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 
Abstract—This paper details the utilization of artificial 

intelligence (AI) in the field of slope stability whereby quick and 
convenient solutions can be obtained using the developed tool. The AI 
tool used in this study is the artificial neural network (ANN), while the 
slope stability analysis methods are the finite element limit analysis 
methods. The developed tool allows for the prompt prediction of the 
safety factors of fill slopes and their corresponding probability of 
failure (depending on the degree of variation of the soil parameters), 
which can give the practicing engineer a reasonable basis in their 
decision making. In fact, the successful use of the Extreme Learning 
Machine (ELM) algorithm shows that slope stability analysis is no 
longer confined to the conventional methods of modeling, which at 
times may be tedious and repetitive during the preliminary design 
stage where the focus is more on cost saving options rather than 
detailed design. Therefore, similar ANN-based tools can be further 
developed to assist engineers in this aspect. 

  
Keywords—Landslide, limit analysis, ANN, soil properties.  

I. INTRODUCTION 

LOPE stability is a common geotechnical problem that has 
received attention in the past decades [1]-[4]. The stability 

problems of natural slopes, fill slopes (such as embankments, 
earth dams and levees), or cut slopes are commonly 
encountered in civil engineering projects. Fill slopes in 
particular often appear in the construction of embankments and 
highways where soils (fill materials) are placed on an existing 
layer of foundation [5], [6]. An example of such slopes can be 
seen in the illustration of Fig. 1. 

The very first set of stability charts were produced by Taylor 
[7], and hence, begun the trend of the use of stability charts as 
design tool in slope stability problems. It should be noted there 
are some limitations to chart solutions, and these limitations 
include accuracy issues that may arise from interpolation 
and/or manual reading of the charts. In addition, the results of 
Lim et al. [8] revealed that the slope probability of failure (Pf) is 
extremely cumbersome to be predicted precisely, if there is 
more than one soil layer in a slope.  

Shahin et al. [9] indicated that ANN has been successfully 
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used to solve various geotechnical engineering problems such 
as pile capacity, modeling soil behavior, site characterization, 
earth retaining structures and others. The techniques are mainly 
used to estimate some factors that are difficult to be measured 
directly or accurately. Moreover, compared with the 
conventional trial-and-error method, they involve a 
considerably shorter computation time. As highlighted by Silva 
et al. [10], risk-based analyses are not as well adopted because 
of the difficulty in performing a probabilistic analysis by 
rigorous mathematical means. In this paper, we aim to develop 
an accurate and quick solution to analyze the stability of 
two-layered undrained clay slopes. At the same time, simple 
reliability assessments of the slopes will be also provided. 

 

 

Fig. 1 Example of an embankment slope 

II. PREVIOUS STUDIES 

A. Slope Stability Investigations 

Limit equilibrium method (LEM) is one of the most popular 
methods to evaluate the stability of slopes [11]. Currently, LEM 
has been applied to both two dimensional (2D) and three 
dimensional (3D) slope stability analyses. It is known, however, 
that in using LEM, the potential slip surface must be assumed 
before calculating the factor of safety (F) for the slope. 
Moreover, arbitrary assumptions need to be made regarding 
forces between two slices. Because of these assumptions, the 
results are often questioned. In particular, the slip surfaces must 
be assumed for some cases based on experience or judgment 
[12], [13]. 

Finite element method (FEM) is also a popular approach 
used for slope analyses. Duncan [1] indicated that FEM is a 
useful tool to calculate stresses, movements, as well as pore 
pressure and other characteristics of earth masses during 
construction without previously assuming the potential sliding 
surface. To estimate the slope stability and obtain its factor of 
safety by using finite-element analysis, the strength reduction 
method (SRM) is widely used. However, the failure load is 
determined subjectively, generally based on observation of the 
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slope displacement [14], [15]. In fact, FEM is rarely used to 
perform slope stability charts, this is because using FEM is not 
time effective.  

Fortunately, attractive finite element upper and lower bound 
approaches have been developed by Lyamin and Sloan [16], 
[17] and Krabbenhoft et al. [18]. These techniques can be used 
to bracket the true stability solutions for geotechnical problems 
from above and below. In addition, they are suited to assigning 
many typical failure criteria. The numerical upper and lower 
bound limit analysis methods will be employed in this study to 
investigate probability of failure (Pf) for fill slopes. 

B. Applications of ANN to Slope Stability 

Recently, optimization techniques, such as ANNs and 
genetic algorithms (GAs), have been applied to many 
geotechnical investigations, including the evaluation of soil and 
rock properties [19], [20], anchor and bearing capacity [21], 
[22], ground movements [23], [24], and slope failures [25], 
[26]. Among the available AI techniques, ANNs are the most 
commonly used technique in geotechnical engineering. The 
techniques are mainly used to estimate factors that are difficult 
to measure directly or accurately; moreover, compared with the 
conventional trial-and-error method, they involve a 
considerably shorter computation time [27]. In recent years, 
ANNs have been successfully applied to slope stability 
assessment. The studies of Abdalla et al. [28] and Gelisli et al. 
[29] demonstrated that ANNs can be used to predict the factors 
of safety of slopes reasonably. However, only single-layer 
homogeneous cohesive-frictional soil slopes were investigated 
in their studies. The solutions for fill slopes based on ANNs do 
not exist so far. Therefore, this study aims to take advantage of 
ANNs for fill slope assessments. 

