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Analytical Solutions for Corotational Maxwell Model
Fluid Arising in Wire Coating inside a Canonical Die
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Abstract—The present paper applies the optimal homotopy
perturbation method (OHPM) and the optimal homotopy asymptotic
method (OHAM) introduced recently to obtain analytic
approximations of the non-linear equations modeling the flow of
polymer in case of wire coating of a corotational Maxwell fluid.
Expression for the velocity field is obtained in non-dimensional form.
Comparison of the results obtained by the two methods at different
values of non-dimensional parameter Aio, reveal that the OHPM is
more effective and easy to use. The OHPM solution can be improved
even working in the same order of approximation depends on the
choices of the auxiliary functions.

Keywords—Wire coating die, Corotational Maxwell model,
optimal homotopy asymptotic method, optimal homotopy
perturbation method.

I. INTRODUCTION

IRE coating is often used for the purpose of high and

low voltage and protection against corrosion. The wire
coating is performed by pulling the wire in the molten
polymer inside the coating unit. Due to the shear stress
between the wire and the molten polymer the wire is coated.
The thickness of the coated wire is same as the thickness of
the canonical die at the exit.

Akhter et al. [1], [2] investigated wire coating analysis
using inelastic power-law fluid and studied the effect of the
change in viscosity on various parameters. Siddiqui et al. [3]
studied the wire coating in cylindrical die by assuming that the
coating materials obeys the constitutive equation of a third
grade fluid. Fenner et al. [4] carried out an analysis of the flow
in the tapering section of a pressure type die.

The exact solution of the Navier-Stokes equations is
notoriously difficult to find because the non-linearity existing
in these equations due to the convection term. To handle the
non-linearity, different approximate analytical and numerical
methods have been widely used in fluid mechanics and
engineering. The perturbation methods are the most widely
applied analytic tools for non-linear problems to obtain
approximate solutions of these equations. Most of the
perturbation methods require the presence of a small or large
parameter in that equation, but not every equation has a small
or large parameter. Thereforei there is a strong need to
develop new methods [5]. Recently, Marinca and Herisanu
developed a new method known as OHAM. OHAM combines
the He’s homotopy perturbation method (HPM) and the
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method of least squares to optimally identify the unknown
constants of the series solutions [6]. They proved this new
technique to be a reliable approach to strongly nonlinear
problems. In a series of papers by Marinca et al. [7]-[9], Islam
et al. [10] and Javed et al. [11] have not only applied this
method successfully to obtain the solution to some important
problems in engineering and fluid mechanics, but also they
have shown that this method is a more powerful tool than
other perturbation tools for non linear problems. More
recently, Marinca and Herisanu introduced the OHPM [12],
[13], which provides a convenient way to control the
convergence of the solutions to strongly non-linear differential
equations. In this method the non-linear term is expanded in a
series with respect to the parameter p and a number of
auxiliary functions are introduced that depend on variable
I' and some constants.

Polymer liquids consist of networks of molecular chains
with a large range of length scales and therefore relaxation
times. Also for short time scales (high frequencies, high
deformation rates) the Maxwell model [14], [15] shows an
elastic behavior, and therefore, the present analysis aims at
finding the effects of relaxation times on the steady flow
created by dragging the wire in the molten polymer (Maxwell
[J1quid) inside the die. Such work seems to be important and
useful because attention has hardly been given to the study of
corotational Maxwell fluid. Also, some non-Newtonian
(second/third grades) models take into account normal stress
differences and shear thinning/thickening effects, but lack
other features such as stress relaxation.

To the authors’ knowledge, no previous investigation has
been reported to develop the governing equations for steady
incompressible flow of a corotational Maxwell model fluid in
case of wire coating. In this work, it is intended to construct
the equations for an incompressible flow corotational Maxwell
model. The non-linear differential equations are made
dimensionless and solved for velocity field by means of
OHAM and OHPM.

1I. BASIC GOVERNING EQUATIONS

The basic equations governing the flow of an
incompressible corotational Maxwell model fluid neglecting
the thermal effects are:

Vou=0, (1

Du
— =V.T+pf, 2
P Dt P
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where U is the velocity vector, p is the constant density, f is

the body force, T is the Cauchy stress tensor, and D/Dt

denote the material derivative.
The Cauchy stress tensor T is defined as:

T=-pI+8S, 3)

where P is the dynamic pressure, I course is the identity

tensor, and S is the shear stress tensor.
The constitutive equation for corotational Maxwell fluid
[14], [15] is:

v
S+AS+%A1(AIS+SA1)=770A1, “

in which 4, is the relaxation time, 77, is the coefficient of
viscosity of the fluid, the line kinematic tensors A, and the

upper contra-variant convected derivative designed by V over
S are defined by:

v
A1=LT+L,S:%—[LTS+SL] (5)

where L is the gradient of velocity vector u, and the

superscript T denotes the transpose of the matrix.

