
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2468

Abstract—This paper presents data annotation models at five

levels of granularity (database, relation, column, tuple, and cell) of
relational data to address the problem of unsuitability of most
relational databases to express annotations. These models do not
require any structural and schematic changes to the underlying
database. These models are also flexible, extensible, customizable,
database-neutral, and platform-independent. This paper also presents
an SQL-like query language, named Annotation Query Language
(AnQL), to query annotation documents. AnQL is simple to
understand and exploits the already-existent wide knowledge and
skill set of SQL.

Keywords—Annotation query language, data annotations, data
annotation models, semantic data annotations.

I. INTRODUCTION
OST relational databases (RDBMSs) utilize their
metadata schema to store statistical information for

constraint checking and query optimization. The metadata
schema provided by most RDBMSs is unsuitable for
expressing data annotations. Data annotations are
semantically rich metadata applicable to a particular
application domain that help further clarify features of
interest. A feature of interest is a data item that a user wants to
annotate [1]. Types of data annotations include comments,
descriptions, definitions, notes, error messages, among several
others.

This paper addresses the problem of unsuitability of most
RDBMSs' metadata schema to express semantic data
annotations by defining data annotation models that allow the
annotation of relational data at five levels of granularity –
database, relation, column, tuple, and cell. These data
annotation models are structured using Extensible Markup
Language (XML). The most important feature of these models
is that they do not require any structural or schematic changes
to the underlying RDBMS. It is common knowledge that
database administrators (DBAs) are resistant to structural and
schematic changes to already deployed databases. Thus, the
models presented in this paper stand a greater chance of being
adopted. In addition, these models are easy to understand,

Manuscript received February 17, 2007.
Neerja Bhatnagar is a graduate student in Computer Science at University

of California, Santa Cruz (email: neerja@cs.ucsc.edu).
Dr. Ben A. Juliano is a Computer Science Associate Professor at California

State University, Chico (e-mail: juliano@csuchico.edu).
Dr. Renee S. Renner is a Computer Science Associate Professor at

California State University, Chico (e-mail: renner@csuchico.edu).

flexible, customizable, extensible, database-neutral, and
platform-independent. These models also allow users to cross-
reference related annotations. The ability to customize these
models stems from the flexibility given to users to define
annotations to serve their individual requirements.
Specifically, users can name the
applicationDomainSpecificTag according to their
requirements.

This paper also presents an SQL-like query language,
Annotation Query Language (AnQL), to query annotation
documents based on these models. AnQL is designed to take
advantage of the already-abundant knowledge and skill set of
SQL. XQuery [2] and XPath [3] are complex query languages.
Learning these languages might present a steep learning
curve. SQL-XML [4] engines force RDBMSs to deal with
semi-structured data format. Simplicity and ease of
understanding are the main motivation factors for the design
of the data annotation models and the query language
presented in this paper.

Data annotations reduce communication and data exchange
hassles and provide almost all types of database users
(scientists, customer service providers, banks, corporations)
with a more collaborative environment. A scientist, who wants
to share the discovery he or she made while investigating an
image can utilize annotations to annotate the image. He or she
can also seamlessly share these findings with other
researchers. In some cases, annotations might also help reduce
costs, and save time and effort. As an example, a customer can
dispute a charge on his or her bank statement using
annotations. The customer need not restrict himself or herself
to the customer service hours. A customer service provider
can also use annotations to update the customer.

Due to its numeric nature, it is often difficult to interpret the
semantics of scientific data, simply by looking at it. As an
example, it is difficult to interpret whether the data in the
TEMPERATURE column is expressed in Metric or English
units. Annotations can help scientists annotate the
TEMPERATURE column with the appropriate unit. If the
column contains temperature in both Metric and English units,
the cell-level data annotation model can be used to annotate
each cell individually with its unit. An alternative is to change
the data type of the TEMPERATURE column, from DECIMAL
to VARCHAR, to accommodate the unit. This might not be
desirable since the scientists will lose the ability to manipulate
the data mathematically. Moreover, this also requires a change

AnQL: A Query Language
for Annotation Documents
Neerja Bhatnagar, Ben A. Juliano, and Renee S. Renner

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2469

to the underlying RDBMS.
The rest of this paper is organized as follows – Section 2

compares and contrasts the work presented in this paper with
that presented in Annotea, DBNotes, MONDRIAN, SLIMPad,
and few others; Section 3 presents the data annotation models
that allow users to annotate relational data at five different
levels; Section 4 presents the SQL-like query language,
AnQL, and its query processing operations; and conclusions
and future work are discussed in Section 5.

