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Abstract—This paper presents the applications of computational 

intelligence techniques to economic load dispatch problems. The fuel 
cost equation of a thermal plant is generally expressed as continuous 
quadratic equation. In real situations the fuel cost equations can be 
discontinuous. In view of the above, both continuous and 
discontinuous fuel cost equations are considered in the present paper. 
First, genetic algorithm optimization technique is applied to a 6-
generator 26-bus test system having continuous fuel cost equations. 
Results are compared to conventional quadratic programming 
method to show the superiority of the proposed computational 
intelligence technique. Further, a 10-generator system each with 
three fuel options distributed in three areas is considered and particle 
swarm optimization algorithm is employed to minimize the cost of 
generation. To show the superiority of the proposed approach, the 
results are compared with other published methods. 
 

Keywords—Economic Load Dispatch, Continuous Fuel Cost, 
Quadratic Programming, Real-Coded Genetic Algorithm, 
Discontinuous Fuel Cost, Particle Swarm Optimization.  

I. INTRODUCTION 
COMONIC load dispatch is defined as the process of 
allocating generation levels to the generating units in the 
mix, so that the system load is supplied entirely and 

most economically [1]. The objective of the economic 
dispatch problem is to calculate the output power of every 
generating unit so that all demands are satisfied at minimum 
cost, while satisfying different technical constraints of the 
network and the generators. In this problem, the generation 
costs are represented as curves and the overall calculation 
minimizes the operating cost by finding the point where the 
total output of the generators equals the total power that must 
be delivered. It is an important daily optimization task in the 
operation of a power system [2]. 

 
_______________________________________ 

S. Swain is working as an Assistant Professor in the Electrical 
Engineering Department, School of Technology, KIIT University, 
Bhubaneswar, Orissa, India (e-mail:scs_132@rediffmail.com). 

S. Panda is working as a Professor in the Department of Electrical and 
Electronics Engineering, NIST, Berhampur, Orissa, India, Pin: 761008. (e-
mail: panda_sidhartha@rediffmail.com ) 

A.K. Mohanty is working as a Professor Emeritus in the Electrical 
Engineering Department, School of Technology, KIIT University, 
Bhubaneswar, Orissa, India, (e-mail: dhisi1@rediffmail.com).. 

C. Ardil is with National Academy of Aviation, AZ1045, Baku, 
Azerbaijan, Bina, 25th km, NAA (e-mail: cemalardil@gmail.com). 

Several optimization techniques have been applied to solve 
the ED problem. To solve economic dispatch problem 
effectively, most algorithms require the incremental cost 
curves to be of monotonically smooth increasing nature and 
continuous [3-6]. For the generating units, which actually 
having non-monotonically incremental cost curves, the 
conventional method ignores or flattens out the portions of the 
incremental cost curve that are not continuous or 
monotonically increasing. Hence, inaccurate dispatch result 
may be obtained. To obtain accurate dispatch results, the 
approaches without restriction on the shape of fuel cost 
functions are necessary [7-8]. Most of conventional methods 
suffer from the convergence problem, and always get trap in 
the local minimum. Moreover, some techniques face the 
dimensionality problem especially when solving the large-
scale system. 

In recent years, one of the most promising research fields 
has been “Evolutionary Techniques”, an area utilizing 
analogies with nature or social systems. Evolutionary 
techniques are finding popularity within research community 
as design tools and problem solvers because of their versatility 
and ability to optimize in complex multimodal search spaces 
applied to non-differentiable objective functions. Several 
modern heuristic tools have evolved in the last two decades 
that facilitate solving optimization problems that were 
previously difficult or impossible to solve. These tools include 
evolutionary computation, simulated annealing, tabu search, 
particle swarm, etc. Recently, genetic algorithm (GA) and 
particle swarm optimization (PSO) techniques appeared as 
promising algorithms for handling the optimization problems 
[9]. These techniques are finding popularity within research 
community as design tools and problem solvers because of 
their versatility and ability to optimize in complex multimodal 
search spaces applied to non-differentiable cost functions. 

