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Abstract—Series of experimental tests were conducted on a 

section of a 660 kW wind turbine blade to measure the pressure 
distribution of this model oscillating in plunging motion. In order to 
minimize the amount of data required to predict aerodynamic loads 
of the airfoil, a General Regression Neural Network, GRNN, was 
trained using the measured experimental data. The network once 
proved to be accurate enough, was used to predict the flow behavior 
of the airfoil for the desired conditions. 

Results showed that with using a few of the acquired data, the 
trained neural network was able to predict accurate results with 
minimal errors when compared with the corresponding measured 
values. Therefore with employing this trained network the 
aerodynamic coefficients of the plunging airfoil, are predicted 
accurately at different oscillation frequencies, amplitudes, and angles 
of attack; hence reducing the cost of tests while achieving acceptable 
accuracy. 
 

Keywords— Airfoil, experimental, GRNN, Neural Network, 
Plunging.  

I. INTRODUCTION 
HE methods for predicting unsteady flows and dynamic 
stall used by the industry are largely based on empirical or 

semi-empirical approaches that are fast and relatively accurate 
where non-linear effects are not too great. Increased 
development in aircraft and wind turbine aerodynamics 
creates demand for more detailed information of the non-
linear unsteady loads, dynamic response, and aeroelastic 
stability, caused by the dynamic motions, including dynamic 
stall effects [1]. 

Wind turbine or helicopter rotor blade sections encounter 
large time dependent variations in angle of attack as a result of 
control input angles, blade flapping, structural response and 
wake inflow. In addition, the blade sections encounter 
substantial periodic variations in local velocity and sweep 
angle. Thus, unsteady aerodynamic behavior of the blade 
sections must be properly understood to enable accurate 
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predictions of the airloads and aeroelastic response of the 
rotor system [2]. Most of the angle of attack changes that the 
rotor blades encounter are due to the variations in flapping 
and elastic bending of the blade, i.e., plunging type forcing 
[3]. 

In order to reduce measurement points and wind tunnel 
time, neural networks are used for predicting aerodynamic 
coefficients. Neural networks represent a powerful data 
processing technique that has reached maturity and broad 
application and can accurately predict both steady and 
unsteady aerodynamic loads while capturing the essential fluid 
mechanics mathematically. 

The ability of neural networks to accurately learn highly 
nonlinear, multiple input/output relationships makes this a 
promising technique for modeling the aerodynamics test data. 
There has been considerable interest in the aeronautical 
applications of neural networks. Schreck and Faller 
successfully trained a neural network to predict the unsteady 
pressure variations on a pitching wing [4]. Other applications 
have since been reported for characterizing flight test data [5]-
[6].  

In this study extensive low speed wind tunnel tests were 
conducted to study the unsteady aerodynamic behavior of an 
airfoil sinusoidally oscillating in plunge. The experiments 
involved measuring the surface pressure distribution over a 
range of amplitudes and oscillating frequencies and different 
mean angles of attack. For all oscillation cases, Reynolds 
number was fixed at of 0.42*106. The unsteady aerodynamic 
loads were calculated from the surface pressure 
measurements, 64 ports, along the chord for both upper and 
lower surfaces of the model [7]. The plunging displacements 
were transformed into the equivalent angle of attack. Note that 
in a plunging motion, the model moves vertically up and 
down inside the tunnel test section. The neural network was 
used to increase the resolution of observation to predict the 
pressure distribution and aerodynamic coefficients at various 
conditions.   

II. EXPERIMENTAL APPARATUS 
All experiments were conducted in the low speed wind 

tunnel in Iran. It is a closed circuit tunnel with rectangular test 
section of 80 cm × 80 cm × 200 cm. The test section speed 
varies continuously from 10 to 100 m/sec, at Reynolds 
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number of up to 5.26×106 per meter. The model considered in 
the present study has 25 cm chord and 80 cm span and is the 
critical section of a 660 kW wind turbine blade. This model is 
equipped with 64 pressure orifices on its upper and lower 
surfaces. The pressure ports are located along the chord at an 
angle of 20 degrees with respect to the model span to 
minimize disturbances from the upstream taps, Fig. 1.  

 

 

 
 
 
 
 
 
 
 
 

Fig. 1 Airfoil model and the location of the pressure ports 
 
Data were obtained using sensitive pressure transducers. 

Each transducer data was collected via a terminal board and 
transformed to the computer through a 64 channel, 12-bit 
Analog-to-Digital (A/D) board capable of an acquisition rate 
of up to 500 kHz. Dynamic oscillatory data presented here are 
an average of several cycles at a sample rate based on the 
oscillation frequency. Raw data were then digitally filtered 
using a low-pass filtering routine. The oscillation amplitude 
was varied sinusoidally as )sin( thh ω= , where ω is angular 
velocity and h  is the amplitude of motion. The plunging 
displacement was transformed into the equivalent angle of 
attack using the potential flow transformation formula, 

hikeq =α , where eqα  is in radians and h  has been 
nondimensionalized with respect to the model semi-chord. 
The mean angle of attack was, of course, added to the 
equivalent angle of attack [8]. 

