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Abstract—This paper contains the description of argumentation
approach for the problem of inductive concept formation. It is
proposed to use argumentation, based on defeasible reasoning with
justification degrees, to improve the quality of classification models,
obtained by generalization algorithms. The experiment’s results on
both clear and noisy data are also presented.
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1. INTRODUCTION

T present, more and more attention is paid to the

development of Intelligent Decision Support Systems
(IDSSs) and expert systems. Application of plausible methods
of inference, such as argumentation and induction, can
significantly increase the potential (abilities) of these systems.
Using the non classical logics was caused, first of all,
by the presence of uncertainties, fuzziness, ambiguities and
contradictions in data, on the basis of which is required to
assess a situation and offer recommendations on possible
control actions.

When looking for solutions in the IDSS, it is necessary
to use inference methods that allow to find some reasonable,
though perhaps not the optimal, solution.

Inductive components in IDSSs and expert systems are
intended to improve the decision accuracy, i.e. to increase
the number of situations in which an intelligent system is
capable to offer a solution (to give a recommendation) as
close to the human expert solution as possible. Such decisions
can be useful in areas such as economics, medicine, technical
diagnostics and so on.

Two problems arise in the inductive component of
IDSSs. The first is the problem of constructing generalized
descriptions of situation classes that require identical or similar
management actions (this is a problem of inductive concept
formation). The second problem - a problem of classifying an
object or a current situation to one of the possible classes
for which acceptable solutions are known (the problem of
classifying objects).

In this paper we propose to consider a combination
of methods and algorithms for machine learning and
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argumentation techniques to improve the efficiency of
decision-making in the IDSSs.

The structure of the paper is as follows. In Section II
we view the inductive concept formation problem. Sections
IL.A to II.C are devoted to the formalization of feature-based
concept generalization and methods to solve this problem
including C4.5 algorithm that builds classifying rules in the
form of decision trees. In Section II.D foundations of the rough
set theory are given. In Sections IL.E and II.F we describe
noise models for the generalization problem and influence of
noise on the work of generalization algorithms. Section III
gives the description of the argumentation theory in inductive
concept formation. In sections IIILA and IILB we present
basic definitions of the argumentation theory and introduce
justification degrees for setting the quantitative assessment of
argument reliability in argumentation systems. Section III.C
is devoted to formalization of the generalization problem in
terms of argumentation. In Section IV.A and IV.B we describe
the methodology of experiments and experiment results for
clear data. Section IV.C presents experiment result for noisy
learning sets. Finally, conclusions contain some questions for
future research.

II. METHODS OF INDUCTIVE CONCEPT FORMATION

There is a number of machine learning algorithms that are
able to solve the problem of inductive concept formation on the
basis of analyses of real data presented in the form of database
tables. Thereby the machine learning algorithms based on a
learning set builds classification rules that can be further used
to identify a class to which an object belongs, i.e. it needs to
analyze properties of object features.

A. Setting up the Problem

Knowledge discovery in databases (DBs) is closely
connected with the solution of inductive concept formation
problem or the generalization problem.

Let us give the formulation of feature-based concept
generalization[1].

Let O ={o01,02,.,0n} be a set of N objects
that can be represented in an IDSS. Each object is
characterized by K features: aj,as,...,ax. Denote by
Dom(ay), Dom(as), ..., Dom(ak) the sets of admissible
values of features where Dom(ay) contains all possible
values of feature ay, 1 < k < K. Thus, each object o; € O,
where 1 < i < N, is represented as a set of features values,
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ie.,0; = {z},22, ..., 2K}, where zF € Dom(ay), 1 <k < K.
Such a description of an object is called a feature description.
Quantitative, qualitative, or scaled features can be used as
object features [1]. Among a set O of all objects represented
in a certain IDSS let’s separate a set V' of positive objects
related to some concept (a class) and W is a set of negative
objects not concerned with this concept (a class). We will
consider the case where O = VU W, VW = &. Let a
learning set U = {x1,x3,...,2,} be a non-empty subset of
objects O such that U C V U W. Based on the learning set,
it is necessary to build a rule set R separating positive and
negative objects of a learning set.

Thus, the concept was formed if one manages to build
a decision rule that for any example from a learning set
indicates whether this example belongs to the concept or
not. The algorithms that we study form a decision in the
form of rules of the type "IF <condition>, THEN <the
desired concept>".The condition is represented in the form of
a logical function in which the boolean variables reflecting the
feature values are connected by logical connectives. Further,
instead of the notion “feature”, we will use the notion
“attribute”. The decision rule is correct if, in further operation,
it successfully recognizes the objects that originally did not
belong to a learning set.