II. RELATED WORK
This section compares and contrasts the annotation models

presented in this paper with Annotea [5], DBNotes [6],
MONDRIAN [7], SLIMPad [8], and with those presented in
[1] and [9]. Annotea allows users to annotate documents
identified by a URI with or without the knowledge of the
authors. Similar to the models presented in this paper,
DBNotes and MONDRIAN annotate relational data. The
models presented in this paper allow relational data to be
annotated at five different levels of granularity – database,
relation, column, tuple, and cell. DBNotes focuses on the
where-provenance and propagation of annotations.
MONDRIAN focuses on biological databases, and allows
users to annotate both single values and the association
between multiple values. SLIMPad annotates data that resides
in a variety of applications, such as databases, spreadsheets,
and documents, among several others. SLIMPad addresses
annotations in the domain of physicians providing treatment to
patients. The system presented in [9] annotates audio-visual
documents. The system presented in [1] annotates
neuroanatomical images at various levels of granularity.

Annotea and SLIMPad utilize RDF to define annotations.
DBNotes and MONDRIAN utilize relational data to express
annotations. The annotation system in [9] utilizes LEDA
graph structure and XML Document Object Model (DOM) to
express annotations. The data annotation models presented in
this paper also utilize XML to structure data annotations. The
system presented in [1] uses text-based annotations. All
annotations, by default, based on the data annotation models
presented in this paper, are accompanied with metadata
information, such as the author's name and the creation time
stamp. This behavior is common with annotations in Annotea.
Both Annotea and the data annotation models presented in this
paper allow annotations to cross-reference related annotations.

Annotations in Annotea reside in generic RDF databases,
accessible through HTTP servers. Annotations presented in
[1], [9], and in this paper reside outside the underlying
database whose data they annotate. Data annotation
documents based on the data annotation models presented in
this paper reside on the file system of a computer system.
SLIMPad modifies the base layer that it annotates in order to
store annotations. DBNotes and MONDRIAN store
annotations within the RDBMS. Columns may be added to
relations in order to annotate relational data [10]. Annotations
at column and tuples levels can be expressed using this

scheme. However, by using this scheme, it is difficult to
express annotations at the database, relation, and cell levels.

III. DATA ANNOTATION MODELS
Figures 1-5 present data annotation models that allow users

to annotate relational data at five different levels of granularity
– database, relation, column, tuple, and cell. XML is used to
structure these data annotation models. XML was chosen
because it provides several advantages over other data
formats, such as text, e-mail, or electronic forms. XML is
database-neutral and platform-independent. XML's database-
neutrality allows the use of same data annotation models to
express data annotations on base data that resides in
heterogeneous databases, such as, IBM DB2 UDB [11],
Oracle [12], and SQL Server [13] etc. XML's platform-
independence allows users to express, share, and utilize data
annotations irrespective of the operating system and platform
they use. Since XML supports Unicode, the support for
expressing data annotations in several different languages is
already built-in [14]. Therefore, it can be used to share data
seamlessly regardless of the underlying database and
operating system.

 <annotationDocument>
 <documentName>uniqueName</documentName>
 <documentId>uniqueId</documentId>
 <annotationAttachedTo>
 <database>databaseName</database>
 </annotationAttachedTo>
 <!--annotation and annotationMetadata may occur
 multiple times in a single document -->
 <annotation>
 <applicationDomainSpecificMetatag>
 dataAnnotation
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>someone</author>
 <recorded>someDateAndTime</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>uniqueName</documentName>
 <documentName>uniqueName</documentName>
 …
 </documentNameList>
 </referencedAnnotations>
</annotationDocument>

Fig. 1 database-level data annotation model

<annotationDocument>
 <documentName>uniqueName</documentName>
 <documentId>uniqueId</documentId>
 <annotationAttachedTo>
 <database>databaseName</database>
 <relation>relationName</relation>
 </annotationAttachedTo>
 <!--annotation and annotationMetadata may occur
 multiple times in a single document -->
 <annotation>
 <applicationDomainSpecificMetatag>
 dataAnnotation
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>someone</author>
 <recorded>someDateAndTime</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>uniqueName</documentName>
 …
 </documentNameList>
 </referencedAnnotations>
</annotationDocument>

Fig. 2 relation-level data annotation model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2470

<annotationDocument>
 <documentName>uniqueName</documentName>
 <documentId>uniqueId</documentId>
 <annotationAttachedTo>
 <database>databaseName</database>
 <relation>relationName</relation>
 <column>columnName</column>
 </annotationAttachedTo>
 <!--annotation and annotationMetadata may occur
 multiple times in a single document -->
 <annotation>
 <applicationDomainSpecificMetatag>
 dataAnnotation
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>someone</author>
 <recorded>someDateAndTime</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>uniqueName</documentName>
 …
 </documentNameList>
 </referencedAnnotations>
</annotationDocument>

