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Abstract—In this article an isotropic linear elastic half-space with 

a cylindrical cavity of finite length is considered to be under the 
effect of a ring shape time-harmonic torsion force applied at an 
arbitrary depth on the surface of the cavity. The equation of 
equilibrium has been written in a cylindrical coordinate system. By 
means of Fourier cosine integral transform, the non-zero 
displacement component is obtained in the transformed domain. With 
the aid of the inversion theorem of the Fourier cosine integral 
transform, the displacement is obtained in the real domain. With the 
aid of boundary conditions, the involved boundary value problem for 
the fundamental solution is reduced to a generalized Cauchy singular 
integral equation. Integral representation of the stress and 
displacement are obtained, and it is shown that their degenerated 
form to the static problem coincides with existing solutions in the 
literature. 
 

Keywords—Cosine transform, Half space, Isotropic, Singular 
integral equation, Torsion 

I. INTRODUCTION  

NVESTIGATING half-spaces containing cylindrical 
cavities  has been one of the great interests to many 

researchers. Analytical inspection of the dynamic interaction 
of piles with torsion moments and the pile cavities in a half-
space is very important in many engineering structures such as 
wharves and other heavy structures.  Pertaining to problems of 
this type, some approximate results were first obtained by for 
the case of hydrostatic pressure acting on an interval of an 
infinite cylindrical cavity extending through an infinite solid 
[1]. Treated the dynamic problem of a suddenly applied 
pressure over a finite interval of the cavity [2]. Because of the 
complexities encountered in the problem, the numerical results 
were presented only at large distance away from the location 
of pressure. Some interesting problems of determining the 
distribution of stress due to an exterior crack in an isotropic 
infinite elastic medium with a coaxial cylindrical cavity was 
studied by ([3, 4]). The response due to the application of 
static radial pressure and torsional ring load has been given by 
[5]. In addition, he proposed a quadrature method for 
evaluating of the singular solution for concentrated torsional 
and radial ring load acting on the wall of an infinite hole.  

 
Morteza Eskandari-Ghadi. Department of Engineering Science, Faculty of 

Engineering, University of Tehran. P.O.Box 11165-4563, Tehran, Iran 
(phone: +98-21-6111-2171; fax: +98-21-88632423; (e-mail: ghadi@ut.ac.ir)  

Mohammadreza Mahmoodian. Department of Civil Engineering, Science 
and Culture University, Tehran, P.O.Box: 13145-871, Tehran, Iran (e-mail: 
mohammadreza.mahmoudian@gmail.com)               

  

 
Parnes also considered the steady-state problem of the 

effect of a torsional line load, with a harmonic time 
dependency, applied on the surface of a bore [6]. In his paper, 
he compared the degenerated of his dynamic results with the 
static case.  

The solutions of the generalized problem associated with a 
finite cylindrical cavity in a half-space would be of even 
greater engineering interest and challenge. It has been found 
that the additional stiffness of the medium below the bottom 
of the hole can apparently lead to a noticeable change of the 
response in the upper region. [7] investigated the problem of 
torsional shear traction acting on an open finite cylindrical 
cavity in an isotropic half-space in a rigorous manner, and 
found the corresponding fundamental solution.  They also 
mathematically examined the resulting load-induced as well as 
shape-induced singularities in the response. 

In the present paper, which is an extension of the work done 
in [7] for dynamic case, the elastodynamic response of an 
isotropic half-space containing a finite open cylindrical cavity 
under a torsional ring load at an arbitrary depth is considered. 
Owing to the particular topology of the domain, it is 
convenient to consider the response of the elastic solid in two 
separate regions, which have some continuity conditions. By 
considering the equation of motion in each region and with the 
aid of Fourier cosine integral transform, the non-zero 
displacement component is obtained in the transformed 
domain. By means of the inversion theorem for Fourier cosine 
integral transform and the displacement compatibility 
conditions, the governing equation is reduced to a generalized 
Cauchy singular integral equation. The equation is then 
investigated analytically and solved numerically. Integral 
representation of the dynamic stress and displacement are 
obtained and shown to be degenerated to known existing 
solutions in the literature.  