In practice we deal with raw or noisy data in DBs. The
presence of noise in data changes the above setting up of the
generalization problem both at the stage of building decision
rules and at the stage of the object classification. First of all,
the original learning U is replaced by the set U’ in which
distorted or absent values of attributes occur with a certain
probability.

B. Methods for Solving the Generalization Problem

From all methods of solving the generalization problem, we
will consider only the methods of decision trees [2], [3] with
a combination of forming decision rules[4], [5] on the basis
of the theory of rough sets [6].

Decision trees . The decision tree is a tree in which each
nonfinite node accomplishes checking of some condition, and
in case a node is finite, it gives out a decision for the element
being considered. In order to perform the classification of the
given example, it is necessary to start with the root node. Then,
we go along the decision tree from the root to the leaves until
the finite node (or a leaf) is reached. In each nonfinite node
one of the conditions is verified. Depending on the result of
verification, the corresponding branch is chosen for further
movement along the tree. The solution is obtained if we reach
a finite node.

Rough sets. A rough set is defined by the assignment
of upper and lower boundaries of a certain set called
the approximations of this set. Each element of the lower
approximation is certainly an element of the set. Each element
that does not belong to the upper approximation is certainly
not an element of the set. The difference in the upper and lower
approximations of a rough set forms the so-called boundary
region. The element of the boundary region is probably
(but not certainly) an element of the set. Similarly to fuzzy

sets, rough sets are mathematical conception for work with
fuzziness in data.

We consider these methods due to their effectiveness and
flexibility and, at the same time, they are not so complex,
as neural networks or genetic algorithms. It is especially
important when analyzing very large data sets. Classification
models obtained by rough sets are sets of decision rules,
convenient for using and easy understanding. Classification
models in the form of decision trees, in turn, are obvious, and
could be simply transformed into a set of decision rules.

C. Induction of Decision Trees

The algorithm C4.5 as its predecessor /D3 suggested by
J.R.Quinlan [2], [7] refers to an algorithm class building the
classifying rules in the form of decision trees. However, C4.5
works better than /D3 and has a number of advantages:

o numerical (continuous) attributes are introduced;

o discrete values of a single attribute may be grouped to
perform more effective checking;

« subsequent shortening after inductive tree building based
on using a test set for increasing a classification accuracy.

The algorithm C 4.5 is based on the following recursive
procedure:

1) An attribute for the root edge of a tree is selected, and
branches for each possible values of this attribute are
formed.

2) The tree is used for classification of learning set
examples. If all examples of some leaf belong to the
same class, then this leaf is marked by a name of this
class.

3) If all leafs are marked by class names, the algorithm
ends. Otherwise, an edge is marked by a name of a next
attribute, and branches for each of possible values of
these attribute are created, go to step 2.

The criterion for choosing a next attribute is the gain ratio
based on the concept of entropy [7].

D. Rough Sets

We will consider how the rough set theory can be used to
solve notion generalization problem. In Pawlak’s works [6],
[8] the notion of an information system has been introduced.
An information system is understood as a pair S = (U, A)
where U = {z1, 22, ..., } is a non-empty finite set of objects
named learning set or universe, and A = {aj,as,...,ax} is
a non-empty finite set of artributes. Let’s introduce a special
attribute d that determines the concept (class) to which every
object € U belongs. A decision table (or decision system)
is an information system of the form S = (U, AU{d}), where
d ¢ A is a distinguished attribute called decision or decision
attribute, and all ap € A are informative attributes. Further
we will consider the case, when Dom/(d) consists of only two
possible values(e.g. ”yes” or “no”) according to whether an
object belongs to a concept or not.

Let us introduce the indiscernibility or equivalence relation
on the learning set U : IND(A) C U x U. We will say that
if for two objects  and y from U the pair (x,y) € IND(A)

1305



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

then x and y are indiscernible by values of attributes from
A. A set of equivalence classes of the relation IND(A) is
denoted by {C{*,C3',...,C2A}. We can approximately define
set V' using attribute values by constructing of lower and upper
approximations of V, designated by AV and AV respectively.

Since not all informative attributes are equally important,
some of them can be excluded from a decision table without
loss of the information contained in the table. The minimal
subset of attributes B C A which allows to keep the
generalized decision for all objects of a learning set, is called
decision-relative reduct of a table S = (U, AU {d}). Further,
instead of a decision-relative reduct we will use the term a
reduct [9]. Process of search of a reduct is a very important
stage of any method using the rough set approach. For the
search of reducts we propose the method, based on the
following ideas:

« We consider as the significant attributes those attributes
that are contained in the intersection of all reducts of an
information system.

o It is necessary to build dynamic reducts [10], i.e.
to construct the informative attribute set appearing
“sufficiently often” as reducts of the original decision
system. The attributes belonging to the “most” of
dynamic reducts — approximated reducts — are considered
as relevant. The thresholds of values for “sufficiently
often” and “most” reducts should be chosen for given
data.

o Introduction of the notion of attribute significance allows
to express the importance of this attribute in a decision
table.

