
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:12, 2009

1536

 

 

  
Abstract—This paper proposes a meta-heuristic called Ant 

Colony Optimization to solve multi-objective production problems. 
The multi-objective function is to minimize lead time and work in 
process. The problem is related to the decision variables, i.e.; 
distance and process time. According to decision criteria, the 
mathematical model is formulated. In order to solve the model an ant 
colony optimization approach has been developed. The proposed 
algorithm is parameterized by the number of ant colonies and the 
number of pheromone trails. One example is given to illustrate the 
effectiveness of the proposed model. The proposed formulations; 
Max-Min Ant system are then used to solve the problem and the 
results evaluate the performance and efficiency of the proposed 
algorithm using simulation. 

 
Keywords—Ant Colony Optimization, multi-objective problems 

I. INTRODUCTION 
NT colony optimization (ACO) is a recent family 
member of the meta-heuristic algorithms and can be used 

to solve complex optimization problems with few 
modifications by adding problem-dependent heuristics. ACO 
is a biological inspiration simulating the ability of real ant 
colony of finding the shortest path between the nest and food 
source. It is one of the successful applications of swarm 
intelligence which is the field of artificial intelligence that 
study the intelligent behavior of groups rather than of 
individuals such as the behavior of natural system of social 
insects like ants, bees, wasps, and termites. Swarm 
intelligence uses stigmergy which is a form of indirect 
communication through the environment.   

The class of complex optimization problems called 
combinatorial optimization problems are found in many areas 
of research and development. Traveling Salesman Problem 
(TSP), Quadratic Assignment Problem (QAP), Vehicle 
Routing Problem (VRP), Graph Coloring Problem (GCP), 
Sequential Ordering Problem (SOP), Job Scheduling Problem 
(JSP) and Network Routing Problem (NRP) are some 
examples of these problems. Combinatorial optimization 
problems arise when the task is to find the best out of many 
possible solutions to a given problem, provided that a clear 
notion of solution quality exists. In contrast to other 
optimization problems, combinatorial problems have a finite 
number of candidate solutions. Therefore, an obvious way to 
solve these problems is to enumerate all candidate solutions    
by comparing them against each other. Unfortunately, for 
most interesting combinatorial optimization problems, this 
 

 

approach proves to be impractical since the number of 
candidate solutions is simply too large. The only way to tackle 
the problems is to apply heuristic search that delivers no 
guarantee of finding the optimum solution [1, 2]  

The main element of ACO success is the use of a 
combination of priori information (heuristics) about the 
quality of candidate solutions (also called greedy strategy) and 
posteriori information (pheromone) about the goodness of the 
previously obtained solutions (also called positive feedback or 
autocatalytic process). This seems reasonable since many 
researches that study the characteristics of some well known 
optimization problems show that there is a correlation 
between the solution quality and the distance from the optimal 
solution [3, 4]. Several well known ACO examples are Ant 
System [5], Ant Colony System [6, 7], Max-Min Ant System 
[8], Ranked Ant System [9] and Best Worst Ant System [10, 
11, 12]. These algorithms show interesting performance and 
are competitive with other state of the art optimization 
methods. However, more research work is needed to enhance 
the ACO algorithms performance especially on large volume 
of combinatorial problems. Increasing the number of ants used 
to tackle a large problem almost yield to a worse algorithm 
performance. The key element is the organization of the ants’ 
population and the coordination of their works in such a way 
that yields to a good exploration of the large search space in a 
strong coupling with the exploitation of the search history. 

In this  paper, a ACO meta-heuristic algorithm is proposed. 
The algorithm uses ant colonies and can be efficiently used to 
multi-objective production problems. The rest of this paper is 
organized as follows. Section 2 describes the ant colony 
optimization. The proposed formulations of the multi-
objective production problems are reviewed in section 3. 
Section 4 proposes applied max-min ant system. The 
computational results of the algorithm testing are presented in 
section 5 and section 6 presents the conclusion and suggested 
future work. 

II. ANT COLONY OPTIMIZATION 
Ant colony optimization (ACO) meta-heuristic, a novel 

population-based approach was recently proposed in 1992 by 
Marco Dorigo et al. to solve several discrete optimization 
problems [13]. The ACO mimics the way real ants find the 
shortest route between a food source and their nest. The ants 
communicate with one another by means of pheromone trails 
and exchange information about which path should be 
followed. The more the number of ants traces a given path, the 
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more attractive this path (trail) becomes and is followed by 
other ants by depositing their own pheromone. This auto 
catalytic and collective behavior results in the establishment 
of the shortest route.  

