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Abstract—This paper analyzes fundamental ideas and concepts 

related to neural networks, which provide the reader a theoretical 
explanation of Long Short-Term Memory (LSTM) networks 
operation classified as Deep Learning Systems, and to explicitly 
present the mathematical development of Backward Pass equations of 
the LSTM network model. This mathematical modeling associated 
with software development will provide the necessary tools to 
develop an intelligent system capable of predicting the behavior of 
licensed users in wireless cognitive radio networks.  

 
Keywords—Neural networks, multilayer perceptron, long short-
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I. INTRODUCTION. 

RTIFICIAL neural networks (ANNs) are models of 
artificial intelligence that, inspired in biological neurons, 

can be used in classification, optimization, pattern recognition, 
function approximation tasks, etc. They are considered as 
powerful learning models [1] and are characterized by having 
in its structure a set of nodes or units called neurons 
(interconnected processing drives) and connections equipped 
with weights (associated determined importance and in which 
most of the knowledge that the neural network has on the task 
in question is usually kept [2]). As a statistical model, an ANN 
can learn the probability density function from the given 
samples and then predict, according to the statistics learned, 
outputs for new samples that were not included in the (sample) 
learning set [3]. Each neuron receives a series of inputs 
through interconnections and emits an output. This output can 
be modeled as the result given by composing three functions 
(Fig. 1). 

Propagation or excitation function. It is a linear function 
that usually is the weighted sum of inputs and their respective 
weights. 

Activation function. It is almost always sigmoidal: 1
 o tanh	 . 

Transfer (or output) function. Usually to simplify, it is 
assumed for practical purposes to be the same as the identity 
function (i.e., the previous two functions would be enough). 
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Fig. 1 Generic model of an artificial neuron [4] 
 

Whenever a value is typed into the network (from the 
training set), an output is generated, therefore a function must 
be considered that enables quantifying the errors made and, 
depending on that, know if it is necessary to modify the 
weight values to minimize the error given by the network (i.e., 
until the network outputs are as close as possible to the reality 
that is being simulated). The process by which these weights 
are adjusted is known as training, and the procedure is applied 
as a learning algorithm. The ability to produce correct outputs 
for inputs not seen during training is known as generalization) 
[2]. An ANN is a network comprised of units called neurons 
which are related in some way. In order to give a more formal 
definition (from the mathematical point of view) we use the 
concept of graph. 
Definition of ANN: ANNs as in Fig. 2 is a directed graph with 
the properties: 
1. Every I node has an associated x_i state. 
2. Every connection between two nodes (i and j) is assigned 

a weight w_ij ∈  
3. For each i node there is a threshold	 . 
4. For each i node a function f_i is defined, which depends 

on the weights of its connections, the threshold, and the 
states of the j nodes connected to it. This function 

, ,  provides the new state of the node. 
 

 

Fig. 2 Standard model of an artificial neuron [4] 
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A wide variety of ANNs have been developed, but can be 
classified, by type of connections in two groups: With cycles 
and without cycles. This paper briefly discusses the multilayer 
perceptron (MLP), which is a type of feed forward neural 
network without cycles; as well as some basic ideas about the 
RNNs), before finally focusing on LSTM networks, which is 
the motivation of this paper. 

II. MULTILAYER PERCEPTRON 

MLP is an ANN whose topology (structure in which 
neurons are organized) is characterized by grouping neurons 
of the same type in substructures called layers (input, hidden, 
output) as shown in Fig. 3; connections between neurons only 
allow the flow of information in one direction (forward, so the 
neurons that are in the same layer are not related) and these 
can be totally or partially connected. MLPs are suitable for 
pattern recognition and prediction tasks, and are considered 
universal approximations of functions (especially in higher 
dimensions [3]), since their outputs depend only on the current 
inputs (or of the moment). 