Fig. 3 column-level data annotation model

<annotationDocument>
 <documentName>uniqueName</documentName>
 <documentId>uniqueId</documentId>
 <annotationAttachedTo>
 <database>databaseName</database>
 <relation>relationName</relation>
 <!--for composite primary keys, list values
 separated by commas-->
 <tuple>primary key</tuple>
 </annotationAttachedTo>
 <!--annotation and annotationMetadata may occur
 multiple times in a single document -->
 <annotation>
 <applicationDomainSpecificMetatag>
 dataAnnotation
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>someone</author>
 <recorded>someDateAndTime</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>uniqueName</documentName>
 …
 </documentNameList>
 </referencedAnnotations>
</annotationDocument>

Fig. 4 tuple-level data annotation model

Each of the data annotation models presented in Figures 1-5
may be further divided into modules, namely, identification,
level, annotation, annotation metadata, and cross-reference.
These modules are illustrated in Fig. (6). The identification
module uniquely identifies a data annotation document. It
contains the hierarchy within the documentName and
documentId tags. The level module represents the level
(database, relation, column, tuple, or cell) that a data
annotation document annotates. The level module is identified
by the tag annotationAttachedTo. The annotation
module contains the actual data annotation, and the
annotation metadata module maintains bookkeeping
information (creation time stamp and author) on the actual
annotation. The annotation module is characterized by the tag
applicationDomainSpecificTag, which is enclosed
within the annotation tag. The annotation metadata
module contains the node hierarchy within the

<annotationDocument>
 <documentName>uniqueName</documentName>
 <documentId>uniqueId</documentId>
 <annotationAttachedTo>
 <database>databaseName</database>
 <relation>relationName</relation>
 <column>columnName</column>
 <!--for composite primary keys, list
 values separated by commas-->
 <tuple>primary key</tuple>
 </annotationAttachedTo>
 <!--annotation and annotationMetadata may occur
 multiple times in a single document -->
 <annotation>
 <applicationDomainSpecificMetatag>
 dataAnnotation
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>someone</author>
 <recorded>someDateAndTime</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>uniqueName</documentName>

 …
 </documentNameList>
 </referencedAnnotations>
</annotationDocument>

Fig. 5 cell-level data annotation model

…
 <documentName>…</documentName>
 <documentId>…</documentId>
 <annotationAttachedTo>
 <database>…</database>
 </annotationAttachedTo>
 <annotation>
 <applicationDomainSpecificMetatag>
 …
 </applicationDomainSpecificMetatag>
 <annotationMetadata>
 <author>…</author>
 <recorded>…</recorded>
 </annotationMetadata>
 </annotation>
 <referencedAnnotations>
 <documentNameList>
 <documentName>…</documentName>
 …
 </documentNameList>
 </referencedAnnotations>
…

Identification

Level

Annotation

Annotation Metadata

Cross-Reference

Fig. 6 modules

annotationMetadata tag. By default, each annotation is
accompanied with the annotation metadata, namely the name
of the author of the annotation and the creation time stamp of
the annotation. The cross-reference module (characterized by
the element hierarchy within the
referencedAnnotations tag) allows related annotations
to cross-reference each other. Annotations are, in essence,
immutable i.e. an annotation that semantically overrides
another annotation does not cause the original annotation to be
erased.

Data annotation documents based on the models presented
above reside on the file system provided by a computer
system. When the number of data annotation documents
becomes prohibitively large, a smart indexing scheme would
become necessary to quickly locate and retrieve annotations.
An alternative is to store annotation documents on disks that
are being designed specifically to store and efficiently retrieve
semi-structured data [15]. Annotation documents may also be
stored inside a relational database. XML documents stored in
their entirety inside relational databases present a few
problems. The first problem is that the storage of annotation
documents inside the relational database that contains the base
data being annotated would require structural and schematic
changes to the database. The second problem is that all

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2471

queries that use “select *” might need to be modified.
Similarly, “insert into” queries that do not mention the column
names explicitly would need to be modified. Thirdly, an SQL-
XML parser [4] would be needed to process queries that
pertain to annotation documents. XML documents can be
shredded and parsed in order to convert them into tabular
format suitable for mapping on to relational data [16]. This
defeats the whole concept of semi-structured data format – the
data to begin with is not suitable for storage into a relational
database. Moreover, putting shredded XML documents back
together is expensive since it requires the computation of
several joins. Annotation documents can also be stored in
XML native databases. However, retrieving these annotations
from XML native databases requires the knowledge of
XQuery. XQuery is a complex query language, and might
present users with a steep learning curve.