Genetic Algorithm (GA) can be viewed as a general-
purpose search method, an optimization method, or a learning 
mechanism, based loosely on Darwinian principles of 
biological evolution, reproduction and ‘‘the survival of the 
fittest’’ [10]. GA maintains a set of candidate solutions called 
population and repeatedly modifies them. At each step, the 
GA selects individuals from the current population to be 
parents and uses them to produce the children for the next 
generation. In general, the fittest individuals of any population 
tend to reproduce and survive to the next generation, thus 
improving successive generations. However, inferior 
individuals can, by chance, survive and also reproduce. GA is 
well suited to and has been extensively applied to solve 
complex design optimization problems because it can handle 
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both discrete and continuous variables, non-linear objective 
and constrain functions without requiring gradient 
information. It has been reported in the literature that Real-
Coded Genetic Algorithm (RCGA) is more efficient in terms 
of CPU time and offers higher precision with more consistent 
results [11-14]. 

Particle Swarm Optimization (PSO) is inspired by the 
ability of flocks of birds, schools of fish, and herds of animals 
to adapt to their environment, find rich sources of food, and 
avoid predators by implementing an information sharing 
approach. PSO technique was invented in the mid 1990s while 
attempting to simulate the choreographed, graceful motion of 
swarms of birds as part of a sociocognitive study investigating 
the notion of collective intelligence in biological populations 
[15]. In PSO, a set of randomly generated solutions 
propagates in the design space towards the optimal solution 
over a number of iterations based on large amount of 
information about the design space that is assimilated and 
shared by all members of the swarm [16].  

Techniques such as PSO and GA are inspired by nature, 
and have proved themselves to be effective solutions to 
optimization problems. It has been reported in the literature 
that, both PSO and GA optimization techniques can be used 
for optimization problems giving almost similar results [9]. 
This paper presents the applications of both GA and PSO to 
economic load dispatch problems. Both continuous and 
discontinuous fuel cost equations are considered in the present 
paper. First, RCGA optimization technique is applied to a 6-
generator 26-bus test system having continuous fuel cost 
equations and the results are compared to conventional 
quadratic programming method to show its superiority.  
Further, PSO is employed to minimize the cost of generation 
of a 10-generator system each with discontinuous fuel cost 
equations and the results are compared with other published 
methods. 

II. PROBLEM STATEMENT 
The basic economic dispatch problem can described 

mathematically as a minimization of problem of minimizing 
the total fuel cost of all committed plants subject to the 
constraints [1]. 
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Where 

F = Total operating cost 

N = Number of generating units 

Pi = Power output of i th generating unit 

Fi (Pi) = Fuel cost function of i th generating unit 

PD = Total load demand 

PL = Total losses 

Pi min = Minimum out put power limit of i th generating unit 

Pi max = Maximum out put power limit of i th generating unit 

The total fuel cost is to be minimized subject to the 
constraints. The transmission loss can be determined form 
Bmn coefficients.  

 The conditions for optimality can be obtained by using 
Lagrangian multipliers method and Kuhn tucker conditions as 
follows: 
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The following steps are followed to solve the economic 
load dispatch problem with the constraints: 

Step-1: 
Allocate lower limit of each plant as generation, evaluate 

the transmission loss and incremental loss coefficients and 
update the demand. 
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(8) 
Step-2: 
Apply quadratic programming to determine the allocation 
new

iP of each plant. 
If the generation hits the limit, it should be fixed to that 

limit and the remaining plants only should be considered for 
next iteration. 

Step-3: 
Check for the convergence 

ε≤∑ −−
=

N

i
L

new
Di PPP

1
                                         (9) 

Where ε  is the tolerance. Repeat until the convergence 
criteria is meet. 

A brief description about the quadratic programming 
method is presented in the next section. 
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III. QUADRATIC PROGRAMMING METHOD 
A linearly constrained optimization problem with a 

quadratic objective function is called a Quadratic Program 
(QP). Due to its numerous applications; quadratic 
programming is often viewed as a discipline in and of itself. 
Quadratic programming is an efficient optimization technique 
to trace the global minimum if the objective function is 
quadratic and the constraints are linear. Quadratic 
programming is used recursively from the lowest incremental 
cost regions to highest incremental cost region to find the 
optimum allocation. Once the limits are obtained and the data 
are rearranged in such a manner that the incremental cost 
limits of all the plants are in ascending order. 