II.  BOUNDARY VALUE PROBLEM AND THE SOLUTION  

An isotropic homogeneous linear elastic half-space is 
considered in cylindrical coordinate system( , , )r zθ , with a 

depth-wise z-axis. A circular cylindrical cavity with radius 
0a >  and length 0l > , as shown in Fig. 1, is assumed to be in 

the medium. A known time-harmonic shear stress, 
* ( , ) i t

r z e ω
θτ µτ ω= , is considered to be applied on the wall of 

the cavity. Because of torsional symmetry, the displacement 
vector has only one non-vanishing component, which is  
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( , , )u u r z tθ = . We follow the research done by Pak and 

Abedzadeh [7]. So that it is convenient to define two different 
regions as indicated in Fig. 1 and find the response of each 
region with satisfying the boundary conditions and continuity 
conditions, as well.  

 

 
Fig. 1 A cylindrical cavity in an isotropic half-space 

 
These two regions are defined as 
 

{ }Region 1 ( , , ) , 0 2 , 0r z r a zθ θ π= > < < >   (1) 

{ }Region 2 ( , , ) , 0 2 ,r z r a z lθ θ π= < < < >  (2) 

 
In the absence of body force, the non-zero time-harmonic 

equation of motion in terms of displacement is written in the 
form of 
 

2 2 2
1 1 1 1

12 2 2 2

1
, , 0

s

u u u u
u r a z

r rr r z C

ω∂ ∂ ∂
+ − + = − > >

∂∂ ∂
  (3) 

in Region 1, and  
2 2 2

2 2 2 2
22 2 2 2

1
, ,

s

u u u u
u r a z l

r rr r z C

ω∂ ∂ ∂
+ − + = − < >

∂∂ ∂
  (4) 

 

in Region 2. In the equations (3) and (4), /sC µ ρ=  is the 

shear wave velocity, ρ  the material density, µ   the shear 

modulus of the material, and ω  is the frequency of torsional 
excitation. The stress-displacement relations are [8] 
 

( ) ( ),r

u u u
r

r r r rθτ µ µ∂ ∂= − =
∂ ∂

  (5) 

( ).z

u

zθτ µ ∂=
∂

  (6) 

 
The stress and displacement boundary conditions for the 

problem may be written as 
 

*
1( , , ) ( , ), 0r a z z z lθτ ω µτ ω= < <   (7) 

1( ,0, ) 0,z r r aθτ ω = >   (8) 

2 ( , , ) 0,z r l r aθτ ω = <   (9) 

1 ( ,0, ) 0,
u

r r a
z

ω∂
= >

∂
  (10) 

2 ( , , ) 0,
u

r l r a
z

ω∂
= <

∂
  (11) 

where * ( , )zτ ω  is a prescribed non-dimensional function. 

Moreover, the radiation condition is given as 
 

2 2( , , ) 0, ( ) . 1, 2qu r z r z qω → + → ∞ =   (12) 

 
To ensure that the solid is continuous across the common 

boundary of  Region 1 and Region 2, it is sufficient to 
stipulate the compatibility conditions as 
 

1 2( , , ) ( , , ),r ra z a z z lθ θτ ω τ ω= ≥   (13) 

1 2( , , ) ( , , ).
u u

a z a z z l
z z

ω ω∂ ∂
= ≥

∂ ∂  
 (14) 

 
It is convenient to use an integral transform to solve the 

partial differential equations (3) and (4). With the aid of depth-
wise Fourier cosine transforms defined as [9] 
 

1 1
0

2
( , , ) ( , , ) cos( ) ,f r f r z z dzξ ω ω ξ

π
∞

= ∫ɶ   (15) 

in Region 1, and 

( )2 2

2
, , ( , , ) cos ( ) ,

l
f r f r z l z l dzξ ω ω ξ

π
∞

= − −∫ɶ   (16) 

 
in Region 2, the partial differential equations (3) and (4) lead 
to  
  

2
2

2 2

1 1
( ) 0. 1, 2q q

q

d u du
u q

r drdr r
λ+ − + = =

ɶ ɶ
ɶ   (17) 

 
Considering the boundary conditions (10) and (11), they 

can be written as 
 
2

2 2

1 1
(1 ) 0, 1,2q q

q

d u du
u q

dd ζ ζζ ζ
+ − + = =

ɶ ɶ
ɶ

 
 (18) 

