algorithms by average distance, shortest distance, lost rate, 
shortest path hit rate, distance exploration and node 
exploration. 
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TABLE Ⅱ 
THE AVERAGE CHANGES OF EACH EVALUATION OF HIACO AND ACO 

Start End Dgs Ds Davg Ps Pl Ed En 

4 10 -2.06% 6.91% -1.88% 7.78% -32.00% -7.95% -6.16% 

42 5 -15.66% -4.51% -14.96% 5.67% -46.28% -11.55% -11.18% 

38 24 0.12% 2.70% -4.29% 8.39% -42.80% -6.32% -6.66% 

13 27 -2.98% 8.10% 7.26% 0.61% -2.72% -0.48% -0.61% 

10 47 3.36% 18.08% 10.51% 0.81% -33.10% -4.82% -1.61% 

22 30 0.00% 24.12% 19.73% -1.63% -9.65% 0.98% 0.61% 

2 14 1.82% 23.88% 23.20% -2.80% 9.38% 0.73% 0.16% 

1 34 0.00% 0.57% 1.70% -0.38% -2.36% 1.03% 0.52% 

6 31 0.96% 14.28% 9.63% 2.52% -4.34% -2.97% -0.98% 

19 22 5.70% 23.41% 19.96% -4.11% -15.53% -2.00% -2.35% 

9 42 -0.48% -6.02% -42.05% 12.82% -64.70% -39.15% -29.17% 

11 38 2.08% 15.09% 2.72% 2.77% -30.13% -9.52% -7.63% 

7 39 -8.16% -2.48% -9.62% 3.29% -45.63% -8.28% -7.42% 

12 43 -1.28% 11.18% 3.03% 12.24% -37.33% -7.23% -6.21% 

5 47 -8.81% -48.52% -52.13% 14.34% -69.86% -14.74% -11.16% 

2 5 -17.20% -3.98% -4.33% -0.96% -20.48% 1.40% -0.92% 

Average -2.66% 5.18% -1.97% 3.84% -27.97% -6.93% -5.67% 

 

 

Fig. 6 Performance comparison between HIACO and ACO 
 

Fig. 6 shows the performance of two ACOs starting from 
starting node 4 and arriving at node 3. Fig. 6 (a) shows the 
average distance between the two algorithms. We can see that 
the convergence speed of HIACO is faster than that of the 
original algorithm in the early stage. In the later stage, the 
convergence speed is reduced, which ensures the exploration 
speed and exploration performance. Fig. 6 (b) shows the 
shortest distance. In the intelligent algorithm, falling into the 
local optimal solution cannot be completely eliminated. 
However, we can see that after finding the local optimal 
solution in the early stage, HIACO still guarantees the 
exploration of the better shortest path and successfully explores 
the better shortest distance. Figs. 6 (c) and (d) respectively 
represent the lost rate and the shortest path hit rate of the 
algorithm. From the image, we can see that the lost rate of the 

original algorithm is generally higher than that of HIACO, and 
the hit rate of the shortest path is lower than that of HIACO (it is 
necessary to exclude the case of exploring the new shortest 
path). This means that the exploration of the original algorithm 
is not around the current solution, but at the expense of the hit 
rate for random exploration. Figs. 6 (e) and (f) respectively 
show the exploratory of distance and node. It can be seen that 
the exploratory difference between the two algorithms is not 
significant. But combined with other data, we can know that 
HIACO's exploration is more effective. 

In addition to the comparison and analysis of each 
performance index in a single test, referring to the evaluation 
method above, we also selected multiple test samples and 
simulated the two algorithms 100 times. We get more accurate 
evaluation on the average. Table Ⅱ shows the changes of each 
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evaluation of HIACO and original ACO. 
In finding the shortest path problem, the most critical 

evaluation index is undoubtedly the global shortest distance. In 
Table Ⅱ, we can see that the Dgs of HIACO is lower than that of 
the original ACO. This also verifies the above theoretical 
analysis, HIACO can find a better shortest path. Taking Davg 
and Pl as the core indicators, and combining with other 
evaluation indicators for analysis, we can conclude that HIACO 
will remain exploratory when it falls into the local optimal 
solution. Although Ed and En are slightly lower than the original 
ACO, combining with the analysis of Ps and Pl, we can see that 
the exploration of HIACO is more valuable than the exploration 
of the original ACO. 

V. DISCUSSION AND CONCLUSIONS 

Our main work is to optimize and simulate the ACO for 
shortest path planning. The original ACO has a good effect in 
solving the traveling salesman problem, but there are still some 
shortcomings in the shortest path planning problem. 

Firstly, we make a referential optimization to adjust some 
mechanisms of the original ACO. It includes setting additional 
restrictions on the tabu table mechanism, adjusting the number 
of active ants in the local updating mechanism and adjusting the 
global update formula according to the actual background. 

After proposing the referential optimization, we improved 
the probability formula of ACO. We change the way that 
heuristic information affects probability and propose HIACO. 
In HIACO, heuristic information will not have preference, so it 
is fairer to deal with exploration. In experiments, HIACO can 
usually find the shortest path better than the original algorithm. 
In addition, HIACO not only ensures the exploration, but also 
improves the shortest path hit rate and reduces the lost rate of 
ant colony, which endows the exploration of ant colony with 
higher value. 

This paper focuses on the balance between pheromone and 
heuristic information and the efficiency of exploration. In 
future research, we think that the multi dimension of 
pheromone and heuristic information will be the next research 
focus of ACO. More complex pheromones and heuristics may 
need to be preprocessed before they affect probability. 
Preprocessing may include encoding, feature extraction, 
dimension reduction and other operations. If ACO can be 
combined with the corresponding preprocessing, we believe 
that it will be further developed in natural language processing, 
image processing, reinforcement learning and other fields. 
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