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Abstract—This paper is focused on issues of nonlinear dynamic 

process modeling and model-based predictive control of a fed-batch 
sugar crystallization process applying the concept of artificial neural 
networks as computational tools. The control objective is to force the 
operation into following optimal supersaturation trajectory. It is 
achieved by manipulating the feed flow rate of sugar liquor/syrup, 
considered as the control input. A feed forward neural network 
(FFNN) model of the process is first built as part of the controller 
structure to predict the process response over a specified (prediction) 
horizon. The predictions are supplied to an optimization procedure to 
determine the values of the control action over a specified (control) 
horizon that minimizes a predefined performance index.  

The control task is rather challenging due to the strong 
nonlinearity of the process dynamics and variations in the 
crystallization kinetics. However, the simulation results demonstrated 
smooth behavior of the control actions and satisfactory reference 
tracking. 
 

Keywords—Feed forward neural network, process modeling, 
model predictive control, crystallization process.  

I.  INTRODUCTION  

HE phenomenon of crystallisation occurs in a large group 
of pharmaceutical, biotechnological, food and chemical 

processes. These kind of industrial productions are usually 
performed in a batch or fed-batch mode which is related with 
the formulation of a control problem in terms of economic or 
performance objective at the end of the process. The 
crystallisation quality is evaluated by the particle size 
distribution (PSD) at the end of the process which is 
quantified by two parameters - the average (in mass) particle 
size (MA) and the coefficient of particle variation (CV). The 
main challenge of the batch production is the large batch to 
batch variation of the final PSD. This lack of process 
repeatability is caused mainly by improper control policy and 
results in final product recycling and loss increase. 

Due to the highly competitive nature of the today’s 
crystallization industry, model-based predictive control  
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becomes increasingly accepted as one of the approaches that 
can overcome the problem of repeatability and can drive the 
process to its optimal state of profit maximization and cost 
minimization [1], [2]. However, the crystallisation occurs 
through the complex mechanisms of particle nucleation, 
subsequent particle growth and agglomeration or aggregation, 
phenomena that are physically not well understood therefore 
their reliable modelling is still a challenging task [3]. For 
example many of the reported crystallizer models neglect the 
agglomeration effect but it leads in general to biased 
estimation of CV and MA [4].  

Development of a reliable model facilitates effectively all 
subsequent steps in process optimization, control and 
operation monitoring.  There are two main modelling 
paradigms - analytical (based on the first principles rules) 
which has been the traditional way of process modelling since 
many years and data-driven (based on the process data) which 
became nowadays practically meaningful due to the rapid 
growth of computational resources. One of the most 
successful data-driven modelling techniques are the artificial 
neural networks (ANNs). Their ability to approximate 
complex non-linear relationships without prior knowledge of 
the model structure makes them a very attractive alternative to 
the classical modelling techniques [5]- [7].  

The purpose of this paper is twofold. On one hand we 
discuss and evaluate the benefits of applying hybrid strategy 
for dynamic behaviour modelling of crystallization processes 
combining analytical and ANN approaches. This mixed 
strategy is termed as Knowledge Based Hybrid Modelling 
(KBHM). On the other hand, we introduce Model Predictive 
Control (MPC) based on a Feed Forward Neural Network 
(FFNN) nonlinear model to an industrial fed-batch 
evaporative sugar crystallization, which belongs to the general 
class of crystallization processes. The aim is to regulate the 
process such that the supersaturation tracks a desired, process-
dependent reference signal.   

II.  PROCESS OPERATION 

Crystallisation occurs through the mechanisms of 
nucleation, growth and agglomeration. The process is 
characterised by strongly non-linear and non-stationary 
dynamics and can be divided into several sequential phases. 

Charging: During the first phase the pan is partially filled 
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with a juice containing dissolved sucrose (termed liquor).  
Concentration: The next phase is the concentration. The 

liquor is concentrated by evaporation, under vacuum, until the 
supersaturation reaches a predefined value. At this stage seed 
crystals are introduced into the pan to induce the production 
of crystals. This is the beginning of the third (crystallisation) 
phase. 

Crystallisation (main phase): In this phase as evaporation 
takes place further liquor or water is added to the pan in order 
to guarantee crystal growth at a controlled supersaturation 
level and to increase total contents of sugar in the pan. In most 
cases, due to economical reasons, the liquor is replaced by 
other juice of lower purity (termed syrup).  

Tightening: The fourth phase consists of tightening which 
is principally controlled by the evaporation capacity. The pan 
is filled with a suspension of sugar crystals in heavy syrup, 
which is dropped into a storage mixer. At the end of the batch, 
the final massecuite undergoes centrifugation, where final 
refined sugar is separated from the (mother) liquor. 