The general quadratic program can be written as:  

Minimize ( ) Qxxcxxf T
2
1

+=                                (10) 

Subject to bAx ≤ and 0≥x                                      (11) 

Where c is an n-dimensional row vector describing the 
coefficients of the linear terms in the objective function, and 
Q is an ( )nn ×  symmetric matrix describing the coefficients 
of the quadratic terms. If a constant term exists it is dropped 
from the model. As in linear programming, the decision 
variables are denoted by the n-dimensional column vector x, 
and the constraints are defined by an ( )nm × A matrix and an 
m-dimensional column vector b of right-hand-side 
coefficients. We assume that a feasible solution exists and that 
the constraint region is bounded. When the objective function 
f(x) is strictly convex for all feasible points the problem has a 
unique local minimum which is also the global minimum. A 
sufficient condition to guarantee strictly convexity is for Q to 
be positive definite. 

If there are only equality constraints, then the QP can be 
solved by a linear system. Otherwise, a variety of methods for 
solving the QP are commonly used, namely; interior point, 
active set, conjugate gradient, extensions of the simplex 
algorithm etc. The direction search algorithm is minor 
variation of quadratic programming for discontinuous search 
space. For every demand the following search mechanism is 
followed between lower and upper limits of those particular 
plants. For meeting any demand the algorithm is explained in 
the following steps: 

1) Assume all the plants are operating at lowest incremental 
cost limits.  

2) Substitute ( ) iiiii XLULP −+= ,  

where 10 << iX  and make the objective function 
quadratic and make the constraints linear by omitting the 
higher order terms. 

3) Solve the ELD using quadratic programming recursively 
to find the allocation and incremental cost for each plant 
within limits of that plant. 

4) If there is no limit violation for any plant for that 
particular piece, then it is a local solution. 

5) If for any allocation for a plant, it is violating the limit, it 
should be fixed to that limit and the remaining plants 
only should be considered for next iteration. 

6)  Repeat steps 2, 3, and 4 till a solution is achieved within 
a specified tolerance. 

IV. GENETIC ALGORITHM APPROACH 

A. Overview of Real Coded Genetic Algorithm 
Genetic Algorithm (GA) can be viewed as a general-

purpose search method, an optimization method, or a learning 
mechanism, based loosely on Darwinian principles of 
biological evolution, reproduction and “the survival of the 
fittest.” GA maintains a set of candidate solutions called 
population and repeatedly modifies them. At each step, the 
GA selects individuals at random from the current population 
to be parents and uses them to produce the children for the 
next generation. Candidate solutions are usually represented 
as strings of fixed length, called chromosomes.  

Given a random initial population GA operates in cycles 
called generations, as follows [10]: 

• Each member of the population is evaluated using an 
objective function or fitness function. 

• The population undergoes reproduction in a number 
of iterations. One or more parents are chosen 
stochastically, but strings with higher fitness values 
have higher probability of contributing an offspring. 

• Genetic operators, such as crossover and mutation, 
are applied to parents to produce offspring. 

• The offspring are inserted into the population and the 
process is repeated. 

Over successive generations, the population “evolves” 
toward an optimal solution. GA can be applied to solve a 
variety of optimization problems that are not well suited for 
standard optimization algorithms, including problems in 
which the objective function is discontinuous, 
nondifferentiable, stochastic, or highly nonlinear. GA has 
been used to solve difficult engineering problems that are 
complex and difficult to solve by conventional optimization 
methods.  

B. Implementation of RCGA 
Implementation of GA requires the determination of six 

fundamental issues: chromosome representation, selection 
function, the genetic operators, initialization, termination and 
evaluation function. Brief descriptions about these issues are 
provided in the following sections [11-14].  

i. Chromosome Representation   

Chromosome representation scheme determines how the 
problem is structured in the GA and also determines the 
genetic operators that are used. Each individual or 
chromosome is made up of a sequence of genes. Various types 
of representations of an individual or chromosome are: binary 
digits, floating point numbers, integers, real values, matrices, 
etc. Generally natural representations are more efficient and 
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produce better solutions. Real-coded representation is more 
efficient in terms of CPU time and offers higher precision 
with more consistent results. 

ii. Selection Function   

To produce successive generations, selection of individuals 
plays a very significant role in a genetic algorithm. The 
selection function determines which of the individuals will 
survive and move on to the next generation. A probabilistic 
selection is performed based upon the individual’s fitness such 
that the superior individuals have more chance of being 
selected. There are several schemes for the selection process: 
roulette wheel selection and its extensions, scaling techniques, 
tournament, normal geometric, elitist models and ranking 
methods. 