 

 

Fig. 3 Structure of a MLP [5] 
 

TABLE I 
MATHEMATICAL NOMENCLATURE OF AN MLP NETWORK 

 Input layer Hidden layer Output layer 

Subscript    

Input    

Output    

Number of units    

 
From here on, the total number of layers hidden in the MLP 

will be denoted by L; and the weight assigned to the 
connection between the neuron i of layer k and neuron j of 

layer 1, for ,the other notations are found in Table I. 

The most common choices for activation are function j, due 
to its non-linearity (it allows reducing problems with multiple 
hidden layers to one with a single hidden layer) and 
differentiability (allows training the network with descending 
gradient) these are the functions: 

 

tanh   
 
and 

	      (Logistic function)             (1) 

where the first derivative of these two functions are: 
 

		 1 	   
 
and  

	 1 	         (2) 
 

In summary, we have the next notation for the h-th neuron 
of layer l: 

 

∑ 	        (3) 
 

                                   (4) 
 
It is said that an ANN has learned if it can be established 

that the error found in its outputs is minimal. Thus, the main 
purpose of applying neural networks in a problem (that could 
be to characterize PUs in cognitive networks) is to minimize 
the function of E error that depends "only" on the weights 

 (if there are activation thresholds, the function would 

also depend on its values). Generally, E is defined as the mean 
square error between the current output and the desired output: 

 

∑ 	         (5) 
 
where,  are the test values ("real\data" of the situation); the 

yi are the neuron outputs of the output layer, i.e. 	  
[3]. The idea behind the descending gradient in an MLP is to 
find the derivative of the error function with respect to each of 

the weights , then modify those weights in the opposite 

direction to the derivative; more precisely, what is done is to 

subtract from the weight 	 	or – , where α 

< 1(reason for learning). The partial derivative is taken 
because it represents the error variation when modifying a 
single variable, and to calculate the gradient efficiently, the 
technique known as Backpropagation is normally used. 

III. BACKPROPAGATION FOR MPLS 

This kind of algorithm can be interpreted as the 
mathematical heart of ANNs and is not only used to train 
feedforward networks like MLP, but can be adapted for 
RNNs; the LSTM model uses an adaptation of it in its 
learning, because of this it is necessary to understand how the 
method works. Backpropagation consists of repeatedly 
applying the chain rule for partial derivatives, and the first step 
consists of the derivatives of the loss function (or error) E with 
respect to the output neurons. For calculations presented in 
this document, the sigmoid function given in (1) is adopted as 
activation function ; therefore: 

 

∑        (6) 
 

∑ , 2,3,… ,    (7) 
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∑      (8) 
 
Thus, taking into account (1) and (2), and applying the chain 
rule of calculation in several variables to (8), we have: 
 

∑          (9) 

 

1        (10) 

 
The next notation will be used for any unit j in the neural 

network: 
 

           (1) 

 
Thus, for units in the last hidden layer, we have: 
 

∑ 	 1

∑         (12) 
 

For the other hidden layers, we have: 
 

∑ 	 1

∑         (13) 
 
Once the deltas for all hidden neurons are calculated, by 

calculating the derivatives with respect to each of the weights, 
we arrive at: 
 

	        (14) 

IV. RECURRENT NEURAL NETWORKS (RNN) 

Unlike the MLP, the RNNs allow one or more of the 
neurons that form it to feed back (graphically, cycles can be 
seen); the above suggests that an RNN can, in principle send 
the "history" of inputs previous to each output. His analysis 
considers an RNN with a single self-connected hidden layer 
(se Fig. 4). 

 

 

Fig. 4 Structure of an RNN [3] 
 

The key idea is that the recurring connections allow a 
"memory" of previous inputs that, remaining in the internal 
state of the neuron, decreases in the unit output. It is possible 
to apply, for the RNN learning, a similar method as used for 
MLP. The activation functions are maintained, but the 
modification that the system undergoes at that moment is 
related to that the activations arrive at the hidden layer from 
two places: the input layer and from the same hidden layer. 