The unit contains 15 sensors for the following properties 
and operating variables: i) inside the pan - massecuite 
temperatures at three locations; brix of solution; level; 
massecuite consistency; stirrer current; vacuum pressure and 
temperature. ii) feed conditions - temperature, brix and flow 
rate of feed liquor and feed syrup. iii) steam conditions - 
temperature, pressure and flow rate of steam.  

Brix is the concentration of total dissolved solids (sucrose 
plus impurities) in the solution. Supersaturation is not a 
measured variable but can be determined from the available 
measurements. More details about the process can be found 
elsewhere [4], [8]. 

III.  CRYSTALIZATION PROCESS MODELLING  

A. Analytical Prior Knowledge Approach (White Box 
Model) 

The traditional way of process modelling for many years 
has been by mathematical equations. Since the analytical 
models capture physical behaviour they have the potential to 
extrapolate beyond the regions for which the model was 
constructed.  The general first principles model describing a 
batch crystallisation process consists of three parts [4]. 
 

Mass Balance 
The mass of water ( wM ), impurities ( iM ), dissolved 

sucrose ( sM ) and crystals ( cM ) are included in the following 
set of conservation mass balance equations  

(1 )w
f f f w w vap

dM F B F J
dt

ρ ρ= − + −                               (1) 

 

(1 )i
f f f f

dM F B Pur
dt

ρ= −                                            (2) 

 
s

f f f f cris
dM F B Pur J
dt

ρ= −                                           (3) 

 

c
cris

dM J
dt

=                                                                  (4) 

 
where fPur and fρ  are the purity (mass fraction of sucrose 

in the dissolved solids) and the density of the incoming feed. 
fF is the feed flowrate considered as the process input. 

 
Energy Balance 
The general energy balance model is 

 

dcJbFaJ
dt

dT
vapfcris

m +++=                                        (5)  

 
where vapJ  is the evaporation rate and a, b, c, d are 

parameters incorporating the enthalpy terms and specific heat 
capacities derived as functions of physical and thermodynamic 
properties [8].  

 
Population Balance 
Mathematical representation of the crystallization rate can 

be achieved through basic mass transfer considerations [9] or 
by writing a population balance represented by its moment 
equations [10]. Employing a population balance is generally 
preferred since it allows to take into account initial 
experimental distributions and, most significantly, to consider 
complex mechanisms such as those of size dispersion and/or 
particle agglomeration/aggregation. Hence, the population 
balance is expressed by the leading moments of PSD in 
volume coordinates ( iµ

~ ) since agglomeration must obey mass 
conservation low, 
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and the crystallisation rate is determined as  

 

dt
d

J ccris
1

~µ
ρ= . (9)                   

0
~B , Gv and β’ are the kinetic variables nucleation rate,  

volume growth rate  and the agglomeration kernel, 
respectively. It is difficult to formulate physically based 
analytical models for the kinetic variables (Fig. 1). Here, the 
empirical correlations have a long tradition and there exist in 
the literature a large number of empirical equations for them 
[4], [8], [11]. The decision which of them provides the best 
approximation of the crystallisation process in hand is very 
difficult. 
 



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:1, No:12, 2007

153

 
 

 

Empirical 
Kinetic 
model 

process 
outputs  

β,,BG  
Process 
 inputs Population  

balance 
(CSD moments) 

Mass &energy 
balance 

analytical 
models 

 
Fig. 1 Analytical model 

 

B. ANN (Black Box Model) 
An obvious advantage of the ANN modelling is its 

universal character in approximating different physical 
phenomena with similar computational structure. It saves time 
and efforts for identifying parameters, in contrast to the case 
when an analytical model is designed. Therefore ANNs are 
nowadays known as powerful computing structures for data 
processing and information storage. However, they have some 
remarkable disadvantages.  The ANN approach suffers of the 
lack of transparent structure and physical understanding of the 
network parameters. The resulting black-box (input-output) 
model in general does not provide the transparency desired to 
enhance the process understanding. It relies only on the 
recorded data and does not exploit any other source of 
knowledge available for the process in hand.  

A complete FFNN model of the sugar crystallisation was 
also developed. It has single input single output structure and 
one hidden layer with 7 sigmoid activation functions (Fig. 2). 
The input is related to on-line collected physical 
measurements of the feed flow rate. The network output is the 
supersaturation for which historical data are also available. 
The FFNN parameters were tuned applying the Levenberg-
Marquart optimisation procedure [12]. 