The selection approach assigns a probability of selection Pj 
to each individuals based on its fitness value. In the present 
study, normalized geometric selection function has been used. 
In normalized geometric ranking, the probability of selecting 
an individual Pi is defined as: 

( ) 1' 1 −−= rqqPi                 (12) 

Pq
qq

)1(1
'

−−
=                      (13) 

where,  
q = probability of selecting the best individual 

r  = rank of the individual (with best equals 1) 

P = population size 

iii. Genetic Operators 

The basic search mechanism of the GA is provided by the 
genetic operators. There are two basic types of operators: 
crossover and mutation. These operators are used to produce 
new solutions based on existing solutions in the population. 
Crossover takes two individuals to be parents and produces 
two new individuals while mutation alters one individual to 
produce a single new solution. The following genetic 
operators are usually employed: simple crossover, arithmetic 
crossover and heuristic crossover as crossover operator and 
uniform mutation, non-uniform mutation, multi-non-uniform 
mutation, boundary mutation as mutation operator. Arithmetic 
crossover and non-uniform mutation are employed in the 
present study as genetic operators. Crossover generates a 
random number r  from a uniform distribution from 1 to m 
and creates two new individuals by using equations: 
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Arithmetic crossover produces two complimentary linear 
combinations of the parents, where r = U (0, 1): 
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Non-uniform mutation randomly selects one variable j and 
sets it equal to a non-uniform random number. 
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r1, r2 = uniform random nos. between 0 to 1. 

G = current generation. 

Gmax = maximum no. of generations. 

b = shape parameter.  

iv. Initialization, Termination and Evaluation Function 

An initial population is needed to start the genetic algorithm 
procedure.  The initial population can be randomly generated 
or can be taken from other methods. 

GA moves from generation to generation until a stopping 
criterion is met. The stopping criterion could be maximum 
number of generations, population convergence criteria, lack 
of improvement in the best solution over a specified number 
of generations or target value for the objective function. 

Evaluation functions or objective functions of many forms 
can be used in a GA so that the function can map the 
population into a partially ordered set.  

v. Parameter Selection for RCGA 

For different problems, it is possible that the same parameters 
for GA do not give the best solution and so these can be 
changed according to the situation. The parameters employed 
for the implementations of RCGA in the present study are 
given in Table I. Optimization were performed with the total 
number of generations set to 100. The optimization processes 
is run 20 times and best among the 20 runs are taken as the 
final solutions. 

TABLE I: PARAMETERS USED IN RCGA 
Parameter Value/Type 
Maximum generations 100 
Population size 50 
Type of selection Normal geometric [0 0.08] 
Type of crossover Arithmetic [2] 
Type of mutation Nonuniform [2 100 3] 
Termination method Maximum generation 
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C. Proposed RCGA Approach 
The following steps are followed for the implementation of 

GA for economic load dispatch problems. 
1) Select the plant having maximum capacity and range as 

a reference plant.  
2) Fix the reference plant allocation by equation (5) and 

(6).  
3) Convert the constrained optimization problem as an 

unconstrained problem by penalty function method as: 
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4) Apply RCGA to minimize F. 

V. PARTICLE SWARM OPTIMIZATION APPROACH 

A. Overview of Particle Swarm Optimization 
The PSO method is a member of wide category of swarm 

intelligence methods for solving the optimization problems. It 
is a population based search algorithm where each individual 
is referred to as particle and represents a candidate solution. 
Each particle in PSO flies through the search space with an 
adaptable velocity that is dynamically modified according to 
its own flying experience and also to the flying experience of 
the other particles. In PSO each particles strive to improve 
themselves by imitating traits from their successful peers. 
Further, each particle has a memory and hence it is capable of 
remembering the best position in the search space ever visited 
by it. The position corresponding to the best fitness is known 
as pbest and the overall best out of all the particles in the 
population is called gbest [15-16]. 

