
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

697

Abstract—This paper analyzes fundamental ideas and concepts

related to neural networks, which provide the reader a theoretical
explanation of Long Short-Term Memory (LSTM) networks
operation classified as Deep Learning Systems, and to explicitly
present the mathematical development of Backward Pass equations of
the LSTM network model. This mathematical modeling associated
with software development will provide the necessary tools to
develop an intelligent system capable of predicting the behavior of
licensed users in wireless cognitive radio networks.

Keywords—Neural networks, multilayer perceptron, long short-

term memory, recurrent neuronal network, mathematical analysis

I. INTRODUCTION.

RTIFICIAL neural networks (ANNs) are models of
artificial intelligence that, inspired in biological neurons,

can be used in classification, optimization, pattern recognition,
function approximation tasks, etc. They are considered as
powerful learning models [1] and are characterized by having
in its structure a set of nodes or units called neurons
(interconnected processing drives) and connections equipped
with weights (associated determined importance and in which
most of the knowledge that the neural network has on the task
in question is usually kept [2]). As a statistical model, an ANN
can learn the probability density function from the given
samples and then predict, according to the statistics learned,
outputs for new samples that were not included in the (sample)
learning set [3]. Each neuron receives a series of inputs
through interconnections and emits an output. This output can
be modeled as the result given by composing three functions
(Fig. 1).

Propagation or excitation function. It is a linear function
that usually is the weighted sum of inputs and their respective
weights.

Activation function. It is almost always sigmoidal: 1
 o tanh	 .

Transfer (or output) function. Usually to simplify, it is
assumed for practical purposes to be the same as the identity
function (i.e., the previous two functions would be enough).

Danilo López S is with the Universidad Distrital “Francisco José de

Caldas”, Faculty of Engineering, Cra. # 40B-53, Bogotá, Colombia
(Corresponding Author; phone: +573108651144; e-mail:
dalopezs@udistrital.edu.co).

Nelson Vera is with the Universidad Distrital “Francisco José de Caldas”,
Cra. # 40B-53, Bogotá, Colombia (e-mail: neverap@udistrital.edu.co).

Luis Pedraza is with the Universidad Distrital “Francisco José de Caldas”,
Faculty of Technology, Cl. 68D Bis A Sur # 49F - 70, Bogotá - Colombia (e-
mail: lfpedrazam@udistrital.edu.co).

Fig. 1 Generic model of an artificial neuron [4]

Whenever a value is typed into the network (from the
training set), an output is generated, therefore a function must
be considered that enables quantifying the errors made and,
depending on that, know if it is necessary to modify the
weight values to minimize the error given by the network (i.e.,
until the network outputs are as close as possible to the reality
that is being simulated). The process by which these weights
are adjusted is known as training, and the procedure is applied
as a learning algorithm. The ability to produce correct outputs
for inputs not seen during training is known as generalization)
[2]. An ANN is a network comprised of units called neurons
which are related in some way. In order to give a more formal
definition (from the mathematical point of view) we use the
concept of graph.
Definition of ANN: ANNs as in Fig. 2 is a directed graph with
the properties:
1. Every I node has an associated x_i state.
2. Every connection between two nodes (i and j) is assigned

a weight w_ij ∈
3. For each i node there is a threshold	 .
4. For each i node a function f_i is defined, which depends

on the weights of its connections, the threshold, and the
states of the j nodes connected to it. This function

, , provides the new state of the node.

Fig. 2 Standard model of an artificial neuron [4]

Analysis of Multilayer Neural Network Modeling
and Long Short-Term Memory

Danilo López, Nelson Vera, Luis Pedraza

A

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

698

A wide variety of ANNs have been developed, but can be
classified, by type of connections in two groups: With cycles
and without cycles. This paper briefly discusses the multilayer
perceptron (MLP), which is a type of feed forward neural
network without cycles; as well as some basic ideas about the
RNNs), before finally focusing on LSTM networks, which is
the motivation of this paper.

II. MULTILAYER PERCEPTRON

MLP is an ANN whose topology (structure in which
neurons are organized) is characterized by grouping neurons
of the same type in substructures called layers (input, hidden,
output) as shown in Fig. 3; connections between neurons only
allow the flow of information in one direction (forward, so the
neurons that are in the same layer are not related) and these
can be totally or partially connected. MLPs are suitable for
pattern recognition and prediction tasks, and are considered
universal approximations of functions (especially in higher
dimensions [3]), since their outputs depend only on the current
inputs (or of the moment).

Fig. 3 Structure of a MLP [5]

TABLE I
MATHEMATICAL NOMENCLATURE OF AN MLP NETWORK

 Input layer Hidden layer Output layer

Subscript

Input

Output

Number of units

From here on, the total number of layers hidden in the MLP

will be denoted by L; and the weight assigned to the
connection between the neuron i of layer k and neuron j of

layer 1, for ,the other notations are found in Table I.

