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Abstract—Solutions for the temperature profile around a moving 

heat source are obtained using both analytic and finite element 
(FEM) methods. Analytic and FEM solutions are applied to study the 
temperature profile in welding. A moving heat source is represented 
using both point heat source and uniform distributed disc heat source 
models. Analytic solutions are obtained by solving the partial 
differential equation for energy conservation in a solid, and FEM 
results are provided by simulating welding using the ANSYS 
software. Comparison is made for quasi steady state conditions. The 
results provided by the analytic solutions are in good agreement with 
results obtained by FEM. 
 

Keywords—Analytic solution, FEM, Temperature profile, Heat 
Source Model 

I. INTRODUCTION 
ELDING applications subject welded materials to non-
uniform temperature cycle. This non-uniformity causes 

problems which in turn lead to premature fatigue damage, 
stress corrosion and fracture [1]. Studies on temperature 
distributions as well as temperature histories become very 
important in the actual process control in welding which still 
faces many problems. 

Weld modeling using analytic solutions or numerical 
approaches is commonly employed today. Those models are 
used to exhibit what is called ‘intellectual control’ [2], as an 
alternative to in-process control which may be difficult to 
apply in some welding processes. After Rosenthal 
demonstrated an analytic solution for a moving point heat 
source, analytical models were widely applied [3]-[8]. With 
the advent of more powerful computers, numerical methods 
such as FEM have been more frequently used. An advantage 
of numerical analysis over analytic method is the possibility to 
obtain solution for complex condition (e.g. geometry, border 
conditions) which may be difficult by analytic solution. 
However, analytic solutions have continued to be developed 
since they allow a better understanding of the underlying 
processes and fast solutions once the analytic solution is 
established. Analytic solution can also be used to verify FEM 
results. The current paper attempts to combine the two 
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approaches and the results for quasi steady state is compared. 
Analytic solutions to welding heat flow problems are 

obtained by solving the partial differential equation of energy 
conservation (1). T is the temperature; x,y and z are the three 
mutually orthogonal directions; α is the diffusivity; t is the 
time. Steady state solutions can be obtained by allowing time t 
→ ∞. 
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Rosenthal [3] developed quasi steady state solutions for a 

moving heat source by observing temperature distribution 
around coordinates which coincided with the moving heat 
source. Theoretically, after a certain time has elapsed, the 
temperature at given position relative to the moving 
coordinate is steady and therefore the condition is called 
‘quasi steady state’. 

Komanduri and Hou [8] developed non-dimensional 
integral to carry out thermal analysis in welding. He used 
Gaussian distributed moving disc heat source to represent heat 
load which embeds by weld torch. Solution for the non-
dimensional integration is obtained through numerical 
approach. 

FEM analysis was carried out by simulating the welding 
model using ANSYS 12.0. The quasi steady state is observed 
by evaluating temperature distribution around moving 
coordinates, coinciding with the welding torch, when moving 
heat source models have travelled a long enough distance 
from start point. 

The moving heat source is modeled as moving point heat 
source and uniformly distributed disc heat source. The point 
heat source considers a moving point with heat rate value 
equal to q& . The uniformly distributed disc heat source with 
outside radius ro, considers the heat source has uniform heat 
flux rate value ( )orqq π/" && =  over a circle on a plate surface. 

Analytic solutions, in this paper, are developed based on 
proposed solution by Carslaw and Jaeger [4]. Following the 
method that was used by Komanduri and Hou [8], non 
dimensional definite integral is used to obtain solutions for 
point heat source and uniformly distributed disc heat source 
whilst Komanduri and Hou obtained solution based on 
Gaussian distributed disc heat source model. Solutions 
obtained from the analytic solution are combined with 
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solutions obtained from FEM simulation and the results for 
quasi-steady state are compared. 

II.  ANALYTIC SOLUTIONS 

A. Solutions by Rosenthal  
Rosenthal has proposed solution for moving point heat 

source which is expressed in (2), where v is the welding 
speed. The proposed solution is based on the shape of weld-
pool. Since (2) is not a time (t) function, it is a solution for 
quasi steady state. Quasi steady state is steady state if 
parameters are considered from moving coordinates (ξ,y’,z’). 
The fix coordinate system is expressed as (x,y,z) which is 
following right hand rule. The coordinates are described in 
Fig. 1. Since the heat source is moving parallel to x axis, the 
value of y’ equal to y and the value of z’ equal to z. For 
convenience, instead of expressing a position of a point as (ξ, 
y’, z’) in the moving abscissa system, it is expressed as (ξ, y, 
z). 