The modified velocity and position of each particle can be 
calculated using the current velocity and the distances from 
the pbestj,g to gbestg as shown in the following formulas [11, 
17-20]: 
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 With nj ,...,2,1=   and mg ,...,2,1=  

where, 

 n = number of particles in the swarm 

 m  = number of components for the vectors vj and xj  

 t  = number of iterations (generations) 

    )(
,
t
gjv = the g-th component of the velocity of particle j at 

iteration t  , max)(
,

min
g

t
gjg vvv ≤≤ ; 

 w  = inertia weight factor 

     21, cc = cognitive and social acceleration factors 
respectively 

21, rr = random numbers uniformly distributed in the 
range (0, 1) 

)(
,
t
gjx  = the g-th component of the position of particle j at 

iteration t 
 jpbest  = pbest of particle j 

 gbest  = gbest of the group 

The j-th particle in the swarm is represented by a d-
dimensional vector xj = (xj,1, xj,2, ……,xj,d) and its rate of 
position change (velocity) is denoted by another d-
dimensional vector vj = (vj,1, vj,2, ……, vj,d). The best previous 
position of the j-th particle is represented as pbestj =(pbestj,1, 
pbestj,2, ……, pbestj,d). The index of best particle among all of 
the particles in the swarm is represented by the gbestg. In PSO, 
each particle moves in the search space with a velocity 
according to its own previous best solution and its group’s 
previous best solution. The velocity update in a PSO consists 
of three parts; namely momentum, cognitive and social parts. 
The balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 and c2 determine the 
relative pull of pbest and gbest and the parameters r1 and r2 
help in stochastically varying these pulls. In the above 
equations, superscripts denote the iteration number. 

B. Parameter Selection for PSO 
For the implementation of PSO, several parameters are 

required to be specified, such as c1 and c2 (cognitive and 
social acceleration factors, respectively), initial inertia 
weights, swarm size, and stopping criteria. These parameters 
should be selected carefully for efficient performance of PSO. 
The constants c1 and c2 represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
pbest and gbest positions. Low values allow particles to roam 
far from the target regions before being tugged back. On the 
other hand, high values result in abrupt movement toward, or 
past, target regions. Hence, the acceleration constants were 
often set to be 2.0 according to past experiences. Suitable 
selection of inertia weight, w , provides a balance between 
global and local explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. As originally 
developed, w  often decreases linearly from about 0.9 to 0.4 
during a run [11, 15-20]. The parameters employed for the 
implementations of PSO in the present study are given in 
Table II. 
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TABLE II: PARAMETERS USED IN PSO 
Parameter Value/Type 
Maximum generations 100 
Swarm size 20 
Cognitive factors (c1) & social 
acceleration factors (c2) 

c1 =2.0  
 c2=2.0 

Inertia weights wstart, =0.9  
wend  = 0.4 

 

VI. RESULTS AND DISCUSSIONS  

A. Numerical Example 1 
First, continuous quadratic cost curve for the plants is 

considered. The system consists of 26 bus, 6 units, and the 
demand of the system was divided into 12 small intervals as 
shown in Fig. 1. Generating units’ data are given in Table 3.1. 
The cost function coefficients along with minimum and 
maximum generation capacity for each fuel option are given 
in Table III. Table IV, shows the optimal generators’ power 
outputs for each hour including their corresponding fuel costs 
using quadratic programming method. Total production cost 
of 12 intervals is $156065.8. Table V, shows the same using 
RCGA method. Total production cost of 12 intervals is 
$151008. It is clear from Table IV and V that RCGA gives 
better solutions. 

B. Numerical Example 2 
A test system-2 having ten plants each with three fuel 

options distributed in three areas is considered. The cost 
function coefficients along with minimum and maximum 
generation capacity for each fuel option are given in Table VI.  
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Fig. 1. Load pattern of numerical example 1 

 
The system is found to have minimum and maximum 

generation capacity of 1353 MW and 3695 MW, respectively. 
The load demand is assumed to vary between 2400 MW and 
2700 MW in steps of 50 MW. The results obtained by the 
proposed PSO method are given in Table VII. The results are 
compared in Table VIII with the results obtained by other 
methods to show its superiority. 