IITI. FORMULATION OF THE PROBLEM
Consider an incompressible corotational Maxwell model

fluid flowing in a stationary canonical die of radius Rd . The

wire of radius R is translating with velocity U in a die to

W w

the direction of the fluid flow. The wire and die are concentric
and the coordinate system is chosen at the centre of the wire,
in which I' is taken perpendicular to the direction of fluid

flow, and Z is taken in the direction of fluid flow.

Idetal wire

el polymer

Fig. 1 Schematic profile of wire coating in a pressure type die

Boundary conditions are:

wW(R,)=U,.andw(R;)=0, (6)

Since the flow is axisymmetric and unidirectional, so the
velocity field is defined as:

u=[0,0,w(r)].  S=S(r). )

Further, it is assumed that the flow is steady and laminar.
Moreover, the gravitational force is considered to be
negligible.

Under the above consideration of the velocity field, the
continuity equation (1) is satisfied identically, and (4) gives

the non-zero components of the extra stress tensor S as:
dw
Srr+/1lsrzd7:0’ (8)
r

Lis W _y, ©)

S,,+
re 2ledr

1 dw
S, ——AS, — =05 (10)
0z 211 or dl’
dw
S —AS —=0> (1)
z 2’] rz dr
dw
_ g (12)

Substituting the velocity field and (8)-(12) in the equation
of balance of momentum (2) in the absence of body force
takes the form:

op 1d

—=——(rS), (13)

or dr( ")

op _1d,,

Il dr(r Sm), (14)
dw

op_1d| Mg (15)

Assume that there is no pressure gradient along the axial
direction and the flow is only due to drag of wire. Hence (15)

with P _ yields.
oz

d*w dw
r +—
dr? dr

2 2
+ﬂf(d—WJ cj—W—rd Wi_o. (16)
dr dr  dr?

Let’s introduce the following non-dimensional variables
and parameters
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WA
r= ,W—Uw,ﬂm 7(RVZV/UVZV)’

Equations (17) and (7) after dropping the “*” take the
following form:

5—Rd.

N (17)
RW

d’w dw ,(dw) (dw _d’w

— == — || —- =0 (18)

dr2+dr+l‘°(drj{dr rdrzj ’
w(l)=1,andW(5)=0, (19)

The OHAM and the recently introduced method known as
OHPM are used to solve (18) with respect to the boundary
conditions (19) for the velocity field.

IV.OHAM SOLUTION [8]
We construct a homotopy ¢(r,p):Rx[0,1]—»R which

satisfies
(1= PIL(@(r, p)+g(N]= H(PIL(r, p)+ g(r)+ N(g(r, p))]. (20)

with boundary conditions

#(1,p)=1,4(5,p)=0. 1)

Here H(p) is a nonzero auxiliary function for p#0,

H(0)=0 and #(r.p) is an unknown function. The auxiliary
function H ( p) depends either upon some constants [6]-[11]

or upon some functions depending on a physical parameter
[16], [17]. It was shown in the paper [16], [17] that a more
complex function H (p) leads to more accurate results.

We choose the auxiliary function H (p) in the form:
2
H(p)=pC,+p’C,+... (22)

where C,C,,...
In (18) we have

are constants to tackled the solution easily.

*g(r,p) +a¢(r, p)

L[¢(r.p)]=r = S g(n=0 23)

and

N[o(r, p)]=ﬂfo[a¢(r’ p)Ha"’(r’ p)_ oL, p)} 24)

or or or

Substituting (22)-(24) in the homotopy (20) and comparing
the coefficient of P , we obtain the following equations:

Zeroth-order problem

2
pror AW AW, (25)
dr dr

subject to the boundary conditions
w, (1) =1, w,(5)=0. (26)

First-order problem

2 3
ol d v;/1 L dw dw, ¢, dw, _Cl%o[dwoj
dr dr dr dr dr @7)
d*w d*w dw, )’ dw,
—r—2-rC,—2+rC —0 = 0=9
dr? " dr? * 1/1“’( dr j dr?

subject to boundary conditions

w, (1)=0, W, (5)=0. (28)
Second-order problem
pror i O o B e (M) ot o)
+2rcl4o%%%- %-rq ddzr"zv' + rclﬂw(%j ddzr"zvl -0
subject to boundary conditions
W, (1)=0, w,(5)=0. (30)

The corresponding solutions of (25), (27) and (29) together
with the boundary conditions (26), (28) and (30) are given as
follows:

wy(r)=1-22", (1)

-S4 2]}

wz(r):ﬁ[[c, +C} +cz(1—l%]j2(1n5)“ /1,0[1—%2]
,[2(1115)3 In r(l+C])+[In571nrf(h;ff—hr‘—zrn?,clﬂ_m]c‘jm(lféj

atmoyesi[1- - ef1- L))

The second order approximation is:

(33)

w(r) =w, (r)+ w, (r)+ w, (1) (34)
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Therefore, the second order approximate solution to
velocity distribution is given by:

o 11:5 wanll-)-mal-7))
(o) [(C S| “1“*2]]”'“5”0[‘*%]
—(2(1n5)31nr(1+c) [ms Inr— ('25 hrlr]]”'”*J ,;ﬂ,[l_%J
-

where C; and C; are constants to be determined by using the
method of least square [7]-[12]:

(33)

V. OHPM SoOLUTION [13]

The OHPM is a combination of the classical homotopy
concept and the perturbation technique [18], [19]. This method
is fast convergence for both large and small parameters. The
detail analyses are given in references [12], [13]. According to
this technique the zeroth, first and second order problems are
given as [12], [13]:

Zeroth-order problem

p’: L(w,)—L(uy)+g(r)=0,reQ, B(WO,%):O, rer, (360)

subject to the boundary conditions

(37
First-order problem
P+ L(W)+L(1)+A, (D) G(r, W, ) =0 T <0 B[w%}o, rer, 39

subject to boundary conditions

w (1)=0. w,(5)=0. (39)

Second-order problem

P L(W,)+ A (r.D; ) WG, (r.wWo, Wy, W)+ A, (. D, WG, (1., ;. W)
+A, (r,D)W'G,, (1, Wy, Wy, Wy ) = O,reQ,B( aﬂNj 0,rerl,
or
(40)
subject to boundary conditions

w, (1)=0, w,(5)=0, (41)

where L is the linear operator and g(r) is the known analytic
function given in (23), N (w)=G(r,w,w,w") is the non-linear

operator given in (24) for this problem, B is a boundary

operator, w(r) is the unknown function, I' denotes the spatial

independent variable, I" is the boundary of the domain €,

Aij(rsDk)7i9j:07172>"'7 are the auxiliary functions that
depend on the wvariable [Iand some constants
D,D,,D,.D,, .. and g, -C g - 5 _C

w’ ow' ow"

The auxiliary function Ay (r, Dk),can be constant, linear,

quadratic, cubic or higher order polynomial [13], [14]. For
higher degree polynomial the accuracy of this technique is
more reliable than the lower degree polynomial for the same
order problem. For the problem under discussion we take

Ao(r.D))=1> A, (r,D,)=D,+D,r>and A, (r,D;)=D, +D,r -
The initial approximation is:

_Inr. 40
0( )_1 Ins ( )

In view of all these, the corresponding solutions of (36),

(38) and (40) together with the boundary conditions (39)-(41)
are given as:

(43)

wl(r)=—2(f°5)3(1—rlzj—;‘;(1—;zjj, (44)
W (r) =

1445*r* (In5)’
+45D, 45 InS(8* s —r'Inr—5** (ns~Inr))

2
[9054r2D,/1,20 n5(8*Ind—r’n r)(l -%)

+3605°r°D, A (rInr —5Ins-5r(Ins—In r))(l—éj
+800rD, 4y Inr (8’ 5~ Inr —&°r* (In5—Inr))
+185°r°D, A5 (1 Inr =5* In 6= °r* (In 5 —1In r))[l—éj
~1085'°D,2, In§(6 IS~ In r)(l—%)
+4325°r°D, A InS(Sns—rInr —or (Ins—Inr))
+725°CD, Ay (rinr =85 —r5(Ins—In r))[l—%D

(45)

The second order approximation is obtained in the
following way:
w(r)=w,(r)+ w(r)+ w,(r) (46)

where D,D,,D, and p, are constants to be determined by

using the method of least square [13], [14].
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Fig. 2 Dimensionless velocity profile for 4, =0.01, and
€, =-1.01917329, C, =0.00003253, D, =2.413436440,
D, =—1.4984336291, D, =41.91954583, D, =—2.054242202
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Fig. 3 Dimensionless velocity profile for 4, =0.1, and
C, =-1.2217968, C,=0.00773987, D, =16.80201139,
D, =-28.34023866, D; =56.38069670, D, =-38.58265248
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Fig. 4 Dimensionless velocity profile for 3 =5, and
C, =0.10942059, C, =0.04760301, D, =0.13671992109,
D, =—0.3987985838, D; =0.57753818, D, =-0.730704536
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Fig. 5 Dimensionless velocity profile for 4, =10, and
C, =0.05453425, C, =0.0132347, D, =0.1367199210,
D, =-0.398798583, D, =0.577538188, D, =-0.7307045360

VI.RESULTS AND DISCUSSIONS

In the present paper, we have used two methods namely, the
OHAM proposed by Herisanu et al. [7], [17] and OHPM
proposed by Marinca et al. [12], [13] to find the solution of the
flow problem governed by (18) subject to (19). The two
solutions are in complete agreement for small values of the
relaxation parameter (see Figs. 2 and 3), but there is little
difference for large values of this parameter (see Figs. 4 and
5). Here, it is observed that with increase of relaxation
parameter, the non-Newtonian effect increases in the melt
polymer. The origin of OHPM is the He’s HPM, but the
construction of the homotopy is different, especially as regards

to the auxiliary functions A =(r,Dk), involving the

presence of some parameters D,,D,,D;,D;, ..., that ensure a

rapid convergence of the solution when they are optimally
determined. For the same order of approximation, OHPM
gives better results than OHAM depends on the choices of the
auxiliary functions. Moreover, the key attribute of the OHPM
is that it provides a simple and rigorous approach to control
and adjust the convergence of a solution through the
parameters D, , which are optimally determined.
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