Ants find the shortest path from their nest to the food 
source with the help of pheromone trail. This characteristic of 
ants is adapted on ant colony optimization algorithms to solve 
real problems with using exactly some characteristics of ants 
and some new addition. 

The method improved by modeling real ants use exactly the 
same specifications taken from real ants are below [14]:  
    • The communication established with ants through   
pheromone trail. 
   • Paths deposited more pheromone preferred previously.  
   • Pheromone trail on short paths increase more rapidly. 
    Addition of new specifications to this new technique is 
below: 
   • They live in an environment where time is discrete. 
   • They will not be completely blind, they will reach the 
details about the problem. 
   • They will keep information formed for the solution of the 
problem with has some memory. 
   As shown in Figure 1-a, ants start from their nest and goes 
along a linear path through the food source. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 1 Behaviors of real ants between their nest and food source 

 
(a) Ants following a path between their nest and food 

source 
(b) Encountering a obstacle of ants 
(c) Selection of ants 
(d) Finding the shortest path of ants                                                                            
Actually, if there exists a difficulty on the path while going 

to the food source (Figure 1-b), ant lying in front of this 
difficulty cannot continue and has to account a preference for 

the new outgoing path. In the present case, selection 
probability of the new direction alternatives of ants is equal. 
In other words, if ant can select anyone of the right and left 
directions, the selection chance of these directions is equal 
(Figure 1-c). Namely, two ants start from their nest in the 
search of food source at the same time to these two directions. 
One of them chooses the path that turns out to be shorter while 
the other takes the longer path. But it is observed that 
following ants mostly select the shorter path because of the 
pheromone concentration deposited mostly on the shorter one.  

The ant moving in the shorter path returns to the nest earlier 
and the pheromone deposited in this path is obviously more 
than what is deposited in the longer path. Other ants in the 
nest thus have high probability of following the shorter route. 
These ants also deposit their own pheromone on this path. 
More and more ants are soon attracted to this path and hence 
the optimal route from the nest to the food source and back is 
very quickly established. Such a pheromone-meditated 
cooperative search process leads to the intelligent swarm 
behavior.  

The instrument of ants uses to find the shortest path is 
pheromone. Pheromone is a chemical secretion used by some 
animals to affect their own species. Ant deposit some 
pheromone while moving, they deposit some amount of 
pheromone and they prefer the way deposited more 
pheromone than the other one with a method based on 
probability. Ants leave the pheromone on the selected path 
while going to the food source, so they help following ants on 
the selection of the path (Figure 1-d). 

There are many algorithms derived from ant colony meta-
heuristic and they are used on solution of many problems. 
These algorithms are derived from each other as formulation 
but all use the common specifications of ant colony meta-
heuristic. 

