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 
Abstract—Critical depth meters, such as abroad crested weir, 

Venture Flume and combined control flume are standard devices for 
measuring flow in open channels. The discharge relation for these 
devices cannot be solved directly, but it needs iteration process to 
account for the approach velocity head. In this paper, analytical 
solution was developed to calculate the discharge in a combined 
critical depth-meter namely, a hump combined with lateral 
contraction in rectangular channel with subcritical approach flow 
including energy losses. Also analytical formulae were derived for 
approach velocity head coefficient for different types of critical depth 
meters. The solution was derived by solving a standard cubic 
equation considering energy loss on the base of trigonometric 
identity. The advantage of this technique is to avoid iteration process 
adopted in measuring flow by these devices. Numerical examples are 
chosen for demonstration of the proposed solution. 
 

Keywords—Broad crested weir, combined control meter, control 
structures, critical flow, discharge measurement, flow control, 
hydraulic engineering., hydraulic structures, open channel flow. 

I. INTRODUCTION 

ROAD crested weir is a critical depth meter that is, if the 
weir is high enough, critical depth occurs on the crest of 

the weir. The discharge over a broad crested weir in 
rectangular channel is given by: [2] 
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in which dC  Discharge coefficient, B  Channel width, 

h Head above the crest (Fig. 1), v Approach velocity. 
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Fig. 1 Flow over a broad crested weir 
 
Venture flume is a critical flow-meter wherein the critical 

depth is created by a contraction in width of the channel. The 

 
A. Abdulrahman is with Aleppo University, Aleppo Faculty of Civil Eng. 

Water Eng. Dept., Syria. He is now the Dean of Civil Eng. Faculty of AL-
hasakeh, AL-furat University, Syria (e-mail: abdulrahman21959@gmail.com). 

discharge in a critical flow-meter is given by [5]: 
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in which b  Contraction width (throat width), y  

Subcritical approach depth (Fig. 2). 
Combined control flume is a critical flow meter formed by a 

combination of a hump with contraction, in which a control 
section is achieved, with a critical depth occurring over it as 
shown in Fig. 3. The discharge in a critical flow flume is given 
by [6]: 
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Equations (1)-(3) cannot be solved directly for the 

discharge, since the approach velocity head
g

v

2

2

 is unknown. 

Some authors neglected the approach velocity head to avoid 
iteration process; others replaced it by an approach velocity 
head coefficient [3], [6] thus 
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 For contracted flume: 
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 For combined control flume: 
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The solution was made by assuming 1VC  then; the 

approach velocity head can be calculated to update the value 

of VC for a second calculation. 

We derived analytical formulae for approach velocity head 

coefficient VC  which allows us to obtain a direct solution for 

measuring discharge by these devices.
  

                    

Analytical Formulae for the Approach Velocity Head 
Coefficient 

Abdulrahman Abdulrahman 

B 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:11, No:10, 2017

459

 

 

B b

1 2

1 2

v

E

v
2g

2 Energy line

v
2g

2

c

y
c

y

 

(b) Plan                                 (a) section 

Fig. 2 Venturi Flume (Standing wave flume) 
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(b) plan                                 (a) section 

Fig. 3 Combined control Flume 
 

II. ANALYTICAL SOLUTION 

A combined control flume is an excellent flow-measuring 
device, formed by a combination of a raised floor over a reach 
of channel with lateral contraction in which a control section 
is achieved, with a critical depth occurring over it [6] as 
shown in Fig. 3. 

Applying energy equation from subcritical approach flow 
section i.e., section to control section including energy loss 
term, gives: 
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where: Cy Critical depth at the control section, Lk  Energy 

loss coefficient, and z Hump height above the bed. 

It is convenient to replace the term 
g

Q2
 in (7) by 32

Cyb and 

to denote 
B

b
M   (Contraction ratio), so that 
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Also denoting 
Lk 1

1
2

and rearranging (8), it becomes: 
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Equation (9a) has a standard form of a cubic equation [1]: 
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The discriminant of (9b) is: 
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The variable  has a minimum value 1min  for  1  
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and the minimum value of the term 
2M

  in the same equation 

equals to 1 for 1min   and 1max M . Therefore, the 

discriminant is negative, and (9b) has three real roots. To find 
these roots, we seek value of ,Cy such that three terms on the 

left hand side of the cubic 03  rpyy CC
 are respectively 

proportional to the terms on the left hand side of the 

trigonometrical identity [4]. It follows that Cy and  must 

satisfy the ratios: 
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The first quality provides: 
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where it is understood that p is negative. Substituting value of

cos
Cy

 into the second equality of (12a), we obtain: 
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Substituting values of p  and r from (10a) and (10b) 

respectively into (12d) yields: 
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It is seen from (12e) that 
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Therefore, the value of 3 lies between  and 
2


 since

1max M  and 1min  . 

