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Analytical solution of Gas Flow Through a
Micro-Nano Porous Media by Homotopy

Perturbation method
Jamal Amani Rad, Kourosh Parand

Abstract—In this paper, we have applied the homotopy perturba-
tion method (HPM) for obtaining the analytical solution of unsteady
flow of gas through a porous medium and we have also compared the
findings of this research with some other analytical results. Results
showed a very good agreement between results of HPM and the
numerical solutions of the problem rather than other analytical solu-
tions which have previously been applied. The results of homotopy
perturbation method are of high accuracy and the method is very
effective and succinct.

Keywords—Unsteady gas equation, Homotopy perturbation
method(HPM), Porous medium, Nonlinear ODE

I. INTRODUCTION

THE study of analytical solutions of differential equa-
tions (DEs) plays an important role in mathematical

physics, engineering and the other sciences. In the past several
decades, various methods for obtaining solutions of DEs have
been presented, such as, Adomian decomposition method [1],
[2], Homotopy perturbation method [3], variational iteration
method [4], exp-function method [5], [6], [7] and so on.

Homotopy perturbation method (HPM) was established by
Ji-Huan He in 1999 [3] and was further developed and
improved by He [8], [9], [10], [11]. In this method, the solution
is considered as the sum of an infinite series, which converges
rapidly to accurate solutions. Using the homotopy technique
in topology, a homotopy is constructed with an embedding
parameter 0 ≤ p ≤ 1, which is considered as a small
parameter. The method has been used by many authors to
handle a wide variety of scientific and engineering applications
to solve various functional equations. Considerable research
work has been recently conducted on applying this method to
a class of linear and non-linear equations. This method was
then used for different problems by many others. For example,
Abbasbandy [12], [13] used it for Laplace transform, Siddiqui
et al. [14], [15] applied this method for solving non-linear
problems involving non-Newtonian fuids, Cveticanin [16] ap-
plied this method on pure non-linear differential equations,
Ariel et al. [17] employed this method for axisymmetric flow
over a stretching sheet, Ganji et al. [18] to applied this method
for non-linear systems of reaction-diffusion equations. It can
be said that He’s homotopy perturbation method is a universal
approach and is able to solve various kinds of nonlinear
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functional equations. For example, it was applied to nonlinear
Schrödinger equations [19], to nonlinear equations arising in
heat transfer [20],to the quadratic Riccati differential equation
[21], asymptotology [22] and to other equations [21], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32].This method
was applied to nonlinear oscillators with discontinuities [33],
nonlinear wave equations [34], limit cycle and bifurcation of
nonlinear problems [35], and many other subjects [15], [36],
[37], [38], [39].
This paper is arranged as follows:
In section II, we describe Unsteady gas equation. In section
III, we describe the Homotopy perturbation method (HPM). In
section IV we apply HPM for Unsteady gas equation and then
compare our solutions with some well-known results, compar-
isons show that the present solutions are highly accurate. The
conclusions are described in the end.

II. UNSTEADY GAS EQUATION

In the study of the unsteady flow of gas through a semi-
infinite porous medium [40] initially filled with gas at a
uniform pressure P0 ≥ 0, at time t = 0, the pressure at the
outflow face is suddenly reduced from P0 to P1 ≥ 0 (P1 = 0
is the case of diffusion into a vacuum) and is, thereafter,
maintained at this lower pressure. The unsteady isothermal
flow of gas is described by a nonlinear partial differential
equation

∇2(P 2) = 2A
∂P

∂t
, (1)

where the constant A is given by the properties of the medium.
In the one dimensional medium extending from z = 0 to
z = ∞, this reduces to

∂

∂z

(
P
∂P

∂z

)
= A

∂P

∂t
, (2)

with the boundary conditions

P (z, 0) = P0, 0 < z <∞;

P (0, t) = P1(< P0), 0 ≤ t <∞. (3)

To obtain a similarity solution, Authors[42] introduced the new
independent variable

x =
z√
t

(
A

4P0

)1/2

, (4)
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and the dimension-free dependent variable y, defined by

y(x) = α−1

(
1− P 2(z)

P 2
0

)
, (5)

where α = 1− P 2
1

P 2
0

. In terms of the new variable, the problem
takes the form (unsteady gas equation)

y′′(x) +
2x√

(1− α y(x))
y′(x) = 0,

x > 0, 0 ≤ α ≤ 1, (6)