The Generalized Iterative algorithm based on the Rough
Set approach (GIRS) has been developed by authors [11].
In the given algorithm we combined the discretization of
quantitative attributes with the search of significant attributes.
Therefore the process of searching a reduct is viewed as
a search of attributes belonging to an approximated reduct.
An approximated reduct is a generalization of a reduct
where generalization is understood as a result of forming
significant attributes on the basis of the rough set approach
[8], [9]. The error of a reduct approximation shows as exactly
an attribute set approximates an informative attribute set.
The application of approximated reduct is very useful when
processing incomplete and noisy data.

E. Noise Models

Assume that examples in a learning set contain noise, i.e.,
attribute values may be absent or distorted. The noise arises
due to following reasons: incorrect measurement of the input
parameter; wrong description of parameter values by an expert;
the use of damaged measurement devices; and data lost in
transmitting and storing the information [12]. We study two
noise models:

1) The noise connected with the absence of attribute values
(we cannot receive an attribute value due to different
causes). For each attribute A, a domain of admissible
values may include the value “not known.” Such value
corresponding to the situation when the true value of an

attribute has been lost, is denoted by N (Not known).
Thus, some examples of a learning set U’ contain
a certain quantity of attributes with the values “not
known”.

2) The noise connected with the distortion of certain
attribute values in a learning set. The true value in this
case is replaced by one admissible, but wrong, value (the
values are mixed) [12].

Further, we consider the work of the generalization
algorithm in the presence of noise in input data. Our purpose
is to assess a classification accuracy of examples in a test set
by increasing a noise level in a learning set.

F. Noise Influence on the Work of Generalization Algorithms

Let a learning set with noise, U’, be given; moreover, let
the attributes taking both discrete and continuous values be
subject to distortions.

Building a system of decision rules with examples having
absent values leads to multivariant decisions. Therefore, we try
to find the possibility for restoring these absent values. One
of possible approach is the nearest neighbour method which
was proposed for the classification of the unknown object o on
the basis of consideration of several objects with the known
classification nearest to it. The decision on the assignment of
the object o to one or another class is made by information
analysis on whether these nearest neighbours belong to one
or another class. We can use even a simple count of votes to
do this. The given method is implemented in the algorithm of
restoring that was considered in detail in [13], [14].

The above algorithm GIRS has been used to research
the effect of noise on forming generalized rules and the
classification accuracy of test examples. Entering noise,
especially a distortion of attribute values, in a learning
set was performed on a decision attribute, what led to
appearing inconsistent examples. To restore unknown values,
the methods of nearest neighbours and choice of average are
used. We have realized the algorithm GIRS including the
RECOVERY algorithm. The RECOVERY algorithm is used
at the presence of examples containing a noise of the type
“absent values” [13]. Below, we present the pseudocode of
the GIRS algorithm.

Algorithm GIRS

Given: table S = (U, AU {d})

Obtain: decision rules: R

Begin

Obtain S

Select noise model (absent values or distorted values ), noise
level, one of two noise entering types

If there are “absent values” in S then use RECOVERY
algorithm.

Build A set of equivalence classes {C{*,C3',...,CA1
Build a lower approximation of set V' and an upper
approximation of set V'
Find decision-relative reduct of table S = (U, AU {d})
Find the set of conditions:
Pos(V) = lower approximation of set V'
BN D(V') = upper approximation of set V' lower
approximation of set V'
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NEG(V') = —(upper approximation of set V)
Build R - the set of classification rules in form:
IF Pos(V) THEN V,
IF Neg(V) THEN -V,
(V

IF Bnd(V') THEN possible V/
Output decision rules R
end
End of GIRS

Further in section IV we will use the GIRS algorithm in our
experiments. It will be used as a basic algorithm for obtaining
a decision rule set. Three strategies will be considered:

1) The application of the GIRS algorithm to the whole
learning set (basic strategy).

2) Application of GIRS algorithm to two subsets of the
learning set (union strategy).

3) Application of the GIRS algorithm together with
argumentation (argumentation strategy)

III. APPLICATION OF THE GIRS ALGORITHM TOGETHER
WITH THE ARGUMENTATION

Now, we examine the possibility of improving the
generalization quality due to argumentation methods. The
above generalization algorithms build a generalized concept as
a set of decision rules R . It is known that the main criterion
of the quality for a built generalized concept (i.e. decision
rules R ) is a successful classification of test set of examples
(examples not entering into a learning set U) by the given
decision rules.