 

 

Fig. 5 Inputs and output of the hidden layer h-th neuron for a fixed 
time t. 

 
TABLE II 

MATHEMATICAL NOMENCLATURE OF AN RNN NETWORK 

 Input layer Hidden layer Output layer 

Number of units    

Superscript  h  

Input    

Output    

 
To mathematically analyze the RNN the notation shown in 

Table II shall be considered. In addition, it should be noted 

that: The superscript t refers to time; 0; and the weights 
between neurons are denoted as . From the previous 
description, we obtain: 

 
∑ ∑        (15) 

 
	           (16) 

 
∑          (17) 

 
Taking from Table II, we will use an analogue of 

Backpropagation but for RNN, namely: Backpropagation 
Through Time - BPTT. As in Backpropagation, BPTT consists 
of repeatedly applying the chain rule although the most 
important thing is that for RNNs, loss function depends on the 
activation of the hidden layer. Therefore, for the h-th hidden 
neuron we have: 

 

	   

 

	 	 ∑ 	 ∑ 	   
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1 ∑ ∑   (18) 
 
Keeping in mind that the same weights are used at each 

time interval, we must apply the sum on all the time 
considered to obtain the derivatives with respect to the 
network weights. Therefore: 

 

∑ 	 ∑       (19) 

 
In some cases, it is advisable to "unwind" the feedback 

neuron in order to better understand what is happening (Fig. 
6); in doing so we can see a frame-by-frame of the "states" of 
the neuron as time progresses. 

 

 

Fig. 6 Operation of a unit in an RNN [6] 

V. LONG SHORT-TERM MEMORY 

LSTM neural networks are a type of ANN whose structure 
consists of a set of memory blocks; basically, are recurrently 
connected subnets (Fig. 7). Each block has one or more self-
connected cells and three "gates" that, for the cells, will 
perform the functions of writing (input), reading (output), and 
reset. This type of ANN was designed to solve the problem of 
the descending gradient (loss of learning achieved since the 
first inputs are "forgotten"). 

 

 

Fig. 7 Structure of an LSTM [3] 
 
aGates allow LSTM memory cells to store and access 

information for long periods of time, thus cells can 
"remember" the first input until Input Gate is closed and the 
Forget Gate is open. Originally, LSTM only had the input and 
output gates [7]. The Forget Gate was added to enable the cell 
to auto-reset itself. Subsequently, peephole connections were 
included in order for LSTM to improve its learning ability [3]. 
Structurally, an LSTM is an RNN except that in the hidden 
layer there are memory blocks but no neurons, which have 

four inputs and one output. A graphic representation of a 
single-cell memory block can be seen in Fig. 8. 

 

 

Fig. 8 Structure of a memory block [6] 
 

Internal operation of an LSTM memory block. In order 
to understand the interaction of a memory block, reference 
will be made to Fig. 8. In principle, the three gates are units 
that collect the activations inside and outside the block, and 
their function is to control cell activation through 
multiplications. The input and output gates multiply the cell 
input and output while the forget gate multiplies the previous 
state of the cell. There is no activation function inside the cell. 
The gate activation function is usually the logistic function σ 
(described in (1)), where gate activations are between 0 
(closed gate) and 1 (open gate). The cell input and output 
activation functions are generally tanh (x), the logistic 
function or in some cases the identity function. 

The weighted peephole connections start from the cell to 
the gates and are represented with dashed lines. The others 
inside the block have a fixed weight of 1. The only block 
outputs to the rest of the network are the result of multiplying 
the output gate. For more details see [3], [6], [7]. Additionally, 
in Figs. 9 and 10 an imaginary of what happens inside the 
memory block can be made as time elapses. 