The typical boundary conditions imposed by the physical
properties are

y(0) = 1, y(∞) = 0. (7)

A substantial amount of numerical and analytical work has
been invested so far [40], [45] on this model. The main reason
of this interest is that the approximation can be used for many
engineering purposes. As stated before, the problem (6) was
handled by Kidder [40] where a perturbation technique is
carried out to include terms of the second order. Recently
wazwaz [46] solved this equation nonlinearly by modify-
ing the decomposition method and Padé approximation.Also,
Parand et al. [47], [48] also applied the Lagrangian method,
generalized Laguerre polynomials and Rational Chebyshev
collocation method for solving unsteady gas equation. Aslam
Noor [49] applied the Variational iteration method (VIM) for
solving nonlinear this equation.

III. HE’S HOMOTOPY PERTURBATION METHOD

To illustrate the homotopy perturbation method (HPM),
consider the following general nonlinear differential equation:

A(u) = f(r), r ∈ Ω (8)

with boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ (9)

where A is a general differential operator, B is a boundary
operator, f(r) is a known analytic function, Γ is the boundary
of the domain Ω. The operator A can be decomposed into
a linear part and a nonlinear one, designated as L and N
respectively. Therefore Eq. (8) can be rewritten as follows:

L(u) +N(u) = f(r). (10)

He [10], [11] constructed a homotopy v(r, p) : Ω× [0, 1] → R
which satisfies

H(v, p) = (1− p)(L(v)− L(y0))

+ p(A(v)− f(r)) = 0, (11)

or

H(v, p) = L(v)− L(y0)

+ pL(y0) + p(N(v)− f(r)) = 0, (12)

where r ∈ Ω and p ∈ [0, 1] is an imbedding parameter, y0 is
an initial approximation of Eq. (8). Clearly , we have

H(v, 0) = L(v)− L(y0) = 0,

H(v, 1) = A(v)− f(r) = 0,

and the changing process of p from 0 to 1, is just that of
A(v, p) from L(v)− L(y0) to A(v)− f(r). In topology, this
is called deformation, L(v)−L(y0) and A(v)−f(r) are called
homotopic. If, the embedding parameter p, (0 ≤ p ≤ 1)
is considered as a small parameter, applying the classical
perturbation method [50], we can naturally assume that the
solution of Eqs. (11) and (12) can be given as a power series
in p, i.e.

v = v0 + pv1 + p2v2 + ... , (13)

Setting p = 1 results in the approximate solution of Eq. (8):

u = lim
p→1

v = v0 + v1 + v2 + ... . (14)

The convergence of the series Eq. (14) has been proved in He
[10].

IV. NUMERICAL APPLICATION

In this section, we apply the homotopy perturbation method
for finding the analytical solution of the unsteady flow of
gas through a porous medium. We consider the Unsteady gas
equation

y′′(x) +
2x√

(1− α y(x))
y′(x) = 0,

x > 0, 0 ≤ α ≤ 1, (15)

with the typical boundary conditions

y(0) = 1 , lim
x→∞ y(x) = 0 . (16)

In Eq. (15), we suppose:√
1− α y(x) ≈ 1 +

1

2
αy(x) +

3

8
α2y2(x)

+
5

16
α3y3(x) . (17)

So, we have:

y′′(x) + 2xy′(x)
(
1 +

1

2
αy(x) +

3

8
α2y2(x)

+
5

16
α3y3(x)

)
= 0, (18)

To solve Eq. (18) with initial condition Eq. (16), according
to the homotopy perturbation technique [3], we construct the
following convex homotopy:

(1− p)

(
d2

dx2
v(x) + 2x

d

dx
v(x)− d2

dx2
y0(x)

−2x
d

dx
y0(x)

)
+ p

(
d2

dx2
v(x) + 2x

d

dx
v(x)

+αxv(x)
d

dx
v(x) +

3

4
α2xv2(x)

d

dx
v(x)

+
5

8
α3xv3(x)

d

dx
v(x)

)
= 0 . (19)