III. METHODOLOGY 

A. Finite Element Limit Analysis Methods 

By using both numerical upper and lower bound limit 
analysis methods [16]–[18] for slope stability evaluations, 
Shiau et al. [30] investigated the effects of external loading on 
undrained slopes. Moreover, Kim et al. [31] and Loukidis et al. 
[32] proposed sets of stability charts for nonhomogeneous soil 
slopes and cohesive-frictional soil slopes subjected to pore 
pressure and seismic loadings, respectively.  

To simplify the problem, only 2D cases are considered in this 
study. The illustration of the slope stability problem 
investigated herein is shown in Fig. 2. The slope geometry 
analyzed for the filled slopes with two purely cohesive layered 
soils can be seen in Fig. 2. It should be noted that the undrained 
shear strength in Region 1 (cu1) and Region 2 (cu2) are with 
different values. In this study, for given slope height (H), slope 
angle (), and undrained shear strength (cu1 and cu2), the 
optimized solutions of the UB and LB programs can be carried 
out with respect to the unit weight, . Recently, Qian et al. [33] 
proposed a non-dimensional stability number, N2c, as shown in 
(1), where F is the slope factor of safety. It should be noted that 
the magnitude of F obtained by (1) is generally different from 
that by the conventional LEM due to their different definitions. 

 

 

Fig. 2 Problem configuration for cohesive material filled on purely 
cohesive soil 
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For the upper bound (UB) theorem, the power dissipated by 

any kinematically admissible velocity field can be equated to 
the power dissipated by the external loads to give a rigorous UB 
on the true limit load [15]. The lower bound (LB) theorem 
states that the admissible stress field must fulfill equilibrium, 
the stress boundary condition, and yield conditions [14]. For 2D 
limit analysis modeling, the mesh generation must follow two 
important guidelines: (1) the overall mesh dimensions are 
adequate to contain the computed stress field (LB) or 
velocity/plastic field (UB); and (2) there is an adequate 
concentration of elements within critical regions. The final 
finite-element mesh arrangements (both UB and LB) were 
selected only after considerable refinements were made. The 
typical finite-element mesh for the UB and LB limit analysis is 
displayed in Fig. 3 

 

 

Fig. 3 Problem configuration for cohesive material filled on purely 
cohesive soil 

B. ANN 

Since ANN has been proven to be a universal approximator, 
the linear combinations of the nonlinear neurons and weights, 
after proper training or selections, can approximate any linear 
or nonlinear functions. As a result, a single hidden layer feed 
forward neural network is chosen herein, whereby the inputs of 
the trained ANN are continuously mapped to the outputs in a 
differentiable manner. 

Fig. 4 illustrates a single-hidden layer feed forward neural 
network, which will serve as a basic framework for our study. 
Then in order to expedite the training process, ELM [34] is 
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used, which is an improvement in terms of speed over the 
commonly used gradient-based back propagation (BP) 
algorithm. Basically, the BP algorithm compares the degree of 
error between ANN output and the desired output and slowly 
minimizes the error, and therefore, is time consuming.  

 

 

Fig. 4 Single-hidden layer neural network 
 
However, the use of the ELM training algorithm facilitates 

the random assignment of the weights of the ANN and the 
consideration of the ANN as a linear system. However, the 
main feature of the ELM algorithm is its batch learning 
capability; it trains the ANN in a single global optimization 
operation, and therefore, the learning speed of the ELM can be 
considerably faster than the BP. The input data vector x(k) and 
the output data vector y(k) can be expressed as follows: 

 

        Tn kxkxkxkx 21  (2) 

 

        Tn kykykyky 21  (3) 

 
and the ith output of the neural network, yi(k) can be expressed 
as: 
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Suppose we have N training input vectors x(1), x(2) …, x(N) 

and N desired output data vectors yd(1), yd(2), …,  yd(N) for 
training the ANN, as in Fig. 1. The following derivations can be 
easily obtained: 
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The output weight matrix, G, of the ANN can be computed in 

a single iteration, where 
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IV. RESULTS AND DISCUSSIONS 

Based on the developed tool, a couple of parametric studies 
have been done to show the benefits and also the efficiency of 
the tool. The slope parameters of the first parametric study are 
as follows: cu1/cu2 ratio = 4, cu1 = 50 kN/m², a unit weight γ = 18 
kN/m³, and a depth factor d/H = 2. Further to that, varying slope 
heights and slope angles are used to demonstrate the 
convenience of the tool. Additionally, the coefficients of 
variation (COVs) of the undrained shear strength of soil are 
also varied. The other parameters used can be seen in Table I.  