An alternative to using the data annotation models
presented in Figures 1-5 is to keep notes in text documents.
However, this approach presents a few problems. First, this
alternative does not provide a uniform, consistent mechanism
to express annotations. The reason is that each user would use
his or her own personal format. Second, sharing text
documents across platforms is difficult. Third, keeping
annotations in text documents does not automatically maintain
metadata information on annotations. The data annotation
models presented in this paper not only address all of these
problems, but also present useful features, such as, cross-
referencing and annotation metadata.

Another alternative to using the data annotation models
presented in Figures 1-5 is to declare ANNOTATION
columns. An ANNOTATION column may be added for each
data column. A single ANNOTATION column per relation can
express tuple-level annotations. However, this technique
requires the addition of columns to an already deployed
database. This might be problematic because it is common
knowledge that DBAs are resistant to making any changes to
already deployed databases. Secondly, this technique is only
effective for annotating data at the column and tuple levels.
The third problem with this technique is that all queries with
“select *” must be modified to exclude ANNOTATION
columns, particularly, if the users want to view data only.
Similarly, all data insertion queries that use “insert into
relation values ()” without specifying the columns into which
data has to be inserted must also be modified. All applications
that retrieve data from the database, and manipulate and
process this data must be modified accordingly to
accommodate the changes in the underlying database. Such
changes to the underlying database, and applications that work
in association with the database, can prove to be particularly
difficult for production systems that are typically heavily used.
Another major disadvantage of this technique is that it might
not be possible to cross-reference related annotations since the
annotations stored in database columns are no longer uniquely
distinguishable.

Although, it might be feasible to utilize ANNOTATION
columns to annotate relational data at the column and tuple

level, this technique cannot be used effectively to annotate at
the database, relation, and cell levels. This is because it is hard
to decide which relation should host the column that annotates
the entire database. Similarly a column must be added to each
relation to store annotations at the relation and cell levels.

Example Data Annotation Documents. Assume that the
manager of a real estate firm decides to transfer the listings for
over a million dollars to a separate database. The manager can
utilize the data model presented in Fig. (1) to annotate the
existing database in order to communicate with the DBA. Fig.
(7) presents this example annotation document. The DBA can
review the manager's annotations, make appropriate changes,
and inform the manager regarding the change via an
annotation. In this case, data annotations save time and
resources by eliminating the need to set up a meeting with the
DBA in order to explain a simple change to him or her.

<annotationDocument>
 <documentName>RE1</documentName>
 <documentId>RE1</documentId>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 </annotationAttachedTo>
 <annotation>
 <actionRequired>
 Please create a separate database for properties
 listed at $1,000,000 or more. Separate out real
 estate agents that deal exclusively in these
 properties. Proposed database name –
 LUXURY_ESTATES. Name the relations using firm’s
 standard naming conventions.
 </actionRequired>
 <annotationMetadata>
 <author>theManager</author>
 <recorded>April 2, 2004 10:37:15 PM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 7 example database-level annotation document

Fig. (8) presents an example data annotation document at
the relation level that a paleontologist might use to annotate a
relation in a paleontology database with information on
topography or habitat existent during a particular period. This
document annotates the LateTriassic relation. The
LateTriassic relation may contain information on
Coelophysis, Cynodant, and Placerias, among
others. However, these relations would not contain
information on the state of the earth, or the habitat, or the
weather during the LateTriassic period.

<annotationDocument>
 <documentName>plntlogyLateTriassic1</documentName>
 <documentId>Pal1</documentId>
 <annotationAttachedTo>
 <database>PALEONTOLOGY</database>
 <relation>LATE_TRIASSIC</relation>
 </annotationAttachedTo>
 <annotation>
 <description>
 Neither flowering plants nor grass existed. The
 ground was covered with ferns and mosses. Plant life
 was very drab – just green and brown in color.
 </description>
 <annotationMetadata>
 <author>paleontologist</author>
 <recorded>Apr 17, 2004 8:02:08 PM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 8 example relation-level annotation document

Fig. (10) illustrates how a chef can utilize the column-level

data annotation model presented in Fig. (3) to annotate the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2472

Quantity column in the relation CondimentList (see Fig.
(9)). Fig. (11) presents an example cell-level data annotation
document that a chef can use to annotate the cell that contains
the data value Turmeric in the relation CondimentList.

Id Name Quantity
CondimentList 1 Salt 3

8 Turmeric 2

Fig. 9 relation CondimentList

Fig. (13) presents an example data annotation document at
the tuple level. The department secretary uses the tuple-level
data annotation model presented in Fig. (4) to inform the
graduate coordinator that John Doe has accepted their offer of
admission, and therefore, his record must be moved from
relation Offered to Accepted (see Fig. (12)). For more
details on these models, please refer to [17].