 
( )( ) ( )',',.2/exp zyfvT ξαξ−=Δ  (2) 

 

 
Fig. 1 Fixed coordinate system and moving coordinate system  

 
Equation (2) comprise of asymmetric function, it is 

( )( )αξ 2/exp v−  and symmetric function: ( )',', zyf ξ . 
Asymmetric function is found along lines parallel to ξ and 
symmetric function is found along both: lines which parallel 
to y and parallel to z. If welding speed equals to zero the 
asymmetric function will be a unity and only symmetric 
function is left. Zero welding speed means a case of heat 
liberated by a stationary point which has solution much easier 
than moving point heat source. A final solution proposed by 
Rosenthal for moving point heat source for semi infinite solid 
is expressed in (3). k is the conductivity and R is the distance 
from heat source. T0 is added to consider initial temperature of 
welded plate. Symmetric function of (3) is 

( ) ( )( )απ 2/exp.2/ vRkRq −& .  
 

( ) ( )( )αξπ 2/)(exp.2/0 +−+= RvKRqTT &  (3) 

 
It should be noted that the temperature at weld center, 

which is obtained by replacing R and ξ with zero, is infinite. It 
does not make sense in a real condition but found in 
theoretical approach. 

 

B. Non dimensional integral by Komanduri and Hou  
Carslaw and Jaeger have proposed a solution for 

instantaneous point heat source that liberates heat at (xo,yo,zo) 
as it is expressed in (4). φ is a function which depends on heat 
load and material thermal properties. 
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Based on the proposed solution in (4), Komanduri and Hou 

[8] obtained solutions for temperature distribution around 
Gaussian distributed disc heat source as it is expressed in (5). 
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where ( )ατω 4/2v= , 22222 rzyRh +++= ξ , ( )α2/vV = , 

VRu h= , Vv /2ωτ = and I0(p) is modified Bessel function 

first kind, order zero. Since ω is a non-dimensional term, 
equation (5) is called as non-dimensional integral. 
 

C. Proposed solution for moving point heat source 
Following the method that was used by Komanduri and 

Hou, solutions for moving point heat source is based on (4). If 
heat source is liberated at origin, equation (4) will be simpler 
as it is expressed in (6). 

 
( ) ( ) ( ){ }tzyxtT απαφ 4/exp.)(8/ 2222/3 ++−=  (6) 

 
The total heat for an infinite solid liberated by the heat 

source can be expressed as in (7), where ρ is the density and c 
is the specific heat. 

 

∫
∞

∞−
= cTdxdydzdtq ρ&  (7) 

 
Substituting T which is expressed in (6) to (7) yields 

( )cdtq ρφ /&= .  As a result (6) can be written as in (8). 
 

( ) ( ) ( ){ }απαρ 4/exp.)(8/ 2222/3 zyxtcdtqT ++−= &  (8) 
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The temperature rise resulting from a moving point heat 
source which was initially at origin (0,0,0) and moving 
parallel to the x axis at a constant speed (Fig. 2), can be 
obtained based on equation (8). Equation (8) can be 
interpreted as temperature rise in infinite solid due to 
instantaneous heat liberated when t = 0 at origin. When t→0 
temperatures at all points are zero except at origin which is 
infinite.  

 

 
Fig. 2 Point heat source in infinite media  

 
Equation (9) is obtained by adjust (8) to a moving 

coordinates which coincide with the moving heat source and 
temperature rise in a small time increment is expressed as dT. 
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The total temperatures rise at any points can be obtained by 

integrating (8) and considering initial temperature as T0. The 
temperature rise is expressed in (10). 
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This integration can be expressed in the non-dimensional 

form by substituting the following expressions: 
( )ατω 4/2v= , 2222 zyRh ++= ξ , ( )α2/vV = , 

VRu h= , Vv /2ωτ =  and equation (11) is obtained. 
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For a semi-infinite solid case as in welding, the temperature 

which is obtained by (11) should be doubled because the 
heated volume is a half of an infinite solid. For convenience 
ρc is replaced by k/α. Temperatures for any points in welding 
model can be represented by (12). 
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The values for the definite integral in equation (12) depend 

on the upper limit value which is a time function. Clearly, 
equation (12) is the solution for a transient state and results for 
a quasi steady state can be found by replacing the value of t → 
∞, thus the upper integration limit is equal to ∞. Since when ω 
= 0 a singularity is found, the solution cannot be solved 
analytically but numerically by setting the lower limit close to 
0 (e.g. 0.001). The integral expression in (11) is plotted and 
presented graphically in Fig. 3. From Fig.3 it can be 
concluded that when u ≥ 3 the values of the integral are 
numerically closed to zero which means that there is no 
significant temperature elevation. It can also be drawn from 
Fig. 3 that at a higher u value, the definite integration value is 
converged at a higher value of ω (which also means a longer 
time). For lower u values, it was found that when ω ≥ 5 the 
integral will be converged, thus it is enough if the upper limit 
of integration is considered as 5 which make the numerical 
solution much easier. 