In works on machine learning, it is emphasized that it is
necessary to select a learning set very carefully. However,
when working with real data, a learning set often contains
noise, and may simply not include all of the examples, relevant
for the successful construction of a generalized concept. Data
collections used in machine learning usually contain the most
representative learning sets, and therefore decision rules, built
on these learning sets, usually gives better results than the
rules that are built on the real data.

It is proposed to use the argumentation methods for
obtaining an improved set R*, that is able to classify test
examples with a greater accuracy than the original set R.

Learning sets are used to form the concept as a set
of decision rules. The quality of obtained rules depends,
primarily, on the representativeness and consistency of a
learning set. The basic idea is to divide the learning set
of examples U into two subsets U; and Us, such that
U UUy = U, Uy NUy; = @, and to produce separate
learning on each of the subsets [15]. The subsets U; and
U, will be less representative than the original learning set
U, and classification models, obtained using this subsets, will
produce worse results than results obtained for the original
set U (see the experiment results for the union strategy in
Section IV). It is proposed to use the methods of argumentation
for obtaining an improved classification model, combining
the results of a separate learning on U; and U,. Here, we
will assume that the partition method of a learning set is
not deterministic, but the |Uy| = |Us| = |U|/2 if |U| is
even, and |Uy| = |Uz| — 1 = [|U|/2] otherwise. Influence of

the number and methods of partitioning on the classification
quality is a topic for further research. After partitioning, the
learning is conducted independently on each of this subsets.
Any generalization algorithm that generates classification rules
of the form "IF <condition >, THEN <the desired concept>"
can be used for building separate sets R; and R,. In particular,
algorithms CN2 [4] and C4.5 [3] can be used. In this paper
the algorithm GIRS [11] will be used.

Let’s build the sets of decision rules R; =
{Rll,ng,...,lel} and RQ = {R21,R22,...,R2m2},
where R1; is the decision rule obtained on a learning
subset Uy, ml is the number of these rules and R2; is the
decision rule obtained on a learning subset Uy, m2 is the
number of these rules. Our goal is to build (with the help of
argumentation) a set R* that combines rules from R; and
R,, but it does not generate conflicts at the classification
of the examples from a set U. The criterion of success for
an obtained rule set R* is the increase of the classification
accuracy for test data sets, and the absence of conflicts in
the classification of all learning examples. To construct R*,
methods of the argumentation theory will be used.

There are several formalizations of the argumentation
theory. For instance, there are the abstract argumentation
system, proposed by P.M Dung [16], the argumentation system
of F. Lin and Y. Shoham [17], the G.A.W. Vreeswijk’s system
[18], systems based on defeasible reasoning [19] and others.

For the above goals, the most promising is the application
of argumentation, based on defeasible reasoning proposed by
J. Pollock [19]. We will briefly present the basic concepts of
the argumentation theory needed further.

A. The Basic Definitions of the Argumentation Theory

Argumentation is usually considered as the process of
building the assumptions with respect to some of the analyzed
problem. As a rule, this process involves the detection of
conflicts and search of ways to solve them. We will consider
the argument as a pair consisting of a set of premises and
a conclusion [19]. Such pairs are written so: p/X, where
p is a conclusion, and X - a set of premises. For example,
the argument (p — ¢)/{—A, B} means that premises A, B
leads to the conclusion p — ¢. For arguments with the empty
premise set we write only a conclusion. All interrelations
between arguments will be represented on an inference graph.
It is a graph that shows a way of building new arguments from
already existing ones. The inference graph, as well, shows the
conflicts between arguments.

Besides arguments, the inference rules are given. Defeasible
inference rules are understood as rules that are not entirely
reliable and exact. In the natural speech, such rules are
formulated by expressions such as “as a rule”, “usually”,
“normally”, likely”, etc. Defeasible rules can be obtained, for
example, by induction or abduction. We will write defeasible
rules so: M| => N. Arguments, derived using such rule
will be called defeasible. On the graph defeasible connections
will be displayed by dashed arrows, and defeasible arguments
by dual dashed ovals. The notion of a conflict is the basis
of the argumentation system. We will consider two types of
conflicts — rebutting and undercut [19].
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Rebutting is a situation when some arguments rebut the
conclusion of other arguments. In other words, the argument
Argy = p1/X; rebuts the argument Args = pa/ X5, when the
conclusion p; rebuts conclusion ps and X; C X5. Rebutting
is a symmetrical form of attack.

Undercut is a asymmetric form of attack when one
argument undercuts a link between premises and the
conclusion of other argument.