 <annotationDocument>

 <documentName>cookingRecipeQuantity1</documentName>
 <documentId>cooking1</documentId>
 <annotationAttachedTo>
 <database>COOKING</database>
 <relation>RECIPE</relation>
 <column>QUANTITY</column>
 </annotationAttachedTo>
 <annotation>
 <note> All quantities in tablespoons.
 Conversion: 1 tablespoon = 5 milligrams </note>
 <annotationMetadata>
 <author>Chef Alice</author>
 <recorded>May 27, 2004 9:12:24 AM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 10 example column-level annotation document

IV. ANNOTATION QUERY LANGUAGE (ANQL)
AnQL, an SQL-like query language, is used to query data

annotation documents based on the models presented in
Figures 1-5. AnQL is designed to take advantage of the
existent abundant SQL knowledge and skill set. AnQL query
operations include select, project, natural join, and union. A
naive, yet clever, storage scheme (see Fig. (14)) is employed
to facilitate AnQL query processing. All annotation
documents that pertain to one database are kept in a separate
directory from the annotation documents that pertain to
another

 <annotationDocument>
 <documentName>cookingCondimentList</documentName>
 <documentId>cooking2</documentId>
 <annotationAttachedTo>
 <database>COOKING</database>
 <relation>CONDIMENT_LIST</relation>
 <column>CONDIMENT_NAME</column>
 <tuple>8</tuple>
 </annotationAttachedTo>
 <annotation>
 <caution>
 Be very careful with turmeric. Turmeric leaves
 yellow stains on everything incl. counter tops,
 and clothes. These stains are extremely difficult
 to remove.
 </caution>
 <annotationMetadata>
 <author>alice</author>
 <recorded>Apr 27, 2004 4:18:16 AM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 11 example cell-level annotation document

STUDENT_ID NAME DOB
999888777 John Doe 1/1/1984
123456789 Jane Smith 1/2/1986

NEW_STUDENT_INFO

ADMIT_INFO
STUDENT_ID YEAR DEGREE PROGRAM
999888777 2004 B.S. ELEC. ENGG.
123456789 2004 M.S. COMP. SCI.

Fig. 12 admission database

<annotationDocument>
 <documentName>admissionsNewStudentInfo</documentName>
 <documentId>admn1</documentId>
 <annotationAttachedTo>
 <database>ADMISSIONS</database>
 <relation>NEW_STUDENT_INFO</relation>
 <tuple>999888777</tuple>
 </annotationAttachedTo>
 <annotation>
 <comment>
 John Doe (Id 999888777) accepted offer.
 Please change status.
 </comment>
 <annotationMetadata>
 <author>departmentSecretary</author>
 <recorded>May 27, 2004 4:03:08 PM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 13 example tuple-level annotation document

database. In other words, annotation documents that pertain to
say, an Actors database, are kept in a separate directory from
those that pertain to say, a Real Estate database. Within a
directory, annotations pertaining to each level are kept in
separate subdirectories. In other words, annotations at cell-
level and database-level reside in separate subdirectories. An
alternative is to use a tagged file format in which all
annotations are kept in a single file. Tags uniquely identify the
start and end of each annotation. Storing annotations in a
tagged file requires an additional access to the index file for
each query. Moreover, the index file must be updated for each
addition and deletion. Using a tagged file would also make the
annotations and their querying system dependent.

AnQL query engine utilizes data annotation graph
generation and data annotation graph traversal functions to

DatabaseA DatabaseB

celltuplecolumn db rltn celltuplecolumndb rltn

Fig. 14 naïve storage scheme

process AnQL queries. The data annotation graph generation
(ϕ) function generates a data annotation graph corresponding
to a well-formed and validated data annotation document
provided as input. A data annotation graph is a special graph
structured especially for AnQL query processing and is
modeled in spirit of the XQuery data model. The nodes of a
data annotation graph correspond to the elements of a data
annotation document, and its edges depict the hierarchical
relationship between the elements. Fig. (15) presents the cell-
level data annotation graph. The data annotation graphs at the
other levels (database, relation, column, and tuple) are similar,
but they correspond to their data annotation models. Nodes in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2473

a data annotation graph may be classified as follows –
• Root - The root node of a data annotation graph is

annotationDocument.
• Element - An element node contains an element

defined in an annotation document. Nodes of type element
include annotationDocument, documentName,
documentId, annotationAttachedTo,
database, etc.

• ElementValue - A node of type elementValue is a
child node of type element, and contains the actual value
of an element.