 
Fig. 3 Integral values for varied ω and u 

 

D.  Proposed solutions for uniformly distributed moving 
disc heat source 

In surface heat source model, a uniformly distributed 
moving disc heat source is the simplest configuration. The 
temperature profile in an infinite solid with a moving 
uniformly distributed disc heat source can be obtained by 
developing a solution for an instantaneous ring heat source, 
with radius equal to r, as proposed by Carslaw and Jaeger 
which is represented in (13). 
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Converting to moving coordinates, for small time increment 

the temperature rise in (13) can be expressed as (14). 
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The temperature profile resulting from a moving ring heat 
source can be obtained from (15) by integrating (14). 
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Substituting following expression: ( )ατω 4/2v= , 

22222 zyrRh +++= ξ , α2/vV = , VRu h= , Vv /2ωτ =  

and replace ρc with ρ/k ; the non-dimensional integral as in 
(16) can be obtained. 
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Equation (15) is temperature rise in infinite solid due to ring 

heat source with radius equal to r. The temperature rise in 
semi-infinite solid should be twice than (16) as it is expressed 
in (17). 
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The heat flux for a uniformly distributed disc with radius ro 

is 2/" orqq π&& = , and the heat rate liberated by incremental ring 
with radius r is ( ) rdrrq o ππ 2./ 2& . Using this expression, the 
temperature rise by a moving incremental ring over semi 
infinite solid can be expressed by (18). 
 

( )

( ) ( )
( )( ){ } 2/3

2

4

0

222
0

2/32
0

4/exp

)/2(2/exp

.4/
2

ω
ωωω

ωξωξ

απ

α

ω

du

yVVrIV

krvrdrqTT
tv

O

o

+−

++−

=−

∫
=

&

 (18) 

 
The total temperature rise for a uniformly distributed 

circular heat source can be expressed by (19). Solving the first 
integration in (19) results in a temperature profile that can be 
expressed by (20). Equation (20) is the transient solution since 
values for the second integration depend on time t. The 
solution for the quasi steady state can be obtained by setting t 
or the upper limit of integration to ∞. Solving (20) analytically 
may be impossible since the singularity is existed when ω = 0. 
By setting the lower limit close to zero (e.g. 0.001) the 
integration can again be solved numerically. As found with 
the point heat source, it is sufficient to set the upper limit of 
integral to 5 since integral values will be converged. This 
convergence is also demonstrated in a different way by Fig. 3 
and is presented in Fig. 4 and Fig. 5. Fig. 4 and Fig. 5 present 
temperature profile which evaluates at a certain line. It can be 
seen from Fig. 4 which has used a line defined by y = 0mm 
and z = 10mm, when the upper time limit is t = 200s or ω = 5, 
the temperature profile is almost superimposed on a 
temperature profile that is obtained by taking the upper time 
limit t = 10000s or ω = 250. Evaluating a transverse line 
defined by ξ = 0mm and z = 10mm, Fig. 5 shows temperatures 
profiles which are already superimposed on each other even 
since temperature limit is 100s or ω = 2.5. These results 
enhance the previous conclusion that it is valid to take upper 
limit of non dimensional integration to 5. 
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Fig. 4 Temperature profile at a longitudinal line 
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Fig. 5 Temperature profile at a transversal line 

 

III. FINITE ELEMENT METHOD 
Basically, finite element method (FEM) considers a 

structure is constructed from simple elements which are 
connected at their nodes and fulfills equilibrium and 
compatibility conditions. Based on this definition, the first 
step at FEM is dividing an observed structure into elements. 

Relation between temperatures and heats is obtained by 
applying virtual temperature principle in equilibrium equation 
which is expressed by (21). 
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Elements of conductance matrix [k] are obtained by 

evaluating compatibility equation at element model. The 
conductance matrix for a structure is obtained by assemble 
conductance matrix of its elements.  Since a structure typically 
is comprised of huge number of elements, computer 
involvement is needed. 