To set the quantitative assessment of argument reliability in
argumentation systems, the mechanism of justification degrees
is applied.

B. The Basic Definitions of the Argumentation Theory

First of all it is necessary to define how this degrees could
be obtained and the way they are inputted. Here we will use
a numerical scale [0, 1] for assigning justification degrees
[20]. We assume that O means that there are no points for
believing the argument is valid (it means that the argument is
defeated) and 1 means that the argument is totally undefeated,
that there no reasons to doubt it is true. There are two types
of justification degrees:

« a justification degree of initial arguments;

« a justification degree of defeasible rules.

The first type of a justification degree is assigned to each
initial argument and could be considered as a degree of
reliability of the source from which the given argument was
derived. For instance, the forecast is that the chance of raining
is 70%. So, an argument Arg; : Tomorrow(raining) with
the justification degree 0.7 could be made. Let’s define a
function Jus(A) for a justification degree of an argument.
The exact mechanisms of obtaining the justification degrees
mostly depend on an applied domain. For instance, this may be
statistical data or some expert assessment (e.g. the possibility
that company’s shares will grow is 60%).

The other type of justification degrees is related with
defeasible rules of inference. As it was already mentioned
above, defeasible rules are often a formalization of expert
knowledge of the following type: "If A is true, than as usual
B is also true”. Such rules of inference can also have some
numerical degree of justification. For example, the use of
analginum in 85% leads to a decrease in body temperature
(formally R (Vz)reception(Analginum, x)|  =>
decreasing_temperature(x)). So we need to define
function Jus(Arg) that will calculate the justification degree
of every argument in an inference graph. We will consider
that it is known for every initial argument. The value of this
function for an exact argument is influenced by two factors:

1) An inference tree (i.e. justification degrees of arguments,
which were used in the inference of that argument);
2) Conflicts with other arguments.

For the sake of convenience, let’s consider these two factors
separately: Jusgn.(Arg) is the inherited justification degree
of ancestors and Jusco, (Arg) is the value of influence of the
conflict the argument has(i.e. how the conflict undercuts the
argument justification).

Jusanc(Arg) = min(Jus(By), ..., Jus(By,) - Jus(R) (1)

In (1) By, ..., B, — arguments that were used in the inference
of argument Arg, and Jus(R) is a justification degree of
a rule R that was used for inference of the argument Arg.
Equation (1) is called the weakest link principle [21]. It is
necessary to note, that this is not the only way of calculating
justification degree, e.g. in some works, Bayesian approach is
applied [22]. Note that it follows from (1) that if to perform
calculation of justification degrees recursively, it is possible to
search for the minimum among the direct ancestors that were
used in the previous step. In the particular case, when the
argument has only one ancestor, its Jusqy,. will be the same
as its ancestor degree. Contrary to obtaining Jusgy,. (When the
weakest arguments are considered), calculation of Juscon (A)
is based on finding the conflict with the argument, that have
the highest degree of justification. Let’s consider Aconf; as a
set of arguments that has conflicts with the argument Arg,
m = |Aconysi| and Ac; is the member of the set Agop fi.

202, (s (Ae)

Juscon(ATg) = if m>0; )

0, otherwise.
In (2) JusSane is used to avoid cases of mutual conflicts

between two arguments. Thus, the justification degree of an
argument A can be calculated as follows:

Jusane(Arg) — Juscon(Arg),
if Jusanc(Arg) > Juscon(Arg);  (3)
0, otherwise.

Jus(Arg) =

Further we will show how justification degrees could be used
to cope with conflicting decision rules.

C. Formalization of the Generalization Problem in Terms of
Argumentation

As mentioned above, let decision rule sets R; and Ry be
built for learning sets U; and U,. Rules of R; and Ry have
the form "IF <condition>, THEN <the desired concept>".
For example, let’s consider MONK’s Problems from UCI
Repository of Machine Learning Datasets (Information and
Computer Science University of California) [23]. Every object
in this data set has six informative attributes (further denote
them A, A, Az, Ay, As, Ag), and one decision attribute
(further denote it as "C'LASS”). For example, one of the
classification rules for the MONK’s problem can be written
down as:

IF(A; = 1)&(Ay = 1) THEN CLASS = 1.

Such rule can be considered as a defeasible inference rule for
argumentation. Further, we will write decision rules, when they
are used for argumentation as follows: X |=> Y, where X are
the conditions and the Y is a value of the decision attribute.
So, for the above MONK’s problem rule can be written so:

(Ay = 1)&(Ay = 1)|=> (CLASS = 1).