III. NETWORKS ARCHITECTURE 
The artificial neural network used in this study is GRNN 

which is a three-layer network that can be used to estimate the 
nonlinear functions. Fast training is an outstanding 

characteristic of this routine, which allows engineers to deal 
with time variant systems [9]. Training of GRNN begins with 
a collection of input-output couples, and data classification 
can be accomplished by a proper method of clustering. After 
training, GRNN is ready for estimation. Spread parameter, σ, 
is an important parameter for training the GRNN. The 
performance of neural network is very sensitive to this 
parameter [10].  

In this study the GRNN after training uses instantaneous 
angles of attack for both upstroke and down stroke motions 
with certain frequency and amplitude of oscillation as inputs 
while their outputs are the pressure coefficients of the related 
angles of attack at some locations of the airfoil surface. To 
ensure that the weights in the neural networks have been 
correctly set and the corresponding outputs are sufficiently 
reliable, a validation process is applied after training has been 
completed. The set of known inputs with their desired output 
needs to be divided into two distinct sets. The first set is the 
training set and is used throughout the training period to 
adjust the weights to the appropriate values.  The second set is 
referred to as the validation set and is used to test the network. 
Once the values of the training set have been determined, the 
inputs from the validation set are inserted into the network and 
the output of the network is compared with the target values in 
the validation set. Furthermore, unsteady lift coefficients are 
calculated using predicted pressure coefficients and are 
compared with the corresponding values obtained from 
experimental pressure distribution.    

IV. RESULTS AND DISCUSSIONS 
The unsteady aerodynamic loads were calculated from the 

surface pressure measurements, 64 ports, along the chord for 
both upper and lower surfaces of the model. The unsteady lift 
coefficients from experiment are shown in Fig. 2 for three 
different mean angles of attack of 5, 10, and 18 degrees and 
reduced frequencies of 0.03, 0.045, and 0.06 for constant 
plunging amplitude of ±15 cm. An arrow gives the direction 
of each loop. The corresponding static values are shown for 
comparison. In the linear part of the static cl values, Fig. 2a, 
the slopes of the hysteresis loops tend to follow the steady 
data. The directions of the hysteresis loops are 
counterclockwise for higher reduced frequency cases, k=0.045 
and 0.06, which means the lift in the upstroke curve lags the 
static data while in the down stroke portion it leads the 
corresponding static values. For the lower reduced frequency, 
k=0.03, however, the hysteresis loop shows a "figure eight" 
shape. This may indicate that there is an undershoot of the lift 
in the upstroke part of the curve at high equivalent angles of 
attack, while at the low equivalent alpha, the reverse is true, 
overshoot. Consequently there is a crossover point, the 
upstroke and downstroke lift coefficients are the same, for a 
specific induced angle of attack, α=4º. As it is seen from Fig. 
2a, the effect of increasing the reduced frequency is to 
increase the amplitude of the induced alpha while widening 
the hystersis loops. Looking at Fig. 2b, it is seen that plunging 
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the airfoil near its static stall angle, °≈− 11stallstaticα , causes 
different trends in the dynamic lift coefficients. At a reduced 
frequency of 0.03, the direction of the loop is clockwise but at 
reduced frequencies of 0.045 and 0.06 the direction of the cl 
hysteresis loops changes from lag to lead with crossover 
points near α=9º for k=0.045 and about α=8º for k=0.06. In 
this region, increasing the reduced frequency induces higher 
maximum lift value and postpones the stall to higher 
equivalent angle of attack. Plunging the airfoil with a mean 
angle of 18º or in the post stall region, causes the hysteresis 
loops of cl to become clockwise for all three reduced 
frequencies, Fig. 2c. This is due to the influence of the 
different time lags and the vortex shedding. As a fact, when 
oscillating the airfoil with lower mean angles, the direction of 
the hysteresis loops are strongly affected by the trailing edge 
wakes and the lag of pressure distribution. However, when 
oscillating with higher incidence, there exist a separated flow 
region behind the airfoil and the moving wall effects along 
with the vortex shedding play an important role in the trends 
of the loops.   

The GRNN is trained using the measured experimental data 
to minimize the amount of data required to predict 
aerodynamic loads of the airfoil. For training the network, the 
input data are included of sets of instantaneous angle of 
attack, reduced frequency, and amplitude of motion for each 
case. Related pressure coefficients are considered for the 
output ones. The validity of the applied method is investigated 
at several cases to ensure its effectiveness to provide desired 
results with permissible error. Here the results of two 
positions of the airfoil: x/c=5% and x/c=50% of upper surface 
are presented for two cases of mean angles of attack of  5° and 
10°.  