Suppose that the solution of Eq. (6) has the form:

v(x) = v0(x) + pv1(x) + p2v2(x) + ... , (20)

where the vi(x), i = 0, 1, 2, ... are functions yet to be
determined. The substitution of Eq. (20) into Eq. (19), and
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comparing coefficients of terms with identical powers of p,
leads to:

p0 :
d2

dx2
v0(x) + 2x

d

dx
v0(x)− d2

dx2
y0(x)

− 2x
d

dx
y0(x) = 0 , (21)

p1 :
d2

dx2
v1(x) + 2x

d

dx
v1(x) +

d2

dx2
y0(x)

+ 2x
d

dx
y0(x) + α x v0(x)

d

dx
v0(x)

+
3

4
α2 x (v0(x))

2 d

dx
v0(x)

+
5

8
α3 x (v0(x))

3 d

dx
v0(x) = 0 , (22)

p2 :
d2

dx2
v2(x) + 2x

d

dx
v2(x) +

3

2
α2xv0(x)

v1(x)
d

dx
v0(x) +

3

4
α2x (v0(x))

2 d

dx
v1(x)

+ αx v1(x)
d

dx
v0(x) + αx v0(x)

d

dx
v1(x)

+
15

8
α3x (v0(x))

2 v1(x)
d

dx
v0(x)

+
5

8
α3x (v0(x))

3 d

dx
v1(x) = 0 , (23)

p3 :
3

2
α2x v0(x) v1(x)

d

dx
v1(x) +

3

4
α2x (v1(x))

2

d

dx
v0(x) +

3

2
α2x v0(x) v2(x)

d

dx
v0(x)

+
15

8
α3x (v0(x))

2 v1(x)
d

dx
v1(x)

+
15

8
α3x (v0(x))

2 v2(x)
d

dx
v0(x)

+ αx v0(x)
d

dx
v2(x) + αx v1(x)

d

dx
v1(x)

+ αx v2(x)
d

dx
v0(x) +

3

4
α2x (v0(x))

2 d

dx
v2(x)

+
15

8
α3x v0(x) (v1(x))

2 d

dx
v0(x)

+
d2

dx2
v3(x) + 2x

d

dx
v3(x)

+
5

8
α3x (v0(x))

3 d

dx
v2(x) = 0 , (24)

.

.

.

The initial approximation v0(x) or y0(x) can be freely chosen,
for simplicity we take (the solution of Eq. (21))

v0(x) = y0(x) = 1 , ∀ x > 0 . (25)

According to the Eq. (16), we have v(0) = 1
and according to the Eq. (20), we have

y(x) = lim
p→1

v(x) = v0(x) + v1(x) + v2(x) + ...,

So

y(0) = v0(0) + v1(0) + v2(0) + ...,

1 = 1 + v1(0) + v2(0) + ...,

0 = v1(0) + v2(0) + ..., (26)

for simplicity we take vi(0) = 0 ∀ i ≥ 1.
According to the Eq. (16), we have v(∞) = 0, from Eq.
(25),we have v0(∞) = 1, and according to the Eq. (20), we
have

y(x) = lim
p→1

v(x) = v0(x) + v1(x) + v2(x) + ... .

So

y(∞) = v0(∞) + v1(∞) + v2(∞) + ...,

0 = 1 + v1(∞) + v2(∞) + ...,

−1 = v1(∞) + v2(∞) + ..., (27)

for simplicity we take

v1(∞) = −1 ,

vi(∞) = 0 , ∀ i ≥ 2 . (28)

The substitution of v0(x) into Eq. (22) yields

d2

dx2
v1(x) + 2x

d

dx
v1(x) = 0,

v1(0) = 0, v1(∞) = −1.

Therefore

v1(x) = −erf(x) , (29)

where

erf(x) =
2√
π

∫ x

0

e−t2dt .

The substitution of Eq. (29) into Eq. (23) yields

d2

dx2
v2(x) + 2x

d

dx
v2(x)− 2√

π
αxe−x2

− 3

2
√
π
α2xe−x2 − 5

4
√
π
α3xe−x2

= 0 ,

v2(0) = 0, v2(∞) = 0.

therefore

v2(x) = − 1

16

5x α3 + 8x α+ 6x α2

√
π ex2 . (30)
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The substitution of Eq. (30) into Eq. (24) yields(
−1

8
√
π
α(5α2 + 6α+ 8)e−x2

+
1

4
√
π
x2α(5α2 + 6α+ 8)e−x2

)