In addition, we assume that there are only two possible values
("CLASS = 1" and "CLASS = 0”) of a decision attribute:
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belonging the example to the class or not. So, for all rules
in Ry and R,, the decision attribute C'LASS = 0 can be
replaced with —=(CLASS = 1). To check, if one example
0; = 21,28, ..., 2% with the decision attribute di produces a
conflict on some set of rules R, we do the following:

1) For every value of informative attributes z; of the
example o; = 2,25, ..., 2% and for every attribute a;
from A = a1, a9, ...,ax (where 1 < j < K, Ais a set of
attributes, K is the number of such attributes), we form
arguments of the following structure: Arg; : (a; = z;)

2) Each argument Arg; with the justification degree equal
to 1 represents initial arguments for an argumentation
system.

3) Perform the logical inference with respect to a decision
rule set R and check, whether there are conflicts in the
obtained solution.

Let’s consider the example E'z; that belongs to CLASS =1
with the following attribute values: Ay = 2; Ay = 2; A3 = 3.
Then the arguments for this example would be Arg; : A; =
2; Args : Ay = 2; Args : Az = 3. Further, for convenience we
would write down examples in the argumentation form with
attributes and their values as follows:

Ex;: (ay = 2))&(az = 25)&..&(ax = 2 ); CLASS = d'.

We assume that the inference rules are inconsistent, if, at least,
for one example from a learning set U, there are defeasible
rules relating it to different values of the decision attribute.
For example, let’s consider two rules from R:

Let the example (Ezq : (41 = 2)&(As = 2)&(43 =
3); CLASS = 1) be in a learning set U. It will generate
three arguments: Argy : Ay = 2, Args : Ay = 2 and Args :
As = 3. These arguments will be suited for the conditions
of both rules. So, both arguments: Argy : CLASS = 1
and Args : —(CLASS = 1) for this example can be
inferred. Arguments Arg4 and Arg5 have a conflict of the type
“rebutting”. Inherited from ancestors, the justification degree
of both arguments Arg, and Args are equal to 1, therefore
JUScon(Args) = Juscon(Args) = 1. Due to (3), justification
of both arguments will be 0 and the conflict among them
is unsolvable. So, rules R; and R should be considered
as conflicting for the example Ex1. The inference graph for
this example is shown in Fig.1. Further, we’ll show, how this
conflict could be solved.

Our task is to form a consistent set R* that combines rules
from both sets R; and Rs. It is proposed to use a mechanism
of justification degrees for defeasible rules. The problem is
to define justification degrees for all defeasible rules in such
a way that all conflicts arising in a learning set becomes
solvable. Let us give the learning procedure for searching such
justification degrees when the conflicts are becoming solvable.

The learning procedure. Here we assume that R; and
Ry are two decision rule set, obtained independently on
two learning subsets U; and U, by certain generalization
algorithm. Procedure:

Argl: A1=2

N2 A2<2
justification: 1 1

[ Argd:A3=3
i1

RIGAI-AE (A2=2}}j=>4CLASS=1) !
% R2:{{A2=2) & (A3=3)}|=> ~(CLASS=1)

Fig. 1. Example.

1. All decision rules R1; € Ry, 1 < i < |Ry| and R2; €
Ry, 1 < j < |Rg| enter into an argumentation subsystem as
defeasible rules.

2. For all R1; and R2;, set up the justification degree equal
to 1.

3. For each example Ezxj : Arg1&Args, ..., Arg, from a
learning set U, perform the following steps:

3.1. Enter Argq, Args, ..., Arg, as initial arguments
with the justification degree equal to 1 in the input of an
argumentation system and produce logical inference.

3.2. If a system discovers conflicts, i.e. in an inference
graph there are two conflicting arguments Arg* and Arg**
go to step 3.3, else go to step 3.7.

3.3. Choose the Arg+ from Arg*, Arg** such that its
conclusion is the same as the value of decision attribute d and
Arg- is another one.

3.4. Obtain two rule sets Re+ and Re-, such that rules
from Rc+ supports Arg+ and Re- supports Arg-.

3.5. Compute an increased justification degree for all
R; € Re+, 1 < j < |Re+| according to the following formula:

(Jus(R;)(1+A), if Jus(R;)(1+A) < 1;
1, otherwise.

JUS(R]') = {

A is some factor, whose value is chosen in interval (0,1)
empirically depending on the number of decision rules in Ry
and R,. In the given experiment (see Section IV) the value of
parameter A was selected equal to 0.05.

3.6. Compute a decreased justification degree for all
R; € Re-, 1 < j < |Re-| according to the following formula:

Jus(Rj) = (1 — A)Jus(Ry)

3.7. If k < |U] then select the next example Exj; and
go to step 3.1, else step 4.

4. Classify the examples from learning set U taking into
account obtained justification degrees. In case there are still
unsolvable conflicts on a learning set, go to step 2 and repeat
the learning procedure. Otherwise, the learning process is
finished.