• TextValue - A node of type textValue is also a child
of a node of type element, but contains the actual data
annotation.

annotationDocument

documentName documentId

document name document id

annotationAttachedTo

database

database name

annotation

data annotation

annotationMetadata

author recorded

author name recorded
relation

relation name

tuple

primary key

column

column name

Fig. 15 cell-level data annotation graph

An example database, RealEstate (see Fig. (16)), is
used through the rest of this paper to illustrate AnQL
operations. The example RealEstate database maintains
records of property listings, real estate agents, and which real
estate agent sold which property. Figures (17) and (18)
present example data annotation documents that annotate data
in the RealEstate database.

PptyId MLS Street City
Listings PI1 387811 2928 Leigh San Jose

PI2 401891 Out of Area Out of Area

PptyId LotSize Bed Bath Age Style
Features PI1 - 4 2 47 Detached

PI2 0.62 - - - Land

FtrId FtrName
Details FI1 Fireplace

FI10 L-Shaped Pool

Id Name
Agents AG1 Rudy Campos

AG2 Carla Gallegos

PptyId FtrId
Contains PI1 FI1

PI2 FI10

Id PptyId
Sold AG1 PI1

Fig. 16 example RealEstate database

 <annotationDocument>
 <documentName>REFeaturesPropertyIdPI2</documentName>
 <documentId>RE11</documentId>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>PROPERTY_ID</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation><comment>
 Build your dream home. Sunny and private. Water
 and electricity at site. Plans and permits
 approved and ready for a 2683+ sq. ft home. Septic
 and geo approved. </comment>
 <annotationMetadata>
 <author>Rudy Campos</author>
 <recorded>Apr 1, 2004 10:15:25 AM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 17 example data annotation document - 1

The data annotation graph traversal (Σ) function
traverses a data annotation graph in depth-first manner. The
function accepts as input a start node contained within a
well-formed and validated data annotation document, and
returns a set of nodes directly connected to the start node.
REFeaturesPropertyIdPI2 is the result set generated by

 <annotationDocument>

 <documentName>REFeaturesLotSizePI2</documentName>
 <documentId>RE9</documentId>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>LOT_SIZE</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <description>

 Lot size is in acres.
 </description>
 <annotationMetadata>
 <author>Rudy Campos</author>

<recorded>May 28, 2004 12:15:14 PM</recorded>
 </annotationMetadata>
 </annotation>
</annotationDocument>

Fig. 18 example data annotation document – 2

ΣdocumentName (REFeaturesLotSizePI2). In this function,
documentName is the start node, and REFeaturesLotSizePI2
is the input annotation document.

The data annotation graph traversal function returns the
node that is directly connected to the node documentName.
The transitive closure (Σ+) of the data annotation graph
traversal accepts the same input as the data annotation graph
traversal function, but outputs the set of all nodes that are
connected directly or indirectly to the start node. Fig. (19)
presents the result set of Σ+

documentName

(REFeaturesLotSizePI2).

<documentName>
 REFeaturesPropertyIdPI2
</documentName>

Fig. 19 transitive closure result set

AnQL's select (σ) operation accepts as input a well-formed

and validated data annotation document and a boolean
predicate of the form element=value or
elementValue=value. It returns the node hierarchy that
satisfies the boolean predicate of the input document. In order
to process a select operation, the query engine generates a data
annotation graph, using the data annotation graph generation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2474

function, corresponding to the input data annotation
document. The query engine then traverses the data annotation
graph, using the data annotation graph traversal function, in
order to find a node that satisfies the boolean predicate. It
returns as the result set the node hierarchy that satisfies the
boolean predicate. Fig. (20) presents the result set generated
by σelement=annotation. This query signifies the selection and
retrieval of the part of the annotation document presented in
Fig. (18) that occurs within the start and end tags of the
annotation element in the document.

AnQL's project (π) operation accepts as input a non-
boolean constraint (a maximum of three keywords), and a
project criterion (the level - database, relation, column, tuple,
or cell). It returns the node hierarchy that satisfies the non-
boolean constraint (keywords joined by and logic) and the
project criterion. The processing of project operation is
similar to that of a select operation. Fig. (21) presents the
result set generated

 <result>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>LOT_SIZE</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <description>
 Lot size is in acres.
 </description>
 <annotationMetadata>
 <author>Rudy Campos</author>
 <recorded>May 28, 2004 12:15:14 PM</recorded>
 </annotationMetadata>
 </annotation>
</result>

Fig. 20 select result set

by issuing the query, π”sunny”RealEstate/Features/PptyId/PI2,
on the data annotation documents of Figures (17) and (18).
This query signifies the search for the keyword “sunny” in the
example data annotation documents.