 

where 2 2 2 2( ) / sCλ ω ξ ω= − , rζ λ= , and ( , , )qu r ξ ωɶ  for 

1 and 2q =  are the Fourier cosine transforms of  ( , , )qu r z ω
 

as defined in (15) and (16). The solutions of equation (18) is 
 

1 1( , , ) ( , ) ( ) ( , ) ( ), 1,2q q qu r A K r B I r qξ ω ξ ω λ ξ ω λ= + =ɶ
 

 (19) 

 
where 1( )I ζ and 1( )K ζ  are the first order modified Bessel 

functions of the first and second kind, respectively. 
To satisfy the radiation condition (12), 1( , )B ξ ω  should be 

identically zero as 1( )I rλ  is unbounded when r  approaches 

infinity. In addition, 2 ( , )A ξ ω  must be zero for the 

displacement 2 ( , , )u r z ωɶ  in the Region 2 to be bounded at 

0r = . 

l

x

z

y

2a

II

I

u

r

τ(z)e
0

iϖt
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Applying the inversion theorem for the Fourier cosine 
transforms , the displacement ( , , )qu r z ω  for 1 and 2q =   can 

be written as  
 

1 1 1
0

( , , ) ( , ) ( )cos( ) , , 0u r z A K r z d r a zω ξ ω λ ξ ξ
∞

= ≥ ≥∫   (20) 

2 2 1
0

( , , ) ( , ) ( )cos ( ) . ,u r z B I r z l d r a z lω ξ ω λ ξ ξ
∞

= − ≤ ≥∫  (21) 

 
Based on the continuity conditions (13) and (14) on the 

cylindrical boundary r a= , one may write the shear stress 

1rθτ   in the  Region 1 as 

 

1
1( , , ) lim ( ) ( , )r

r a

u
r a z r z

r rθτ ω µ µ χ ω
+

+

→

∂= = =
∂

  (22) 

 

where *( , ) ( , )z zχ ω τ ω=   for 0 z l< <   and ( , ) ( , )z zχ ω τ ω=   

for  z l≥ . Moreover, the function ( , )zτ ω  is unknown, which 

is determined from the solution and * ( , )zτ ω  is a known 

boundary function. Similarly, 2rθτ  at r a=  in Region 2 is 

written as 
 

2
2 ( , , ) lim ( ) ( , ),r

r a

u
r a z r z z l

r rθτ ω µ µτ ω
−

−

→

∂= = = ≥
∂  

 (23) 

 
Substituting the displacements from (20) and (21), into (22) 

and (23), respectively and using the inverse theorem for 
Fourier cosine transform, one may find 
 

1
0

2

2
( , ) ( , )cos( ) ,

( )
A z z dz

K a
ξ ω χ ω ξ

π λ λ
∞−= ∫   (24) 

( )2
2

2
( , ) ( , )cos ( ) ,

l
B z z l dz

I a
ξ ω χ ω ξ

π λ λ
∞

= −∫
 

 (25) 

 
By virtue of (20), (21), (24) and (25) it can be shown that 
 

1

0

1
( , , ) [ ( , , )

( , , )] ( , ) , , 0

k

k

u
r z r z

z
r z d r a z

ω ϕ ζ ω
π
ϕ ζ ω χ ζ ω ζ

∞∂
= −

∂
+ + > ≥
∫   (26) 

2 1
( , , ) [ ( , , )

( , 2 , )] ( , ) , ,

I
l

I

u
r z r z

z
r z l d r a z l

ω ϕ ζ ω
π

ϕ ζ ω χ ζ ω ζ

∞∂ = − −
∂

+ + − < ≥

∫   (27) 

 
where ( , , )k r dϕ ω  and ( , , )I r dϕ ω  define as follow 

 

1

0
2

( )
( , , ) sin( ) ,

( )k

K r
r d d d

K a

ξ λϕ ω ξ ξ
λ λ

∞
= ∫

 
 (28) 

1

0
2

( )
( , , ) sin( ) .

( )I

I r
r d d d

I a

ξ λϕ ω ξ ξ
λ λ

∞
= ∫   (29) 

 

Then, the continuity condition (14) can be stated in the form 
of 
 

0

*

( ( , , ) ( , 2 , ))

( , ) ( ( , , )

( , , )) ( , ) ( ( , , )

( , , )) ( , ) .

I I
l

k
l

l

k k

k

a z a z l

d a z

a z d a z

a z d z l

ϕ ζ ω ϕ ζ ω

τ ζ ω ζ ϕ ζ ω

ϕ ζ ω τ ζ ω ζ ϕ ζ ω

ϕ ζ ω τ ζ ω ζ

∞
− −

∞
+

+ +

+

− + + −

× + −

+ + = − −

+ + ≥

∫

∫

∫

  (30) 

 
Equation (30) is a single integral equation for determining 

( , )τ ζ ω . 