After the learning process is completed, all decision rules
will obtain justification degrees in the interval (0, 1].

Let’s consider the learning procedure on the previous
example. There are two defeasible rules:

Ro : (As = 2)&(4; = 3)|=> ~(CLASS = 1).
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Let the learning set consist of tree examples:
(Bzy: (A1 = 2)&(As = 2)& (A3 = 3); CLASS = 1)
(Fxg: (A1 =2)&(As = 2)&(A3 =1); CLASS = 1)
(Exs : (Ay = 1)&(Ay = 2)&(As = 3); # (CLASS = 1))

Learning on this set will give the following results. Initially
Jus(Ry) = Jus(Rg) = 1. On the first example Ex1 the
system would find an unsolvable conflict as shown in Fig. 1.
Due to steps 3.6 and 3.7 we must increase the justification
degree of R; as it supports the right argument (Arg4 :
CLASS = 1) and decrease the justification degree of Ry
as it supports the wrong argument Arg5 : =(CLASS = 1).
Therefore Jus(R1) will be left equal to 1 because it is the
maximum and Jus(Rg) = Jus(R2) — Jus(R2)A = 0.95.
Examples Exy and EFx3 don’t cause conflicts, so there are
no need to change justification degrees. After the learning
procedure is completed, the example Fx; will have solvable
conflict, because the justification degree (3) of Arg4 is higher
than the justification degree of Arg5. The inference graph for
this example after the learning procedure is shown in Fig. 2.

ﬂrm Al=2 \\ /Argz A2= 25 ./Ir'g:!:AB:S“\\

LN, IUSI'"WUGM / \ justification:1 /) \ " justfication:1
~ e T
R1:{(A1=2) &‘.!AZ 2)}|-:-(C|_ﬁss 1) :

R2:{(A2=2) &'(A3 3)}|_>”(CLASS 1)
CLASS—1
]usﬂﬁcaﬁon 0,05

Fig. 2. Justification degrees after learning procedure. Jus(R1) = 1;
Jus(R2) = 0.95.

IV. EXMPERIMENTS
A. The Methodology of Experiments

To assess the experiment results, three strategies (see
Section II.F) were compared.

1) GIRS basic strategy. This strategy is a basic strategy,
when decision rules R are obtained by learning with
GIRS algorithm on the full learning set U, and
classification of test examples is made on whole rule
set R. The dataflow diagram of this method is presented
in Fig 3.

Set of test
examples

Classification

accuracy in %
R ¥

GIRS

-+ Decision Rules
Fig. 3. GIRS basic strategy.

2) GIRS union strategy. In contrast to GIRS basic strategy,
the learning set U is divided into two subsets U; and

U, and learning occurs on them independently. So, two
independent set of rules R; and Ry are obtained. The
resulting set R is obtained by simple union R; U Ro.
The classification of test examples is made on this set
R. The dataflow diagram of this method is presented in

Fig 4.
‘;l of l;[’
examples

-
e |
{T-““"“! sl —GIRS—w Decision Rules [ unior
L
— Classification

R-R R, accuracy in %
3 T
rT -caming aming st | GIRS—»{Decision Rules Ral—nion I

Fig. 4. GIRS union strategy.

3) GIRS argumentation strategy. As in the GIRS union
strategy, here we perform GIRS algorithm on two
learning subsets U; and U, and receive two independent
rule sets R; and Ro. R* is obtained using argumentation
approach described in Section III. The classification of
test examples is made on this set R*. The dataflow
diagram of this method is presented in Fig 5.

Sef of test
| examples
Argumentation = —————
s Block

[ 7 \‘"“l"l- it ‘J‘GIRS* Declslun Rules |

DEI’_ISIOI’I Rules

=] fsms

Classification
J accuracy in

R *

Fig. 5. GIRS argumentation strategy.

B. Experiment Results

Three strategies — GIRS basic strategy, GIRS union strategy
and GIRS argumentation strategy — were applied to two
problems from UCI Repository [23] — MONK’s 2 and
MONK’s 3 problem.

Let’s consider the application of the argumentation strategy
for the MONK’s 2 problem in detail. The learning set
consisting of 169 examples was divided into two disjoint
subsets consisting of 84 and 85 examples. On each learning
subset, the GIRS algorithm was produced and two sets of
decision rules R; and Ry were obtained.