Generally, in ant colony optimization algorithms, 
operations described above are iterated in main loop until a 
certain number of iterations are completed or all ants begin to 
generate the same result. This situation is named as stagnation 
behavior, because after a point, algorithm finishes to generate 
alternative solutions. The reason of this situation is, after a 
certain number of iterations, ants generate continuously the 
same solutions because pheromone amount intensifies in some 
points and the difference between pheromone concentrations 
on paths become very huge.  
     Most ant colony optimization algorithms use this 
algorithmic diagram demonstrated below [15]:  
     Initiation of the parameters which determines the 
pheromone trail 
    While (until result conditions supplied) do 
        Generate Solutions 
  Apply Local Search 
        Update Pheromone Trail 
   End 
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ACO for multi-objective problem 
   Recently, different papers have introduced ACO algorithms 
for multi-objective problems. These algorithms mainly differ 
with respect to the three following points. 
Pheromone trails. The quantity of pheromone laying on a 
component represents the past experience of the colony with 
respect to choosing this component. When there is only one 
objective function, this past experience is defined with respect 
to this objective. However, when there are several objectives, 
one may consider two different strategies. A first strategy is to 
consider a single pheromone structure, as proposed in [16, 17, 
18, 19]. In this case, the quantity of pheromone laid by ants is 
defined with respect to an aggregation of the different 
objectives. A second strategy is to consider several 
pheromone structures, as proposed in [20, 21, 22, 23, 24]. In 
this case, one usually associates a different colony of ants with 
each different objective, each colony having its own 
pheromone structure. 
Solutions to reward. When updating pheromone trails, one 
has to decide on which of the constructed solutions laying 
pheromone. A first possibility is to reward solutions that find 
the best values for each criterion in the current cycle, as 
proposed in [21, 22, 24]. A second possibility is to reward 
every non-dominated solution of the current cycle. In this 
case, one may either reward all the solutions in the Pareto set, 
as proposed in [19] or only the new non-dominated solutions 
that enter in the set in the current cycle, as proposed in [20]. 
Definition of heuristic factors. When constructing solutions, 
at each step a candidate is chosen relatively to a transition 
probability which depends on two factors: a pheromone factor 
and a heuristic factor. The definition of the pheromone factor 
depends on the definition of the pheromone trails, as discussed 
in the first point. For the definition of the heuristic factor, two 
different strategies have been considered. A first strategy is to 
consider an aggregation of the different objectives into a 
single heuristic information, as proposed in [17, 21, 23]. A 
second strategy is to consider each different objective 
separately, as proposed in [16, 20, 22, 19, 24]. In this case, 
there is usually one different colony for each objective. 

III.    PROBLEM STATEMENTS AND FORMULATIONS 
   In many real-life optimization problems there are several 
objectives to optimize. For such multi-objective problems, 
there is not usually a single best solution but a set of solutions 
that are superior to others when considering all objectives 
[25]. In this article, we propose an approach based on Ant 
Colony Optimization (ACO), and describe the main features 
of ACO algorithms for solving multi-objective production 
problems. The problem can be mathematically formulated as 
follows:  
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    The lead time variation equation in (1) computes total 
variations of lead time in the system. Equation (2) calculates 
the amount of work in process. The objective function (3) is to 
minimize lead time variation and WIP moves based on the 
weights .α  and 1- .α  given for both objectives. The 
constraint (4) and (5) ensure that total WIP must not exceed 
max WIP to store in the stock area and transfer time can 
calculate from distance between each station divided by 
velocity, respectively. The constraint (6) indicates that 
standard process time must be between both shortest and 
longest process time, respectively. Similarly, the constraint (7) 
assures that standard set up time must be between both 
shortest and longest set up time, respectively.  
 

iS =   set up time  

iP  
=   process time 

jT  =   transfer time between each station 
kW  =   process wait time  
xO  =   other time such as communication 

c  =   machine or work station that has WIP 

cE  
=   total WIP in the system 

DOS  =   days of supply   
=   ability to support parts in a day 

plan  =   working hours per day in this case is 21 hours 
α  =   weight of factor to balance lead time and  

work in process variation and 0 ≤ .α ≤ 1 
v  =   transference velocity 
s  =   distance between each station or machine 

iPmin  
=   longest process time 

iSmax  =   shortest process time 

iPx
 

=   standard process time  

iSmin  =   longest set up time 

iSmax  =   shortest set up time 

iSx =   standard set up time 
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IV. MAX-MIN ANT SYSTEM 
     Max-Min Ant System (MMAS) suggested by Stutzle and 
Hoos [26] is yet another method which employs the idea of 
elitism to introduce exploitation into the original ant system. 
The provision of exploitation is made in MMAS by the 
addition of pheromone to only the iteration-best ant's path at 
the end of each iteration. To further exploit good information, 
MMAS uses the global-best solution to update the pheromone 
trail every Tgb iterations. The MMAS updating scheme is then 
given by:  

}/{)()()( gbN
gb
ij

ib
ijij TtIttt τττ Δ+Δ=Δ             (8) 

Where, N is the set of natural numbers and )(tib
ijτΔ  and 

)(tgb
ijτΔ are the pheromone addition given by the iteration-

best and global-best ants, respectively.  
Premature convergence to sub-optimal solutions is an issue 

that can be experienced by all ACO algorithms, especially 
those that use an elitist strategy of pheromone updating. To 
overcome this problem whilst still allowing for exploitation, 
Stutzle and Hoos [26] proposed the provision of dynamically 
evolving bounds on the pheromone trail intensities such that 
the pheromone intensity on all paths is always within a 
specified range. As a result all paths will have a non-trivial 
probability of being selected and thus wider exploration of the 
search space is encouraged.  MMAS uses upper and lower 
bounds to ensure that pheromone intensities lie within a given 
range which is calculated based on some analytical reasoning. 
The upper pheromone bound at iteration t is given by [26]: 