 
TABLE I 

PARAMETRIC STUDY 1 – SLOPE PARAMETERS 

Case # 
Slope 

angle (°) 
Slope 

Height (m) COV of cu1 COV of cu2 

1 15 3 0.1 0.2 

2 30 4 0.2 0.1 

3 45 5 0.1 0.3 

4 60 6 0.2 0.3 

5 75 7 0.3 0.3 

 
The first thing we can observe from Table II is that the 

stability numbers produced by our developed tool are very 
similar to the targeted stability numbers (targeted stability 
numbers are obtained from the numerical analysis). Based on 
the stability numbers and also the slope parameters, the factors 
of safety for the respective slope heights are obtained. The 
factors of safety can be obtained as F = NHγ/cu1. As expected, 
the results show that the factor of safety decreases as the slope 
height increases. In fact, the advantage of the tool allows for the 
probability of failure to be obtained in tandem with the factor of 
safety. For instance, under column 5 of Table II, the probability 
of failure can be seen to increase as the factor of safety 
decreases. In this case, the probability of failure is also affected 
by the coefficient of variation. For example, while the factor of 
safety for the 3rd case is F = 1.17, the slope is with a probability 
of failure of approximately 0.14. In a slope design, factor of 
safety less than unity is undesirable. This is clearly reflected in 
case 4 and case 5 where the slopes are considered as unsafe. 
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TABLE II 
PARAMETRIC STUDY 1 - RESULTS 

Case # 
Stability number 

(numerical 
analyses) 

Stability 
number 
(ANN)

Factor of 
safety (ANN) 

Probability 
of failure (Pf) 

1 0.388 0.388 2.39 4.7E-07 

2 0.455 0.455 1.53 3.9E-04 

3 0.474 0.474 1.17 0.14 

4 0.488 0.488 0.95 0.62 

5 0.519 0.5185 0.77 0.91 

 
TABLE III 

PARAMETRIC STUDY 2 – SLOPE PARAMETERS 

Case # 
Slope 

angle (°) 
Slope 

Height (m) 
cu1/cu2 
ratio 

d/H 
COV of 

cu1 

COV of 
cu2

1 15 5 4 2 0.1 0.1 

2 30 4 3 3 0.2 0.2 

3 45 4 3 3 0.3 0.3 

4 60 5 2 3 0.3 0.3 

5 75 5 2 3 0.1 0.1 

 
TABLE IV 

PARAMETRIC STUDY 1 - RESULTS 

Case # 
Stability number 

(ANN) 
Factor of 

safety (ANN) 

Probability of 
failure (Pf)

1 0.388 1.15 0.04 

2 0.452 1.2 0.12 

3 0.461 1.2 0.23 

4 0.342 1.6 0.06 

5 0.349 1.6 1.1E-05 

 
To further investigate the consequences of the coefficient of 

variation and also the commonly used range of factor of safety, 
the second parametric study is performed. In this parametric 
study (Table III), the slope parameters such as cu1/cu2 ratio, cu1, 
and depth factor d/H are all varied except for the unit weight 
where we use γ = 18 kN/m³. The results, which were produced 
in a quick 2-3 seconds can be seen in Table IV. From the table, 
it can be seen that probability of failure may paint a clearer 
picture in addition to the conventional factor of safety. For 
instance, many would think that a factor of safety of 
approximately 1.2 is barely sufficient for a safe slope design. 
However, it may be hard to quantify the factor of safety without 
defining it in terms of probability of failure. Therefore, using 
the developed tool, the use of factor of safety can now be more 
relevant in slope design. For example, the results show that a 
slope with a factor of safety of 1.2 is theoretically very risky as 
there may be a two in 10 chance that the slope may fail. In fact, 
that risk may be further reduced if a more thorough soil 
investigation is done such as performing different soil strength 
test or more boreholes. As can be seen from Table IV, the risk is 
slightly lower if the coefficient of variation is lower (comparing 
case 1, case 2 and case 3). Furthermore, a comparison between 
case 4 and case 5, where the factor of safety is about the same, 
shows that soil with high uncertainties may lead to a risky 
slope. Thus, from the above parametric studies, a few 
conclusions can be made. This newly developed tool introduces 
a quick and convenient way to assess slope stability while also 
offering an insight to the relevance of factor of safety in slope 
designs. Additionally, the influence of uncertainties in soil 

properties was also demonstrated. Particularly, in today’s 
industry where clients are focused on cost reduction whereby 
quick justification is required to convince the clients in 
investing in a proper and thorough soil investigation. 

V. CONCLUSION 

This study adopts the techniques, ANN to develop a fast 
evaluation tool for fill slope stability analyses. The training data 
are obtained based on the finite element upper and lower bound 
limit analysis solutions. The developed tool can provide prompt 
fill slope stability estimations and its probability of failure. It is 
very useful for practicing engineers, particularly for decision 
making 
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