 <result>

 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>PROPERTY_ID</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <comment>
 Build your dream home. Sunny and
 private. Water and electricity at
 site. Plans and permits approved and
 ready for a 2683+ sq. ft home. Septic
 and geo approved.
 </comment>
 </annotation>
</result>

Fig. 21 project result set

AnQL's natural join (NJ) operation joins data annotation

documents at a specific level based on a natural join criterion
(author or creation time stamp). If the natural join criterion is
not specified, the operation simply appends all the data
annotation documents at the specified level. The result set
contains the hierarchy within the annotation tag. AnQL's
definition of natural join also includes the definition of an
intersection (&) operation. AnQL's query engine compares the
value of the corresponding nodes (either author or creation

time stamp) in data annotation graphs corresponding to all
documents at the specified level. If the values match, the
query engine includes the annotation in the result set. Fig. (22)
presents the result set generated by issuing the query, NJauthor
(RealEstate/Features/LotSize/PI2), on the example annotation
documents of Figures (17) and (18). This query indicates to
the AnQL query engine to compare the authors within the
cell-level example annotation documents, and join them if
their authors are the same.

The union (U) operation generates a consolidated report
that groups annotations at a specified level i.e. all data
annotations pertaining to a particular cell. The query engine
browses through the relevant directory (determined by the
union criterion), and groups all data annotations at one level

…
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>PROPERTY_ID</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <comment>
 Build your dream home. Sunny and private.
 Water and electricity at site. Plans and
 permits approved and ready for a 2683+
 sq. ft home. Septic and geo approved.
 </comment>
 <annotationMetadata>
 <author>Rudy Campos</author>
 <recorded>Apr 1, 2004 10:15:25 AM</recorded>
 </annotationMetadata>
 </annotation>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>LOT_SIZE</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <description>
 Lot size is in acres.
 </description>
 <annotationMetadata>
 <author>Rudy Campos</author>
 <recorded>May 28, 2004 12:15:14PM</recorded>
 </annotationMetadata> </annotation>
…

Fig. 22 natural join result set

into one large document to provide the users with a
comprehensive, consolidated view of annotations at that level.
The processing of union operation is inefficient since no
indexing mechanism has been employed. Therefore,
computation of a union operation can be done routinely during
relatively non-busy times. Fig. (23) presents a typical union
result set.

The result set of all operations, by default, returns the
element hierarchy within annotationMetadata when the
hierarchy within the annotation tag is returned. Select, project
and natural join operations may be combined to form Select-
Project-Join (SPJ) queries, and select, project, and union
operations may be combined to form Select-Project-Union
(SPU) queries.

A Select-Project-Natural Join Query Example. The
example SPJ query – σelement=annotation πwater njRudy Campos
(RealEstate/Features/Property_Id/PI2) is issued over an
example RealEstate database (see Fig. 16). This query
signifies the join of cell-level annotations whose author is
Rudy

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2475

Campos.
…
 <annotationAttachedTo>
 <database>databaseName</database>
 <relation>relationName</relation>
 <column>columnName</column>
 <tuple>primaryKey</tuple>
 </annotationAttachedTo>
 <annotation>
 <domainSpecificTag> … </domainSpecificTag>
 <annotationMetadata> … </annotationMetadata>
 </annotation>
…

Fig. 23 Typical Union Result Set

AnQL's query engine first processes the natural join

operation. Using the data annotation graph generation
function, it generates data annotation graphs corresponding to
the input documents. Next, using the data annotation graph
traversal function, it traverses to the author node and
compares them. If the nodes match, the query engine returns
the node hierarchy within the annotation tag.

Next, the query engine processes the project clause by
searching for the keyword “water”, in nodes of type
elementValue and textValue, within the intermediate
result set returned by natural join. The query engine then
processes the select clause by traversing through the nodes of
type element within the intermediate result set generated by
the processing of natural join and project clauses. Fig. (24)
presents the result set of the example query. [17] presents
detailed discussion on AnQL's operations, along with several
examples.