Finite element analysis was carried out using ANSYS 12.0 
software. There are two options which can be used: ANSYS 
Parametric Design Language (APDL) and Graphic User 
Interface (GUI). In this paper APDL mode was chosen since 
flexibility and greater ease of modification is provided. 

Again there are three types of heat source to describe 
welding torch; point heat source [9]-[11], surface heat source 
[12]-[14] and volumetric heat source [1],[15]. In this paper the 
heat source model used were again the point heat source and 
the uniformly distributed disc heat source. 

First, FEM analysis uses moving point heat source model. 
The model is comprised of 23328 SOLID70 thermal elements 
with 26011 nodes to describe 250mm x 180mm x 90mm 
block. The heat source move along line (x,0,0) with x value 
changes according to time (Fig. 6). Typical welding 
parameters were chosen as follow: heat rate sJq /4200=& , 

thermal conductivity k = 42 watt/(m.C°), thermal diffusivity α 
= 10 mm2/s and welding speed v = 1mm/s. 

 

 
Fig. 6 FEM model for point heat source 

 
The moving point heat source is modeled by a heat source 

at certain point and heat is liberated for certain time duration 
depend on welding speed and distance between two 
consecutive nodes. The distance is determined by mesh size of 
FEM model. After chosen duration the heat source is omitted 
and relocated to the next position where it liberates heat for 
the chosen duration. This procedure is repeated until the end 
of the weld length. Temperature profiles are observed after the 
heat source travels 200mm length (200s). Since ω in this 
position is equal to 5, the temperature profiles can be 
considered as quasi steady condition for comparison with the 
analytic solution. 

For the surface disc heat sources model, a simple geometric 
model as shown in Fig. 6 cannot be used. The mesh 
configuration for the disc heat source model is shown at Fig. 7 
and magnified detail view is presented at Fig. 8. Finer meshes 
are needed in the area which is closer to the weld center line 
so that the surface disc heat source (circle area) can be closely 
represented by the meshes. Coarser meshes are used in area 
more remote from weld center line to save computer time. 
 

 
Fig. 7 FEM model for surface disc sources. 
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Fig. 8 Magnified detail view 

 
The disc heat source in this model is described by a number 

of squares, one of the bricks element side. To describe a 
circular with radius 3mm around 36 squares are used. A total 
number of 37361 SOLID70 thermal elements with 27042 
nodes were used and same parameters as used for the point 
heat source were applied. 

IV. RESULTS AND DISCUSSIONS 
For the point heat source the results are presented in Fig. 9 

for longitudinal lines and at Fig.10 for transverse lines. 
Temperature profiles are evaluated at z = 0 (at plate surface), z 
= 10, z = 20 and z = 30 (under surface). On these lines 
temperatures were evaluated by both analytic solution and 
FEM, and the results are shown graphically in Fig. 9 and Fig. 
10. Solid lines describe solutions provides by analytic solution 
and markers describe the solution provided by FEM. From 
Fig. 9 and Fig. 10 it can be seen that FEM provides results 
which are in good agreement with the analytic solutions, 
especially for points which are far enough away from point 
heat source. 

 
Fig. 9 Temperature profiles on longitudinal lines with moving point 

heat source model 

 
Fig. 10 Temperature profiles on transversal lines with moving point 

heat source model 
 

Fig. 9 represents temperature profiles at y = 0 with varied z 
values (see Fig. 1 for the axis nomenclature). The analytic 
solutions and FEM are in better agreement for temperature 
data behind the heat source model. Both analytic solutions and 
FEM can describe peak temperature which lags for higher 
values of z (the peak temperature is at negative ξ values); as it 
found in practice, since a longer time is needed to transfer heat 
from the heat source to higher z values (due to the longer 
distance). Meanwhile for certain minus value of ξ heat that is 
liberated from previous positions has reached the point on the 
observed line with the same minus ξ value. Transverse line 
shown in Fig. 10 are lines with ξ = 0 with varied z values. 
Symmetric graphs are shown in Fig. 10. This symmetry is 
provided because ξ has the same value. It can be concluded 
from equation (12) that unsymmetrical function is provided by 
e-ξV term and only has effect when ξ is varied because the 
value of V (V=v/(2α)) depends on the welding parameters: 
welding speed (v) and thermal property of material 
(diffusivity, α) which are considered constant. 

Temperature values at y = 0 in Fig. 10 should have the 
same values as those at ξ = 0 in Fig. 9 since it shows the same 
points. It should however be underlined that peak 
temperatures in Fig. 10 are not the same as the peak 
temperatures in Fig. 9 as results of lagging effect discussed 
above. 