Comparison between the expected data and their predicted 
ones for the pressure coefficient from Artificial Neural 
Network at locations: x/c=5% and x/c=50% of upper surface 
of the airfoil are shown in Fig.’s 3 and 5, respectively. The 
model is set to mean angle of attack of 5 degrees and 
oscillated with a plunging amplitude of ±5 cm at a frequency 
of 2.22 Hz (k=0.04). For training the network, three sets of 
data, related to various amplitudes and frequencies, but with 
mean angle of attack of 5 degrees are used. Note that separate 
networks are used for upstroke and downstroke portions of the 
hystersis loops. It is seen that the spread parameter has an 
important role in predicting the results of this network. The 
results for selected values of 0.002, 0.0225, 0.03 and 0.1 for 
the spread parameter are shown in these figures. It is seen that 
for the case of σ=0.0225, the prediction of the network is 
better than the other values. It can also be seen from Fig.’s 4 
and 6 that using the value of σ=0.0225 has a minimum percent 
of average error. Although Fig. 4 states that the error for the 
case of σ=0.002 is slightly less than the case of σ=0.0225, but 
from Fig. 3 it is clear that the prediction of the network has 
some dispersions from the experimental data.  

In Fig.’s 7-10, the model is set to mean angle of attack of 
10 degrees, the oscillation frequency is 3.33 Hz and the 

amplitude of the motion is ±5 cm. For training the network, 
three sets of data, related to various amplitudes and 
frequencies, but with the same mean angle of attack are used. 
Various spread parameters are examined to provide desired 
results with permissible error. The results for σ=0.002, 0.01, 
0.02 and 0.025 are shown in these figures for both cases of 
x/c=5% and 50% of upper surface. It is seen that for the case 
of σ=0.01, there is a better agreement between the result of the 
network and experiment. It can also be seen from Fig.’s 8 and 
10 that using the value of σ=0.01 has a minimum percent of 
average error which is about 0.4% for the case of x/c=5% and 
0.08% for the case of x/c=50%. Also, the location of the 
crossover point (mentioned before in Fig. 2b) is well predicted 
by choosing this value for the spread parameter.  

Also, lift coefficients are calculated by integrating predicted 
pressure coefficients obtained from all 64 pressure ports of the 
airfoil surface and are compared with experimental results. 
Fig. 11 shows the variation of the lift coefficient with 
equivalent angle of attack from both GRNN and experiment 
results for mean angle of attack of 5°. The spread parameter is 
set to 0.0225. It is seen that employing the trained GRNN, the 
lift coefficients are predicted accurately with average errors of 
about 1.2 % for both upstroke and down stroke motions of the 
airfoil. In Fig. 12, the mean angle of attack is 10° and the 
spread parameter is 0.01. It is clear that there is a good 
agreement between the predicted and experimental results 
with acceptable accuracy. 

V. CONCLUSION 
Artificial Neural Network was used to predict the 

aerodynamic coefficients of an airfoil oscillating in plunge at 
various conditions. For this purpose, series of experimental 
tests have been developed for a section of a 660 kW wind 
turbine blade equipped with 64 pressure transducers along its 
chord. For training the network, input data were sets of 
instantaneous angle of attack, reduced frequency, and 
amplitude of the motion for each case. Related pressure 
coefficients were considered for the output one. The validity 
of the applied methods was investigated at several cases to 
ensure their effectiveness to provide desired results with 
permissible error. Results showed that with employing the 
trained GRNN the aerodynamic coefficients are predicted 
accurately with minimum experimental data; hence reducing 
the cost of tests while achieving acceptable accuracy. 
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(a) °= 50α  

 
(b) °=100α  

 
(c) °= 180α  

 
Fig. 2 Variation of lift coefficient with equivalent angle of attack 
 
 

 
Fig. 3 Comparison between experimental and Artificial Neural 

Network results, x/c=5% upper surface, °= 50α . 
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Fig. 4 Variation of error with spread parameter, x/c=5% upper 

surface, σ, °= 50α . 

 
Fig. 5 Comparison between experimental and Artificial Neural 

Network results, x/c=50% upper surface, °= 50α . 
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Fig. 6 Variation of error with spread parameter, x/c=50% upper 

surface, σ, °= 50α  

 

 
Fig. 7 Comparison between experimental and Artificial Neural 

Network results, x/c=5% upper surface, °= 100α  
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Fig. 8 Variation of error with spread parameter, x/c=5% upper 

surface, σ, °=100α  

 

Fig. 9 Comparison between experimental and Artificial Neural 
Network results, x/c=50% upper surface, °= 100α  
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Fig. 10 Variation of error with spread parameter, x/c=50% upper 
surface, σ, °=100α  

 

 
Fig. 11 Variation of lift coefficient, σ = 0.0225, °= 50α  
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Fig. 12 Variation of lift coefficient, σ = 0.01, °=100α  
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