 
)(1

1)(max gbf
Rt
ϕρ

τ
−

=                       (9) 

This expression is equivalent to the asymptotic pheromone 
limit of an option receiving pheromone addition of 

gbfR )(ϕ and decaying by a factor of ρ−1  at the end of 

each iteration. The upper bound as defined in Eq. 6 was found 
to be of lesser importance while the lower limit played a more 
decisive role. Stutzle and Hoos [26] introduced the following 
formula for the calculation of the lower trail strength limit 
based on some analytical arguments: 
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Where minτ  represents the lower limit for the pheromone 

trail strength; decp is the probability that an ant constructs 

each component of the best solution again; bestp  is the 
probability that the best solution is constructed again and Javg 
is average number of options available at decision points of 
the problem. MMAS as formulated in Stutzle and Hoos [26], 
also incorporates another mechanism known as pheromone 
trail smoothing (PTS). This mechanism reduces the relative 
difference between the pheromone intensities, and further 
encourages exploration. The PTS operation performed at the 
end of each iteration is given by 

             ))()(()()( max tttt ijijij ττδττ −+←                 (11)              

where 10 ≤≤ δ  is the PTS coefficient. If 0=δ  the PTS 
mechanism has no effect, whereas if 1=δ  all pheromone 
trails are scaled up to )(max tτ . In addition to these additional 
mechanisms, MMAS uses the same decision policy as AS.  

The max-min ant system is apply to multi-objective 
function of lead time and work in process that can show in 
pseudo code as follow this picture  

Fig. 2 The pseudo code of the max-min ant system for  
machine cell formation 

V. EXPERIMENT RESULTS AND DISCUSSION 
Plots of the residuals, which are the differences between the 

observed and predicted values of the response variable, are 
very useful to check the quality of the fit. Graphical analysis 
of the residuals is the single most important technique for 
determining the need for model refinement or for verifying 
that the underlying assumptions of the analysis are met. 
Further residual diagnostic plots are shown below.  
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Fig. 3  Residual Plots of multi-objective production problem 

 
Use residual plots, available with many statistical 

commands, to check statistical assumptions: 
• Normal probability plot—to detect nonnormality. An 

approximately straight line indicates that the residuals are 
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normally distributed. 
• Histogram of the residuals—to detect multiple peaks, 

outliers, and nonnormality. The histogram should be 
approximately symmetric and bell-shaped. 

• Residuals versus the fitted values—to detect nonconstant 
variance, missing higher-order terms, and outliers. The 
residuals should be scattered randomly around zero. 

• Residuals versus order—to detect time-dependence of 
residuals. The residuals should exhibit no clear pattern. 

For the production data, the four-in-one residual plots 
indicate no violations of statistical assumptions. The one-way 
ANOVA model fits the data reasonably well. 

The experiments have been run on Intel Core 2, 1.66 GHz 
and 1.50 GB of RAM. In order to evaluated the performance 
of the algorithm. The proposed max-min ant system algorithm 
contains four parameters namely, the number of ants/ the 
number of iterations (A/I), Pheromone weight (α ), Heuristic 
information weight ( β ), and Pheromone evaporation weight 
( ρ ). Experiments based on design of experiment approach 
conducted to find the suitable values for parameters. The 
results of the performances of the algorithm that in paper is 
used design of experiment in 3 levels. The results are showed 
in this picture. 
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Fig. 4 Main effect plots of the computational result obtained from 
max-min ant system 

 
Based on these experiments, appropriate values for these 

parameters were A/I= 10/10, α  =1.5, β  =5 and ρ = 0.55 
that it consider with interaction factor. 

VI. CONCLUSION 
In this paper, a meta-heuristic method namely, max-min ant 

system algorithm is proposed to solve multi-objective 
production problems. The results from computational 
experiment of test problem show that develop the lead time 
and work in process. Further research direction will analyze 
algorithm performance in greater detail in order to get a better 
understanding of how benefits are attained from using the 
adaptive strategy. 
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