 <result>
 <annotationAttachedTo>
 <database>REAL_ESTATE</database>
 <relation>FEATURES</relation>
 <column>PROPERTY_ID</column>
 <tuple>PI2</tuple>
 </annotationAttachedTo>
 <annotation>
 <comment>
 Build your dream home. Sunny and private.
 Water and electricity at site. Plans
 and permits approved and ready for a 2683+
 sq. ft home. Septic and geo-approved.
 </comment>
 <annotationMetadata>
 <author>Rudy Campos</author>
 <recorded>May 28, 2004 12:15:14 PM</recorded>
 </annotationMetadata>
 </annotation>
</result>

Fig. 24 SPJ Query Result Set

V. CONCLUSION AND FUTURE WORK
This paper presents data annotation models that can

annotate relational data at five different levels of granularity –
database, relation, column, tuple, and cell. The motivation for
these models is simplicity and ease of understanding. The
models are flexible, extensible, customizable, database-
neutral, and platform-independent. These models may be
extended to other data models, such as hierarchical and object-
oriented. This paper also presents an SQL-like query language
- AnQL. AnQL is designed to exploit the abundant knowledge
and skill set of SQL. The annotation system presented in this
paper does not inflict any structural or schematic changes to
the underlying database. AnQL's project operation may be
extended to more keywords, and or and not logic. Cross-
referencing can be enhanced with XLink[18] or XInclude

[19]. The union operation can benefit from a smart indexing
scheme. A system, as a virtualization over the underlying
RDBMS, can be developed to incorporate these models and
AnQL.

REFERENCES
[1] M. Gertz, K.-U. Sattler, F. Gorin, M. Hogarth, and J. Stone, “Annotating

scientific images: A concept-based approach,” in SSDBM ’02:
Proceedings of the 14th International Conference on Scientific and
Statistical Database Management, (Washington, DC, USA), pp. 59–68,
IEEE Computer Society, 2002.

[2] D. Chamberlin, XQuery from the Experts A Guide to the W3C XML
Query Language. Boston, MA: Addison-Wesley, 2004.

[3] “XML path language 1.0,” 1999.
[4] C. M. Saracco, “Query DB2 XML data with SQL,” 2006.
[5] J. Kahan and M.-R. Koivunen, “Annotea: an open RDF infrastructure

for shared web annotations,” in WWW ’01: Proceedings of the 10th
international conference on World Wide Web, (New York, NY, USA),
pp. 623–632, ACM Press, 2001.

[6] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “DBNotes: a PostIt
system for relational databases based on provenance,” in SIGMOD ’05:
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, (New York, NY, USA), pp. 942–944, ACM Press,
2005.

[7] F. Geerts, A. Kementsietsidis, and D. Milano, “Mondrian: Annotating
and querying databases through colors and blocks,” in ICDE ’06:
Proceedings of the 22nd International Conference on Data Engineering
(ICDE’06), (Washington, DC, USA), p. 82, IEEE Computer Society,
2006.

[8] L. Delcambre, D. Maier, S. Bowers, L. Deng, M. Weaver, P. Gorman, J.
Ash, M. Lavelle, and J. A. Lyman, “Bundles in captivity: An application
of superimposed information,” tech. rep., 2000.

[9] E. Egyed-Szigmond, Y. Pri, A. Mille, and J. Pinon, “A graph-based
audiovisual document annotation and browsing system,” in RIAO
(CAIR), April 2000.

[10] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “An
annotation management system for relational databases,” VLDB, 2004.

[11] IBM, “DB2 9 for Linux UNIX and Windows.”
[12] Oracle, “Oracle Database.”
[13] Microsoft, “Microsoft SQL Server.”
[14] K. B. Sall, XML Family of Specifications A Practical Guide. Boston

MA: Addison Wesley, 2002.
[15] M. Bhadkamkar, V. Hristidis, and R. Rangaswami, “Efficient native

XML storage,” tech. rep., Florida International University, April 2005.
[16] A. H. Al-Azzawe, “IBM video online for e-business - DB2 inbound

XML data fragments,” http://www-
106.ibm.com/developerworks/db2/library, June 2004.

[17] N. Bhatnagar, “Data annotation models and annotation query language,”
Master’s thesis, California State University, Chico, May 2006.

[18] “Recommendation, XML linking language 1.0,” 2001.
[19] “Working draft, XML inclusions (XInclude) 1.0,” 2003.

Neerja Bhatnagar received M.S. in Computer Science from California State
University, Chico in 2006. She is currently pursuing PhD in Computer
Science at University of California, Santa Cruz.
Dr. Ben A. Juliano is a Computer Science Associate Professor at California
State University, Chico. He is the director of the Institute for Research in
Intelligent Systems (IRIS) and the co-director of the Intelligent Systems
Laboratory (ISL). IRIS and ISL focus on intelligent systems research that
pertains to autonomous search and rescue. He teaches Theory of Computing,
Data Mining, Fuzzy Logic, and Computer Architecture, among others.
Dr. Renee S. Renner is a Computer Science Associate Professor at
California State University, Chico, focuses her research efforts in ISL/IRIS
labs, and towards the development of a large-scale multi-agent systems tool
for soft computing, complexity analysis, and intelligent systems applications.
She teaches courses on Robotics, Artificial Intelligence, Expert Systems, and
Databases, among others.