 

 

Fig. 9 Memory block operation diagram [6] 
 
The fact of having multiplicative and sums units makes it 

natural to think of devising variants in the structure of the 
memory block. This study is focused exclusively on blocks in 
their standard extended form. 
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Fig. 10 Structure of a memory block [6] 
 

Mathematical modeling of learning in LSTM. LSTM is a 
differentiable approximation of functions that is usually 
trained with the descending gradient] and although originally a 
doctored form of BPTT was used to approximate the error 
gradient [7], for the mathematical calculation we will use 
BPTT without doctoring based on [8]. Fig. 11 shows a 
schematic illustrating how information is preserved in the 
LSTM as the time variable elapses. The symbol “–” means 
that the gate is closed and/or open. The gates are located like 
this: output is above, forget is on the left and input is under. In 
addition, it should be noted that the connection weight 
between neurons i and j is denoted as ;  is the number of 
blocks in the hidden layer; h represents the output of the other 
blocks in the hidden layer; the symbol  represents the state 
of cell c at time t. 

Calculations are presented for a single block which is 
assumed to be single cell. It will also be assumed that the 
output layer has K units. The procedure for calculating the 
Forward Pass and Backward Pass equations (BPTT) is shown 
under. Before starting with the development of BPTT 
equations for an LSTM, the notation that will be used in the 
development of the equations is shown in Table III. 
 

 

Fig. 11 Operation of learning conservation in LSTM [3] 
 

TABLE III 
MATHEMATICAL NOMENCLATURE OF AN LSTM NETWORK 

 
Input 
Block 

Input 
Gate 

Forget 
Gate 

Output 
Gate 

Memory Cell 

Subscript i    c 

input xi    ,  

output xi     

No. Units I n/a n/a n/a C 
Activation 
function 

n/a n/a n/a n/a 
g (in-cell) 
h (out-ell) 

 

Forward Pass Equations. From a careful analysis of Fig. 8, 
we can see that the mathematical representation of Table III 
results in (20)-(25) [3]: 

 

∑ 1 ∑ 1
1 ∑ 1

1    (20)  
 

          (21) 
 

∅ ∑ ∅1 ∑ ∅
1

1 ∑ ∅
1

1      (22) 
 

∅ ∅ 	         (23) 	
   

∑ ∑ ∑ 			 (24) 
        

	          (25) 	
 

Forward Pass Equations. Based on the fact that a variation 
of the Backpropagation (as mentioned over) will be used, the 
chain rule must be applied to calculate the partial derivatives. 
Initially assume the next definitions: 
 

, ∈ , ∈ 	  

 
Considering the over, and from a careful analysis of Fig. 8 

we have the subsequent Backward Pass equations: 
Output gate: 

	 	 ´ 	∑      (26) 

 
Cells: 

  	 	 ´         (27) 

 
Forget gate: 

	 	 ´ 	∑      (28) 

 
Input gate: 

	 	 ´ 	∑       (29) 

 
 
 
States 
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  (30) 
 

Comparison between MLP and LSTM. To conclude this 
discussion paper, in Table IV, the most important 
characteristics between MLP and LSTM are compared; 
techniques that will be used to characterize PUs in cognitive 
radio networks to validate the convenience of using LSTM as 
a predictor of future states spectral channels use by primary 
users. 

 
TABLE IV 

COMPARISON BETWEEN LSTM AND MLP 

 MLP LSTM 

Type of ANN Feed forward RNN 

Feedback No Si 

Type of Unit Neuron Memory block 

Hidden Layers Si Si 

Connections Feed forward Feed forward in the same layer 

Learning Backpropagation BPTT 

VI. CONCLUSIONS 

The article presents a mathematical analysis about the 
operation of type MPL, ANN, finally LSTM neural networks. 

From the point of view of LSTM, we show the 
mathematical modeling to obtain Backward Pass equations in 
LSTM networks; this analysis is very important to develop 
algorithms that lead to assess its application in fields as 
telecommunications in lines of research such as Cognitive 
Radio. 

The analysis performed on LSTM to deduce the Backward 
Pass equations does not exist in the studied literature and there 
are no indications that they exist on the Internet, therefore it is 
a resource that is available to be used by the academic and 
scientific community. 
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