We may take three distinct solutions of (9b), namely: 
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Substituting (10a) into (12b), yields: 
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III. DISCUSSION 

By analyzing (13a), (13b), (13c) and (14), we note: 
 As 0z : 
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The above discussion provides us to the following results 

1- The angle 1 generates critical depth in the control section 

greater than the subcritical approach depth, thus this root 
is not acceptable. 

2- The angle 2 generates critical depth in the control 

section less than subcritical approach depth, thus this 
depth is acceptable. 

3- The angle 3 generates negative critical depth which has 

no physical meaning. 
Therefore, we have a unique solution for (9a), which may 

be achieved by substituting (13b) into (14) 
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(15) 
 
Equation (15) gives a direct solution for critical depth in a 

combined control flume. Therefore, a direct formula for 
discharge may be obtained as:  
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Noting from Fig. 1, that:  
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When the energy loss is neglected i.e.; ,10  Lk  

then (16b) becomes 
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We can distinct the following special cases: 

A. Broad Crested Weir with No Lateral Contraction  

1. Including Energy Loss 

Substituting 1M into (16-a): 
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2. Neglecting Energy Loss  

Substituting  1  into (17b) 
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B.  Venture Flume Has No Raised Floor 

1. Including Energy Loss: 

We substitute 0z  into (16a) 
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2. Neglecting Energy Loss 

Substituting 1  into (19a) 
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IV. DIRECT FORMULA FOR APPROACH HEAD VELOCITY 

COEFFICIENT VC  

In order to get a direct formula for approach head velocity 
coefficient VC , we should consider the cases of neglecting 

energy loss; i.e., 1dC . 

A) Case i) – Broad crested weir with no lateral contraction:  
for this case, we compare (18) with (4) to obtain a direct 

formula for approach velocity head coefficient VC .  
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B) Case ii) - Venture flume has no raised floor: for this case, 
we compare (19b) with (5) to obtain direct formula for 

approach velocity head coefficient VC . 
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








   

M
M

CV
          (21) 

                                                                                     
C) Case iii) – Combined control flume: for this case, we 

compare (16c) with (6) to obtain direct formula for 

approach velocity head coefficient VC . 
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h
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If one takes into account the effect of energy loss then, a 

direct formula for the   dV CC  may be derived as: 

 For case i),we compare (17b) with (4) 
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  (23)                

 
 For case ii), we compare (19a) with (5) 
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 (24) 

 
 For case iii, we compare (16b) with (6) 
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(25) 

 
Generally it is recommended by (HERC-RAS) manual 1988 

[7] the value of energy loss coefficient 1.0Lk , thus

953.0 . 

V. NUMERICAL EXAMPLES 

It is proposed to demonstrate the design of combined 
control flume through numerical examples: 
Example 1. Broad crested weir: in rectangular-depth meter 2 
m wide with mz 30.0 , the subcritical approach depth y is 

measured to be m75.0 .  Find the discharge per unit depth in  

- Case of neglecting energy losses 1dC , 

- Case of considering energy loss with coefficient 1.0Lk . 

Solution: we have mz 30.0 , my 75.0 , 

 

60.0
75.0

45.0
,45.030.075.0  

y

h
hmzyh

 
 
Substituting into (20), we obtain  
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Introducing value of VC into (4), we get exact value of the 

discharge per unit depth  
 

3
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Q
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b
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The same answer would be achieved using (18) 
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Considering energy loss: we substitute the above variables 

into (23) 
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Introducing this value into (4), we get 
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1.0444 9.81*0.45 0.5375 / sec

3

Q
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b
    
 

. The 

same answer would be achieved using (17b) 
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This problem was solved by trial and error, the value of 

sec/512.0 2mq   was obtained with as a second 

approximation [6]. 
Example 2. Combined control flume: a Venture flume is 
formed in a horizontal channel of rectangular cross-section 

m40.1  wide by constricting the wide to m90.0 and raising 

the floor in the constricted section by m25.0 above that of the 

channel, the approach depth upstream is m60.0 . Find the 
volume rate of the flow in case of neglecting energy loss, then 
considering energy loss with 1.0Lk .

 

Solution 

 Case of Neglecting Energy Loss:  

In this case, we have 
Contraction ratio 6429.0

40.1

90.0


B

b
M ,  

Energy loss coefficient 1,10  dL Ck   

By substituting the above variables into (22), we define VC  
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Substituting into (6), we obtain  
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The same answer would be achieved using (16c) 
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This problem was solved by trial and error method; the same 
answer was obtained after the third trial [3]. 

 Case of Considering Energy Loss: 953.01.0  Lk .  

Introducing this value into (25), we get: 
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Substituting into (6), 
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The same answer may be obtained from (16) 
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VI. CONCLUSION 

Analytical solution for discharge measurement by critical 
depth-meters in rectangular channel and head velocity 
coefficient has been presented. The derived solution can be 
applied to a broad crested weir, contracted flume and 
combined control flume. Numerical examples demonstrated 
that the equations are less time consuming and more accurate 
than existing relationships. It is hoped that the derived 
equations are helpful to irrigation engineer. 
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