The results for a uniformly distributed disc heat source 
model are shown at Fig.11 and Fig.12. The differences 
between analytic solutions and FEM results are higher than 
those for the point heat source. This may as a result of the use 
of non uniform meshes in the FEM model of the disc heat 
source (Fig. 7, Fig. 8) which cannot be avoided. Comparing 
Fig.9 with Fig.11 and Fig.10 with Fig.12 illustrates the 
difference between results for the point heat source model and 
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uniformly distributed disc heat source model using both 
analytic and FEM methods are practically insignificant. 
 

 
Fig. 11 Temperature profiles on longitudinal lines with uniformly 

distributed disc heat source model 
 

 
Fig. 12 Temperature profiles on transversal lines with uniformly 

distributed disc heat source model 
 

Temperature profiles obtained from developed solutions 
which are expressed in (11) for point heat source model and in 
(18) for uniform disc heat source model are compared with 
Rosenthal solution (2). The comparison is presented 
graphically as in Fig.13 for transversal paths and Fig. 14 for 
longitudinal paths. From Fig.13 it can be said that for far field 
solutions no significant difference between developed 
solutions and Rosenthal whilst from Fig.14 for far field 
solutions behind the heat source there is a difference between 

Rosenthal solution and developed solutions. In Fig.15 
comparison is made between the analytic point heat source, 
Rosenthal and FEM for the far field solutions behind heat 
source. In Fig.14 only proposed solution based on point heat 
source is presented. At least there are two reasons for the 
absence of solution based on uniform disc heat source model: 
first from Fig.14 it can be seen that there is no significant 
difference for far field solutions between point heat source 
and uniform disc heat source, and the second reason is that 
Rosenthal based his solution on point heat source model. 
Fig.15 shows that the developed solution is confirmed by 
FEM whilst Rosenthal solution shows few higher 
temperatures. 
 

 
Fig. 13 Temperature profiles at transversal lines obtained from 

Rosenthal and developed solution based on point heat source model 
and uniform heat source model 

 
Fig. 14 Temperature profiles at longitudinal paths obtained from 

Rosenthal and developed solution based on point heat source model 
and uniform heat source model 
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The temperature profile difference as a result of different 
heat source model may however be seen in the area very 
closed to the heat source. The analytic result for the area 
adjacent to the heat source is presented in Fig. 16 and Fig. 17. 
Fig. 16 is represents longitudinal observed lines with y = 0mm 
and z = 0mm (a closest longitudinal path) whilst Fig. 17 for 
transversal path with ξ = 0mm and z = 0mm (a closest 
transversal path). In Fig. 16 the temperature at ξ = 0 has same 
value as the temperature at y = 0 in fig. 17 for the specific heat 
source model applied. The solutions by FEM are not presented 
here since very fine meshes are needed and a large model 
should be provided to exhibit quasi steady state condition. 
Evaluating those figures it can be concluded that moving point 
heat source model gives higher temperature elevation than 
uniformly distributed moving disc heat source at positions 
very closed to the weld center. Results from both results are 
lower than temperature results obtained from Rosenthal 
solution which heading toward infinity. 

 
Fig. 15 Temperature profiles obtained from Rosenthal, analytic point 

heat source model and FEM solution 
 

 
Fig. 16 Temperature profile on a longitudinal line with very closed 

observed points to weld center  

 
Fig. 17 Temperature profile on a transversal line with very closed 

observed points to weld center 

V. CONCLUSIONS 
The temperature profiles observed on longitudinal and 

transversal lines using both analytic and FEM method are in a 
good agreement. No significant temperature difference is 
found for positions remote from weld center using both point 
heat source and uniformly distributed disc heat source. 

Comparing to the solution proposed by Rosenthal for point 
heat source model, the proposed analytic solution is closer to 
temperature profiles provided by FEM method. It is found 
especially at remote position behind the heat source center. 

 

VI. NOMENCLATURE 
α diffusivity (m2/s) 
φ a function depend on heat load and material thermal 

properties 
ρ density (kg/m3) 
ξ moving coordinate abscissa  parallel to x axis 

∇ partial differential operator 
T

zyx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

 

c specific heat (J/kg.C°) 
I0(p) modified Bessel function first kind, order zero 
k thermal conductivity (watt/m.C°) 
q&  heat rate(J/s) 

"q&  heat flux rate (J/sm2) 
'''q&  heat rate generated at a body (J/sm3) 

r, ro ring radius, outer disc radius (m) 
t,τ time, time increment (s) 
T,To temperature, initial temperature (°C) 
v welding speed (m/s) 
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