III.  INTEGRAL EQUATION 

The equation (30) is a generalized Cauchy singular integral 
equation [10, 11]. The solution of several problems of 
mathematical physics and specialty plane elasticity and fluid 
mechanics can be reduced to the solution of Cauchy type 
singular integral equation. For further analysis of the integral 
equations, it is useful to consider the equations (28) and (29). 
The equation (30) can be written as 
 

ˆ

1 1ˆ

2 2

2 1 1 ˆ ˆˆ( , )
ˆ ˆ ˆˆˆ ˆˆ 2

ˆˆ ˆˆ ˆ[ ( , ) ( 2 , )

ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ( , ) ( , )] ( , ) ( , ),

l

l

d
z zz l

k z k z l

k z k z d f z z l

τ ζ ω ζ
ζ ζζ

ζ ω ζ ω

ζ ω ζ ω τ ζ ω ζ ω

∞

∞

 
− − 

− ++ −  

+ − − + −

+ − − + = ≥

∫

∫ (31) 

 
where 

1
1

0
2

ˆ ˆ( ) ˆ ˆ( , ) ( 1)sin( ) ,
ˆ ˆ( )

I
k d d d

I

ξ λω ξ ξ
λ λ

∞
= −∫  (32) 

1
2

0
2

ˆ ˆ( ) ˆ ˆ( , ) ( 1)sin( ) ,
ˆ ˆ( )

K
k d d d

K

ξ λω ξ ξ
λ λ

∞
= −∫   (33) 

ˆ

2 2
0

*

1 1ˆ ˆˆ ˆ ˆ( , ) [ ( , ) ( , ) ]
ˆ ˆˆ ˆ

ˆ ˆˆ ( , )

l

f z k z k z
z z

d

ω ζ ω ζ ω
ζ ζ

τ ζ ω ζ

= − + + + +
− +

×

∫
 (34) 

with 

ˆ ˆ ˆ ˆˆ , , , , ,
z l

z l a a
a a a

ζζ ξ ξ λ λ= = = = =  (35) 

 

where ˆ ˆ( , ) ( , ),z zτ ω τ ω= 2 2
0

ˆ ˆλ ξ ω= −  and 0
s

a

C

ωω =  is non-

dimension frequency. 
 

The solution of the singular integral equation (31) is the 
unknown shear stress distribution at r a=  over z l≥ . The 

kernel 2 1
ˆ ˆˆˆ ˆ( ) ( 2 )z z lζ ζ

−
− + −

 is a generalized Cauchy kernel [11]. In 

this kernel, the terms 2
ˆ ˆ( )zζ −

  and 1
ˆˆ ˆ( 2 )z lζ + −

  become 
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unbounded as either ̂ζ  approaches ̂z   or both ζ̂   and ẑ  

approach the end point of the cavity, l̂ .  

IV.   NUMERICAL SOLUTION OF SINGULAR INTEGRAL 

EQUATION  

Because of complex kernel function exists in the integrand 
of the integral introduced in previous section, the integral 
cannot be determined analytically, and thus a numerical 
procedure is needed, which is presented in this section. To this 
end, it is convenient to write the integral equation (31) as 
 

1

0

ˆˆ( , ) ( / , ) ( , ), 0 1G x v l v dv g x vτ ω ω= ≤ ≤∫   (36) 

 
where 
 

1 12

2 2

2 2 1 1
( , ) [ ]

2
ˆ ˆ ˆ ˆ ˆ

ˆ( )[ ( , ) ( 2 , )

ˆ ˆ ˆ ˆ
( , ) ( , )],

x
G x v

x v v x vx x v

l l l l l
k k l

v x v xv

l l l l
k k

v x v x

ω ω

ω ω

−= − +
− + − +

+ − − + −

+ − − +

  (37) 

 

and ˆ ˆˆ ˆ/ , /v l x l zζ= = and ˆ( , ) ( / , )g x f l xω ω= . For 

normalizing the variable, it is convenient to consider an even 

extension of  ˆˆ( / , )l vτ ω  with respect to the origin so that the 

limits of integration in (36) changes to the symmetric interval 
of ( 1,1)− , which results in 