IRy contains 56 rules:

Rule#1: if(A5 =2)&(Ay4=1)&(A3=1) then CLASS =0;
Rule#2: if(A;=1)&(Ag=1) then CLASS=0;

Rule#3: if(A5 =1)&(A3=1) then CLASS=0;

Rule#55 : lf(A5 = 3)&(144 = 3)&(A6 = 1)&(14.1 =
2) then CLASS =1,

Rule#56: if (A5 =4)& (A =2)& (A1 =2) then CLASS =1,
Ry contains 57 rules:

2) then CLASS=0;

Rule#S: 1f(A5 = 3)&(144 = 2)&(A2 =

2) then CLASS =0;
2) then CLASS =0;

1310



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

Rule#56 : if(4d5 = 3)&(As = 3)&(4s = 1)&(A6 =
1) then CLASS=1;
1) then CLASS=1;

For a combined set of rules R = R; U Ry containing 113
rules, 81 conflicts were discovered (for the full learning set
U from 169 examples). The learning procedure described
in Section III.C was applied. As a result of learning, all
conflicts found in the learning set were solved. In the
GIRS union strategy, learning was produced on two subsets,
each of which was less representative than the original
learning set U. Learning on such subsets gives worse results
of the classification accuracy(see the GIRS union strategy
in Fig. 6 and Fig. 7). Nevertheless, the application of
argumentation allows to build a combined classification model,
that gives even better results than results obtained by the
GIRS basic strategy. The GIRS argumentation strategy for
the classification of the test set from 432 examples gives the
following results: 77 examples were classified incorrectly and
the classification accuracy was 82.17%.

For comparison, the GIRS basic strategy on the full learning
set of 169 examples showed on the test set from 432 examples
the classification accuracy assessed to 74.31Thus, the use of
argumentation allowed to enhance the classification accuracy
of classification on 7.86% for the given example.

In Fig. 6 the results for three strategies for MONK’s 2 and
MONK’s 3 problem are presented.

—_
(=]
(=]

The classification accuracy, %
n
S

Monk's 3

Monk's 2

I GIRS basic
strategy
=GIRS union

strategy

| GIRS
argumentation 82,17 98,14
strategy

74,31 94,44

58,1 89,81

Fig. 6. The classification accuracy of the test data set for MONK’s 2 and
MONK’s 3 problem.

C. The Experiment Results in the Presence of Noise

Adding noise to a learning set increases the number of
conflicts for classification rules. Let us try to assess the

possibility of applying the argumentation methods to noisy
data.

The test methodology remains the same: for noisy learning
sets three strategies were applied: GIRS basic strategy, GIRS
union strategy and GIRS argumentation strategy.

The noise was introduced in a decision attribute of the
learning set for the MONK'’s 3 problem. Three levels of noise
were viewed: 5% (6 examples of 122 learning examples had
a wrong value of the decision attribute), 10% (12 examples
of 122 learning examples had a wrong value of the decision
attribute), 15% (18 examples of 122 learning examples had
a wrong value of the decision attribute). The results of the
experiments are shown in Fig. 7

100 ,

o
(%]

90

85

80

The classification accuracy, %

75

noise level, %
70 >

. . noise noise
no noise  noise 5%
10% 15%

= ¢mm GRS basic
strategy

+++m++ GIRS union
strategy

e — GIRS
argumentation 98,14 93,28 90.5 89,35
strategy

94,44 89,81 85,65 82.18

89.84 87,03 80,32 78.7

Fig. 7. The classification accuracy on MONK’s 3 problem with noise.

V. CONCLUSION

The paper was devoted to the possibilities of applying the
argumentation theory to enhance effectiveness of methods
of inductive concept formation. The method of combining
multiple sets of inductive formation rules in a conflict-free
set of rules with the help of argumentation and justification
degrees was proposed.

Application of argumentation methods for the generalization
problem allowed to enhance the classification accuracy for test
problems. Furthermore, it was analyzed the influence of noise
on the classification accuracy. The use of argumentation for
noisy data as well significantly improved classification results.
However, for real data and situations that can occur in IDSS,
learning sets used for generalization can contain noise. The
presence of noise and non-representative examples in learning
sets influence the quality of generalization models. Methods
of argumentation allow us to decrease this influence when
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there are conflicts in data (in the examples), that can be
resolved properly by using the calculated justification degrees.
Nevertheless, several problems remain unresolved and are
subject for further analysis.

Firstly, the question about effective portioning of an original
learning set is left unsolvable. In this study, the learning set
was divided into two equal parts randomly. It is necessary to
check the influence of different ways of partitioning, as well
as the number of such partitions.

Secondly, the question about the classification
quality depends on the choice of the parameter
Athatchangesajusti ficationdegreeo frules.

In general, the problem of enhancing the effectiveness
of methods of inductive concept formation by means of
argumentation has been successfully executed.
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