 
 

TABLE III: DATA FOR EXAMPLE - 1: 26-BUS 6-UNIT TEST SYSTEM 
 

Unit/Cost a 
($/MW2h) 

b 
($/MWh) 

c 
($/h) 

Pmin 

 (MW) 
Pmax 

 (MW) 

Unit-1 0.007 7 240 100 500 
Unit-2 0.0095 10 200 50 200 
Unit-3 0.009 8.5 220 80 300 
Unit-4 0.009 11 200 50 150 
Unit-5 0.008 10.5 220 50 200 
Unit-6 0.0075 12 120 50 120 

 
TABLE IV: RESULTS OF QUADRATIC PROGRAMMING FOR EXAMPLE - 1: 26-BUS, 6-UNIT TEST SYSTEM 

 
U/T 1 2 3 4 5 6 7 8 9 10 11 12 

Pg1 350.315 363.153 399.336 401.934 436.308 462.628 467.039 464.833 396.740 378.617 352.879 381.200 

Pg2 102.124 111.506 137.931 139.827 164.950 184.186 187.408 185.796 136.036 122.803 103.998 124.691 

Pg3 183.725 193.286 220.174 222.101 247.633 267.157 270.426 268.791 218.247 204.788 185.636 206.708 

Pg4 51.3537 60.8204 87.4125 89.3168 114.364 133.424 136.611 135.017 85.5089 72.2016 53.2457 74.1007 

Pg5 84.4816 94.9211 124.221 126.317 153.650 174.333 177.787 176.06 122.124 107.465 86.5684 109.558 

Pg6 50.00 50.00 50.00 50.00 69.6387 91.3661 94.9925 93.1791 50.00 50.00 50 50.00 

Total 
cost 
in  $ 

 

9902.8 

 

10561.0 

 

12479.0 

 

12621.0 

 

14812.0 

 

16657.0 

 

16972.0 

 

16814.0 

 

12339.0 

 

11369.0 

 

10033.0 

 

11506.0 
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TABLE V: RESULTS OF RCGA FOR EXAMPLE - 1: 26-BUS, 6-UNIT TEST SYSTEM 
 

U/T 1 2 3 4 5 6 7 8 9 10 11 12 

Pg1 358.703 372.283 411.002 414.002 449.170 477.707 482.007 480.650 408.034 387.693 362.035 392.762 

Pg2 101.352 111.093 135.375 140.499 164.256 184.537 188.681 185.869 136.231 124.439 103.507 123.946 

Pg3 184.183 195.593 221.740 221.29 248.533 269.031 270.369 267.497 217.577 203.106 185.359 106.069 

Pg4 50.6959 59.1026 87.9846 87.5271 112.636 132.6 135.418 135.748 84.4349 72.1771 52.1834 72.3675 

Pg5 79.7693 88.6800 117.111 119.788 150.242 168.121 171.386 170.557 116.305 101.551 81.8496 104.635 

Pg6 50.0326 50.0185 50.0152 50.6013 67.3418 87.8866 93.4453 90.2401 50.1375 50.4198 50.1862 50.0615 

Total 
cost 

$ 

9682.0 10306.0 12110.0 12243.0 14277.0 15969.0 16257.0 16113.0 11979.0 11069.0 9806.0 11197.0 

 
 
 

TABLE VI: DATA FOR EXAMPLE - 2: 10-UNIT NEW ENGLAND TEST SYSTEM  
 

Unit Fuel 
option 

a b c Pmin Pmax Priority 

1 1 0.002176 -0.3975 26.76 100 196 1 

1 2 0.001861 -0.3059 21.13 196 250 2 

2 1 0.00162 -0.198 13.65 50 114 1 
2 2 0.001138 -0.03998 1.865 114 157 2 
2 3 0.004194 -1.269 118.4 157 230 3 
3 1 0.001457 -0.3116 39.79 200 332 1 
3 2 0.00080351 0.03389 -2.876 332 388 2 
3 3 0.00001176 0.4864 -59.14 388 500 3 
4 1 0.001049 -0.03114 1.983 99 138 3 
4 2 0.002758 -0.6348 52.85 138 200 2 
4 3 0.005935 -2.338 266.8 200 265 1 
5 1 0.001066 -0.08733 13.92 190 338 1 
5 2 0.001597 -0.5206 99.76 338 407 2 