 
 

Feed flowrate  

 
ANN    

process model 
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Fig. 2 FFNN model 

 

C. Knowledge-Based Hybrid Modeling (Grey Box Model) 
Knowledge-based hybrid modelling (KBHM) is a quite 

efficient alternative of the two modelling techniques discussed 
above [13].  The idea of KBHM is to complement the 
analytical model with the data-driven approach. In the design 
of such models it is possible to combine theoretical and 
experimental knowledge as well as process information from 
different sources: theoretical knowledge from physical and 
mass conservation laws; experimental data from laboratory 
plant experiments; experimental data from real plant 
experiments; data from regular process operation; knowledge 
and experience from qualified process operators.  The clear 
advantages of KBHM compared with the data-based 
modelling are first with respect to more physical transparency 
of the model parameters and secondly less training data is 
required [14].  

Our solution for a KBHM of the crystallization process 
combines a partial analytical model reflecting the mass, 
energy and population balances (1-9) with a feed-forward 

ANN for modelling the nucleation rate ( NNB ), the growth 
rate (G NN) and the agglomeration kernel (βNN) (see Fig. 3). 
The ANN has 4 inputs, 3 outputs and one hidden layer with 9 
sigmoid activation functions. The temperature of masecute 
( mT ), the supersaturation (S), the purity of the solution 
( solPur ) and the volume fraction of crystals ( cυ ) are 
considered as the networks inputs because they all affect 
directly the kinetic parameters.   
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Fig. 3 KBHM 

          
Hybrid ANN Training – Sensitivity Approach 
The training of an ANN requires that the network weights 

are determined in such a way that the error between the 
network output and the corresponding target output becomes 
minimal. In the hybrid system, however, the target outputs are 
not available since the kinetic parameters are not measured. 
Therefore, an alternative training procedure was required. Our 
solution was to build a hybrid ANN training structure where 
the network outputs go through some fixed (known) part of 
the analytical model and to compare this hybrid model output 
with the available data (Fig. 4).  
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Fig. 4 Hybrid ANN training procedure 

 
The error for updating the network weights is a function of 

the observed error and the gradient of the hybrid model output 
with respect to the ANN output. The mass of crystals is 
considered as most appropriate to serve as a target output in 
the hybrid ANN training. According to equations (4), (6) and 
(9), the mass balance of crystals can be rewritten as 

 

NNhyb
c

hyb
cv

hyb
c GMk

dt
dM 3/23/1

0
3/1 )()~()(3 µρ=   (10) 

 
(10) is incorporated in the hybrid training structure but in 

order to integrate it the zero moment ( 0
~µ ) is required. 
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Therefore its balance equation is also involved in the network 
training stage ( see also (6) ) , 
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Superscripts hyb and NN are used to point out variables 

obtained during the hybrid network training. The network 
outputs give estimates of the growth rate, nucleation and 
agglomeration kinetic parameters. These estimates are 
propagated through (10-11).  The error signal for updating the 
network parameters  is 

 
[ ]TBGobstr ee βλλλ=    (12) 

 
It is obtained by multiplying the observed error 
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with the gradient of the hybrid model output with respect to 

the network outputs 
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The gradients (14-16) can be computed through integration 

of the sensitivity equations 
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Note, that while Gλ  can be straightforward obtained, Bλ  

and βλ  depend on the gradients of 0
~µ  with respect to 0

~B  and 

β´, respectively. In order to determine them the same strategy 
is applied leading to integration of the following sensitivity 
equations with zero initial conditions 
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The network parameters were tuned applying the Levenberg-
Marquart optimization procedure [12].  

IV.  ANN-BASED MODEL PREDICTIVE CONTROL 

A. Problem Formulation  
Nonlinear model predictive control (NMPC) is an 

optimisation-based multivariable constrained control 
technique that uses a nonlinear dynamic model for the 
prediction of the process outputs. At each sampling time the 
model is updated on the basis of new measurements and state 
variables estimates. Then the open-loop optimal manipulated 
variable moves are computed over a finite (predefined) 
prediction horizon with respect to some performance index, 
and the manipulated variables for the subsequent prediction 
horizon are implemented. Then the prediction horizon is 
shifted or shrunk by usually one sampling time into the future, 
and the previous steps are repeated. The optimal control 
problem in the NMPC framework can be mathematically 
formulated as: 
 

),),(),((min
maxmin )(

PtutxJ
utuu

ϕ=
≤≤

 (22) 

subject to: 
 

0)0(,0),),(),(( xxttPtutxfx f =≤≤=&   (23.1) 
 

)),(()( Ptxhty =  (23.2) 
 

pjxg j ,......2,1,0)( ==  (24.1) 

 
ljxv j ,......2,1,0)( =≤  (24.2) 

 
where (22) is the performance index,  (23) is the  process 

model, function f is the state-space description, function  h is 
the relationship between the output and the state, P is the  
vector of possibly uncertain parameters and ft  is the final 

batch time. mn RtuRtx ∈∈ )(,)(  and pRty ∈)(  are the state, 
the manipulated input and the control output vectors, 
respectively. The manipulated inputs, the state and the control 
outputs are subject to the following constraints, 
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Υ∈Ζ∈Χ∈ )(,)(,)( tytutx  in which Χ , Z and Y are convex 

and closed subsets of mn RR , and pR . jg  and jv are the 
equality and inequality constrains with p and l dimensions 
respectively.  