 
1

1

1 ˆˆ( , ) ( / , ) ( , ), 1 1
2

G x v l v dv g x xτ ω ω
−

= − ≤ ≤∫   (38) 

 
In recognition of the singular behavior of  ̂( , )zτ ω it is useful 

to separate the regular and singular part of the unknown 
function and by means of two sectionally analytic function 

which are statement in [7], ˆˆ( / , )l xτ ω  is expressed as [7, 11] 

 
1
32ˆˆ( / , ) ( , ) / (1 ) ,l x T x xτ ω ω= −   (39) 

 
where ( , )T x ω  is a regular and analytic unknown function 

with respect tox , which of course is bounded in the interval 

1 1x− < <  , and 
1
32(1 )x

−−  is considered as a weighting 

function. Since the weighting function is the same as 

weighting function for Jacobi polynomials ( , ) ( )nP xγ β  for 

1

3
γ β= =  [12], one may use a numerical procedure based on 

Gauss-Jacobi integration formula to solve the integral equation 
(36). In the term of (39), (38) can be written as [11]: 
 

1

2 1 3
1

( , )1
( , ) ( , ). 1 1

2 (1 )

T v
G x v dv g x x

v

ω
ω

−
= − ≤ ≤

−∫   (40) 

 
With the aid of the Gauss-Jacobi numerical integration rule 
and using collocation method [11], (40) can be reduced to 
 

2

1

1
( , ) ( , ) ( , ),

2

1,...,2 1

N

k j k k j

k

W G x v T v g x

j N

ω ω
=

=

= −

∑   (41) 

 
where 
 

( ) ( ), ,
2 1 2

(4 2) 2

(2 1)!(2 1) ( ) ( ) /

(2 1) (2 1)

(2 1)

k

N k N k

N
W

N N P v dP v dv

N N

N

γ β

γ β γ β

γ β
γ β

γ β
γ β

+

+

− + + +=
+ + + +

Γ + + Γ + +×
Γ + + +

  (42) 

 
and jx , kv  are the roots of  Jacobi’s functions  

 
(2 3,2 3)

2 1 ( ) 0, 1,..., 2 1N jP x j N− = = −   (43) 

( 1 3, 1 3)
2 ( ) 0, 1,...,2N kP v k N− − = =

 
 (44) 

 
respectively. As the roots jx  and kv  are symmetric with 

respect to the origin, (41) can be reduced to a simpler system 
of equations as 
 

1

( , ) ( , ) ( , ). 1,...,
N

k j k k j

k

W G x v T v g x j Nω ω
=

= =∑   (45) 

 
Equation (45) provides n  equations to determine n  

unknowns ( , )kT v ω  at n  collocation points , 1 tokv k n= . 

The last equation in (45) involves the root 0Nx = , which 

corresponds to infinity for z . 
With the relationship between ( , )T x ω and ˆ ˆ( , )zτ ω , and the 

representations (20), (21), (24) and (25), the response of the 

half-space to an arbitrary distributed load, * ( , )zτ ω , can be 

determined completely. For many applications, the 
displacement and shear stress variation along the cavity wall 
are of particular interest. To determine these two functions, we 
recall equation (20), which can be written at r a=   as 
 

2ˆ

2

ˆˆ ˆ( , , ) { ( , ) [ ( , )

ˆ ˆ ˆˆˆ( , )] ( , ) }

l

a
u a z Q z q z

q z d

ω ω ζ ω
π

ζ ω τ ζ ω ζ

∞
= + +

+ −

∫   (46) 

 
where  
 

1
2

0
2

ˆ( ) ˆ ˆ( , ) cos( )
ˆ ˆ( )

K
q d d d

K

λω ξ ξ
λ λ

∞
= −∫   (47) 
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ˆ
*

2 2
0

ˆ ˆ ˆ ˆˆˆ ˆ ˆ( , ) [ ( , ) ( , )] ( , )
l

Q z q z q z dω ζ ω ζ ω τ ζ ω ζ= + + −∫  
 (48) 

* *ˆ ˆ( , ) ( , )z zτ ω τ ω=   (49) 

 
In terms of the solution ( , )T x ω , one may write (46) as 

 

2
1

2 2

ˆ( , , ) 1
ˆ ˆ{ ( , ) [ ( , )

ˆ ˆ
ˆˆ ˆ( , )]( ) ( , )},

N

k
k k

k

k k

u a z l
Q z W q z

a v

l l
q z T v z l

v v

ω ω ω
π

ω ω

=

= + +

+ − ≤

∑

 