5 3 0.0001498 0.4462 -53.99 407 490 3 

6 1 0.001049 0.03114 1.983 85 138 3 

6 2 0.002757 0.6348 52.85 138 200 2 

6 3 0.005935 -2.338 266.3 200 265 1 

7 1 0.001107 -0.1325 18.95 200 331 1 

7 2 0.001165 -0.2267 43.77 331 391 2 

7 3 0.0002454 0.3555 -43.55 391 500 3 

8 1 0.001049 -0.03114 1.983 99 138 1 

8 2 0.002758 -0.6348 52.85 138 200 2 

8 3 0.005935 -2.338 266.8 200 265 3 

9 1 0.007038 -0.04514 15.3 130 213 1 

9 2 0.001554 -0.5675 88.53 213 370 3 

9 3 0.0006121 -0.01817 14.23 370 440 2 

10 1 0.001102 -0.09938 13.97 200 362 1 

10 2 0.000042 0.5084 -61.13 362 407 2 

10 3 0.001137 -0.2024 46.71 407 490 3 
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TABLE  VII: RESULTS OF PSO FOR EXAMPLE - 2: 10-UNIT NEW ENGLAND TEST SYSTEM 
 

Unit/Load 2400 2450 2500 2550 2600 2650 2700 

1 189.7405 194.0906 206.5190   211.5316 216.5442   214.0190 218.2499 

2 202.3427   204.5997 206.4573 208.6815 210.9058 209.7852 211.6626 

3 253.8953   260.3920 265.7391 272.1416 278.5441 275.3187 280.7228 

4 233.0456   234.6405 235.9531   237.5249 239.0967 238.3049 239.6315 

5 241.8297   250.7094 258.0177 266.7686 275.5194   271.1110 278.4973 

6 233.0456   234.6405 235.9531   237.5249 239.0967 238.3049 239.6315 

7 253.2750   261.8258 268.8635 277.2903 285.7170 281.4718 288.5845 

8 233.0456   234.6405 235.9531 237.5249 239.0967   238.3049 239.6315 

9 320.3832   326.4744 331.4877 337.4906 343.4934 415.6581 428.5216 

10 239.3969   247.9866 255.0562   263.5212 271.9861 267.7217 274.8667 

Total cost 481.0326 502.9185 525.7588 549.3634 573.9008 598.4015 623.3292 

 

TABLE  VIII: COMPARISION OF RESULTS FOR EXAMPLE - 2: 10-UNIT NEW ENGLAND TEST SYSTEM 
 

Load Results of ref  
21 

Results of ref  
22 

Results of ref  
23 

Results of ref  
24 

Results of ref  
25 

Result of proposed method 
PSO 

2400 488.46 487.91 481.72 481.73 481.72 481.0326 

2500 526.16 525.69 526.24 526.23 526.238 525.7588 

2600 573.52 574.28 574.38 574.39 574.38 573.9008 

2700 625.22 623.81 626.25 623.8 623.809 623.3292 

 

 

VII. CONCLUSION  
This paper presents the applications of computational 

intelligence techniques to economic load dispatch problems 
considering both continuous and discontinuous fuel cost 
functions. First, a continuous fuel cost function is considered 
for a 26 bus, 6 unit test system and both conventional 
(quadratic programming method) and computational 
intelligence (real coded genetic algorithm) methods are 
applied to find the optimum generator allocation. It is seen 
that the results obtained by the computational intelligence 
method is better compared to the quadratic programming 
method. Further, a discontinuous fuel cost function is 
considered for a 10 unit New England test system and another 
computational intelligence technique (particle swarm 
optimization) is applied to find the optimum generator 
allocations. The results are compared with other published 
methods to show its superiority. 
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