(
1

2
αx+

3

8
α2x+

5

16
α3x

)

+
2√
π
αxe−x2

erf(x) +
3√
π
α2xe−x2

erf(x)

+
15

4
√
π
α3xe−x2

erf(x) +
d2

dx2
v3(x) + 2x

d

dx
v3(x) = 0 ,

v3(0) = 0, v3(∞) = 0. (31)

Therefore

v3(x) =
1

64π3/2 e2x2

(
2α(5α2 + 6α+ 8)

(
1

2
α+

3

8
α2 +

5

16
α3) x3 ex

2

π(
1

2
α+

3

8
α2 +

5

16
α3)

x α(5α2 + 6α+ 8) ex
2

π + 16(2 α+ 3 α2 +
15

4
α3)

erf(x) x ex
2

π + 16(2 α+ 3 α2 +
15

4
α3)

erf(x)
√
π e2x

2

+ 16(2 α+ 3 α2 +
15

4
α3)

√
π

−16(2 α+ 3 α2 +
15

4
α3)

√
π e2x

2

)
.

Therefore, the approximate solution of Eq. (6) can be readily
obtained by

y(x) = v0(x) + v1(x) + v2(x) + v3(x) ,

or

y(x) = 1− erf(x)

− 1

16

5x α3 + 8x α+ 6x α2

√
π ex2 +

1

64π3/2 e2x2(
2α(5α2 + 6α+ 8)(

1

2
α+

3

8
α2 +

5

16
α3) x3 ex

2

π(
1

2
α+

3

8
α2 +

5

16
α3) x α(5α2 + 6α+ 8) ex

2

π

+16(2 α+ 3 α2 +
15

4
α3) erf(x) x ex

2

π

+16(2 α+ 3 α2 +
15

4
α3) erf(x)

√
π e2x

2

+16(2 α+ 3 α2 +
15

4
α3)

√
π

−16(2 α+ 3 α2 +
15

4
α3)

√
π e2x

2

)
.

Table 1 shows the initial slope y′(0) by HPM and by using
the padé[2,2] and padé[3,3] by wazwaz [46] approximants for
specific value of α = 0.5.
Table 2 shows the approximations of y(x) for standard un-

Fig. 1. Unsteady gas equation graph obtained by homotopy perturbation
method(HPM) (dash) with 4th order approximation and Perturbation method
by Kidder [40](points) .

TABLE I
HPM SOLUTION WITH 4TH ORDER APPROXIMATION OF INITIAL SLOPE

y′(0) FOR α = 0.5 .

Wazwaz[46]
α HPM Padé[2,2] Padé[3,3]
0.5 −1.124458680 −1.373178096 −1.025529704

steady gas with α = 0.5 obtained by homotopy perturbation
method(HPM) with 4th order approximation, Perturbation
technique [40] and padé[2,2] and padé[3,3] by wazwaz [46]
approximants.
Also, Figure 1 shows Unsteady gas equation graph obtained
by homotopy perturbation method(HPM) with 4th order ap-
proximation and Perturbation method by Kidder [40].

V. CONCLUSION

In this work, an explicit analytical solution is obtained for
the unsteady gas equation by means of the homotopy per-
turbation method(HPM) , which is a powerfull mathematical
tool in dealing with nonlinear equations. Using the homotopy
perturbation method, it is possible to find the exact solution or
an approximate solution of the problem. The numerical results
show that the present method is accurate.

TABLE II
HPM SOLUTION WITH 4TH ORDER APPROXIMATION OF y(x) FOR

α = 0.5 .

Wazwaz[46]
x HPM Kidder Padé[2,2] Padé[3,3]
0.1 0.88808651 0.88165883 0.86330606 0.89791670
0.2 0.77922351 0.76630768 0.73012623 0.79852282
0.3 0.67597925 0.65653800 0.60330541 0.70411297
0.4 0.58027292 0.55440240 0.48488987 0.61650379
0.5 0.49332936 0.46136503 0.37616039 0.53705338
0.6 0.41572078 0.37831093 0.27773116 0.46656257
0.7 0.34747118 0.30559765 0.18968434 0.40624260
0.8 0.28819396 0.24313255 0.11171052 0.35608017
0.9 0.23723457 0.19046237 0.04323673 0.31799666
1.0 0.19379708 0.15876898 0.01646751 0.29002550
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