B. Closed Loop ANN-MPC Structure  
The particular closed loop MPC structure considered in this 

work is illustrated in Fig. 5. 

 
Fig. 5 ANN-based model predictive control  (ANN-MPC) 

 
For the simulation purposes the KBHM process model 

introduced in section II was implemented as the simulation 
model (see Fig. 3). The controller consists of the feed forward 
ANN process model discussed also in section II (see Fig. 2) 
and an optimization block.  The ANN model predicts future 
process responses to potential control signals over the 
prediction horizon. The predictions are supplied to the 
optimization block to determine the values of the control 
action over a specified (control) horizon that minimize the 
following performance index  
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The prediction horizon p is the number of time steps over 

which the prediction errors are minimized and the control 
horizon c is the number of time steps over which the control 
increments are minimized, yr is the desired response and ym is 
the network model response.  

)(),.....1(),( ctuktuktu ++++ are tentative values of the 
future control signal, which are limited by minu and maxu and 
parameterized as peace wise constant. 1λ and 2λ determine the 
contribution of the sum of the squares of the output error and 
the control increments over the performance index. The length 
of the prediction horizon is crucial for achieving tracking and 
stability. For small values of p the tracking deteriorates but for 
high p values the bang-bang behaviour of the process input 
might be a real problem. The MPC controller requires a 
significant amount of on-line computation, since the 

optimization (25) is performed at each sample time to 
compute the optimal control input. At each step only the first 
control action is implemented to the process (in this case to 
the simulation KBHM). 

 V.  NUMERICAL IMPLEMENTATION OF ANN-MPC 

The numerical implementation of ANN-MPC control is 
schematically presented in Fig. 6. The control problem is 
simulated in Matlab/Simulink framework as a set of modules. 
The Matlab NN Toolbox is also required. The controller is 
designed as an independent block and the process is simulated 
as a KBHM model.  The KBHM model is coded as an S-
function required by Simulink. The architecture of the ANN 
process model (which is part of the MPC structure) consists of 
one hidden layer with 7 sigmoid squashing activation 
functions and one output linear layer. The ANN is trained 
offline, in batch mode with input-output data generated by the 
KBHM. Before introducing to the ANN, data is normalized in 
the range (-1,1) and after processing over the network the 
network outputs are  denormalized.  

Simulation results are summarized in Fig. 7. The process 
manipulated input (the feed flow rate) is depicted in subplot 
(a) and the process controlled output (the supersaturation) is 
depicted in subplot (b) for prediction horizon p=10 and 
control horizon c=4. The peace-wise constant output reference 
was determined based on the optimal profile derived by an 
off-line dynamic optimization [15]. During the stages of 
concentration and feeding with liquor, the reference was set at 
Sref=1.15 and afterwards was reduced to Sref=1.05. A smooth 
transition between the two levels was determined to overcome 
possible overreaction of the tracking controller. The graphics 
shows satisfactory reference tracking with an acceptable 
smooth behaviour of the control input which stays within the 
technological constrains defined with umax=0.015 [m3/s].  
Higher the prediction horizon better would be the tracking but 
to the expense of more vivid manipulated input. For higher 
values of p (>10), the control action faced saturation 
problems.  

 

 
Fig. 6 ANN MPC – simulation scheme 

 
 

ANN  
process model 

 

Optimization 
procedure 

Process 
(KBHM) 

 

NN MPC   



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:1, No:12, 2007

156

 
 

 

 
a) Feed rate profile and its max allowed value 

 

 
 b) Supersaturation profile and its ref. trajectory 

Fig. 7 ANN-MPC simulations  p=10,  c=4 
  

VI.  CONCLUSION 

The application of FFNN at two stages of sugar 
crystallization process automation, namely modelling and 
control is presented in this paper.  

At the modelling stage, a knowledge based hybrid model 
(KBHM) of the process was designed that possesses the 
advantages of both analytical and pure data based process 
models. The KBHM offers a reasonable compromise between 
the extensive efforts to get a fully parameterised structure, as 
are the analytical models and the poor generalisation of the 
complete data-based modelling approaches.  

At the control stage, a model predictive control based on a 
FFNN model of the process was designed. Since the FFNN 
model captures the nonlinear nature of the process it has the 

potential advantage over the linear models widely used in the 
MPC framework. The proposed scheme guaranteed feasibility 
of the reference tracking in the presence of input constrains. It 
should, however, be pointed out that variations of initial 
conditions and disturbances during the batch are not treated in 
the paper but are most probably to appear in the reality. Future 
work will focus on these issues.  
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