 (50) 

 
which can be computed numerically. With the aid of (26), the 
shear stress ( , , )z a zθτ ω  can be expressed as 

 

ˆ

2 2

( , , ) 1 1 1
ˆ{ ( , ) [

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ( , ) ( , )]

ˆˆ ˆˆ ˆ( , ) }.

z

l

a z
f z

z z

k z k z

d z l

θτ ω ω
µ π ζ ζ

ζ ω ζ ω

τ ζ ω ζ

∞
= + +

− +

+ − + +

× ≤

∫

  (51) 

 
The forgoing representation also translates to 
 

1

2

2 2

( , , ) 1
ˆ{ ( , ) ( , )

ˆ1 1
[

ˆ ˆˆ ˆ/ /

ˆ ˆ
ˆ ˆ( ( , ) ( , ))]}

N
z

k k
k

kk k

k k

a z
f z W T v

l

vv l z v l z

l l
k z k z

v v

θτ ω ω ω
µ π

ω ω

=

= +

× − +
− +

× − + +

∑

  (52) 

V.  ILLUSTRATIVE RESULTS  

The displacement Green’s function for the problem in hand 

is determined by applying torsional shear stress,* ( , )z tτ , on a 

ring on the wall of the cylindrical cavity at an arbitrary depth, 
s  say, 
 

* ( , ) ( ) , 0i tz t a z s e s lωτ δ= − < <   (53) 

 
where ( )xδ  denotes the Dirac-delta function. For the loading 

(53), one finds 
 

2 2

1 1
ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆˆ ˆ
f z k z s k z s

z s z s
ω ω ω= − + + + +

− +  
 (54) 

2 2ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , ).Q z q z s q z sω ω ω= + + −   (55) 

 
The solution presented by Pak and Abedzadeh [7] is used as a 
benchmark, to provide a comparison with the results in this 
paper for the static case. To this end, a cylindrical cavity with 

depth ˆ 2l =  in a half-space is considered. Fig. 2 shows the 
displacement of the wall for different s  evaluated in this study 

and the same results reported by Pak and Abedzadeh [7], 
where an excellent agreement is discovered between two 
solutions. 
 

 
Fig. 2 Comparison of static displacements at  r a=  along depth due 
to ring load in isotropic elastic half-space with Pak and Abedzadeh 

(1992) for  ˆ ˆ2.0, 0.5,1.0 and 1.5l s= =  
The displacement, u, and the stress τ  for different 

dimensionless frequency are illustrated in Figs. 3 and 4, 
respectively. It can be seen from the figures that, the responses 
of the half-space are decisively affected by the frequency of 
excitation. As frequency increase, both the real and imaginary 
parts show more oscillatory variation with the depth. As 
expected the dissipation of the displacement happens in both 
upward and downward direction. From the figures, the 
presence of the singularity in the displacement field due to the 
torsional ring load is apparent. In addition, it can be easily 
deduced from (51) that the shear distribution has a load 

induced singularity at z s=  of the order 1( )z s −−  and shape 

induced singularity at the bottom of the hole at z l=  of the 

order 
1
3z l

−− . 

 
Fig. 3 Real and imaginary parts of displacement at r a=   along 

depth for isotropic half-space with different dimensionless frequency 

for  ˆ ˆ2.0 and 1.0l s= =   
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Fig. 4 Real and imaginary parts of shear stress at r a=  along depth 
for isotropic half-space with different dimensionless frequency for 

ˆ ˆ2.0 and 1.0l s= =     

VI.  CONCLUSION  

An isotropic half-space containing an open cylindrical 
cavity of finite length has been considered to be under the 
effect of a time-harmonic torsion force applied on the surface 
of the cavity. Applying cosine transforms, the boundary value 
problem for the fundamental solution has reduced to a 
generalized Cauchy singular integral equation. The obtained 
Cauchy integral equation has numerically been solved with the 
aid of both the Gauss-Jacobi procedure and collocation 
method. Integral representations for the stress and 
displacement have been obtained, and it has been shown that 
their degenerated form to the static problem is coincide with 
the solutions given by Pak and Abedzadeh (1992). The results 
are numerically evaluated and illustrated. Some singularities 
are observed in the illustrations in both the displacement and 
shear stress fields, which are either load induced or shape 
induced singularities. 
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