The most common choices for activation are function j, due
to its non-linearity (it allows reducing problems with multiple
hidden layers to one with a single hidden layer) and
differentiability (allows training the network with descending
gradient) these are the functions:

tanh

and

	 (Logistic function) (1)

where the first derivative of these two functions are:

		 1 	

and

	 1 	 (2)

In summary, we have the next notation for the h-th neuron
of layer l:

∑ 	 (3)

 (4)

It is said that an ANN has learned if it can be established

that the error found in its outputs is minimal. Thus, the main
purpose of applying neural networks in a problem (that could
be to characterize PUs in cognitive networks) is to minimize
the function of E error that depends "only" on the weights

 (if there are activation thresholds, the function would

also depend on its values). Generally, E is defined as the mean
square error between the current output and the desired output:

∑ 	 (5)

where, are the test values ("real\data" of the situation); the

yi are the neuron outputs of the output layer, i.e. 	
[3]. The idea behind the descending gradient in an MLP is to
find the derivative of the error function with respect to each of

the weights , then modify those weights in the opposite

direction to the derivative; more precisely, what is done is to

subtract from the weight 	 	or – , where α

< 1(reason for learning). The partial derivative is taken
because it represents the error variation when modifying a
single variable, and to calculate the gradient efficiently, the
technique known as Backpropagation is normally used.

III. BACKPROPAGATION FOR MPLS

This kind of algorithm can be interpreted as the
mathematical heart of ANNs and is not only used to train
feedforward networks like MLP, but can be adapted for
RNNs; the LSTM model uses an adaptation of it in its
learning, because of this it is necessary to understand how the
method works. Backpropagation consists of repeatedly
applying the chain rule for partial derivatives, and the first step
consists of the derivatives of the loss function (or error) E with
respect to the output neurons. For calculations presented in
this document, the sigmoid function given in (1) is adopted as
activation function ; therefore:

∑ (6)

∑ , 2,3,… , (7)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

699

∑ (8)

Thus, taking into account (1) and (2), and applying the chain
rule of calculation in several variables to (8), we have:

∑ (9)

1 (10)

The next notation will be used for any unit j in the neural

network:

 (1)

Thus, for units in the last hidden layer, we have:

∑ 	 1

∑ (12)

For the other hidden layers, we have:

∑ 	 1

∑ (13)

Once the deltas for all hidden neurons are calculated, by

calculating the derivatives with respect to each of the weights,
we arrive at:

	 (14)

IV. RECURRENT NEURAL NETWORKS (RNN)

Unlike the MLP, the RNNs allow one or more of the
neurons that form it to feed back (graphically, cycles can be
seen); the above suggests that an RNN can, in principle send
the "history" of inputs previous to each output. His analysis
considers an RNN with a single self-connected hidden layer
(se Fig. 4).

Fig. 4 Structure of an RNN [3]

The key idea is that the recurring connections allow a
"memory" of previous inputs that, remaining in the internal
state of the neuron, decreases in the unit output. It is possible
to apply, for the RNN learning, a similar method as used for
MLP. The activation functions are maintained, but the
modification that the system undergoes at that moment is
related to that the activations arrive at the hidden layer from
two places: the input layer and from the same hidden layer.

Fig. 5 Inputs and output of the hidden layer h-th neuron for a fixed
time t.

TABLE II

MATHEMATICAL NOMENCLATURE OF AN RNN NETWORK

 Input layer Hidden layer Output layer

Number of units

Superscript h

Input

Output

To mathematically analyze the RNN the notation shown in

Table II shall be considered. In addition, it should be noted

that: The superscript t refers to time; 0; and the weights
between neurons are denoted as . From the previous
description, we obtain:

∑ ∑ (15)

	 (16)

∑ (17)

Taking from Table II, we will use an analogue of

Backpropagation but for RNN, namely: Backpropagation
Through Time - BPTT. As in Backpropagation, BPTT consists
of repeatedly applying the chain rule although the most
important thing is that for RNNs, loss function depends on the
activation of the hidden layer. Therefore, for the h-th hidden
neuron we have:

	

	 	 ∑ 	 ∑ 	

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

700

1 ∑ ∑ (18)

Keeping in mind that the same weights are used at each

time interval, we must apply the sum on all the time
considered to obtain the derivatives with respect to the
network weights. Therefore:

∑ 	 ∑ (19)

In some cases, it is advisable to "unwind" the feedback

neuron in order to better understand what is happening (Fig.
6); in doing so we can see a frame-by-frame of the "states" of
the neuron as time progresses.

Fig. 6 Operation of a unit in an RNN [6]

V. LONG SHORT-TERM MEMORY

LSTM neural networks are a type of ANN whose structure
consists of a set of memory blocks; basically, are recurrently
connected subnets (Fig. 7). Each block has one or more self-
connected cells and three "gates" that, for the cells, will
perform the functions of writing (input), reading (output), and
reset. This type of ANN was designed to solve the problem of
the descending gradient (loss of learning achieved since the
first inputs are "forgotten").

Fig. 7 Structure of an LSTM [3]

aGates allow LSTM memory cells to store and access

information for long periods of time, thus cells can
"remember" the first input until Input Gate is closed and the
Forget Gate is open. Originally, LSTM only had the input and
output gates [7]. The Forget Gate was added to enable the cell
to auto-reset itself. Subsequently, peephole connections were
included in order for LSTM to improve its learning ability [3].
Structurally, an LSTM is an RNN except that in the hidden
layer there are memory blocks but no neurons, which have

four inputs and one output. A graphic representation of a
single-cell memory block can be seen in Fig. 8.

Fig. 8 Structure of a memory block [6]

Internal operation of an LSTM memory block. In order
to understand the interaction of a memory block, reference
will be made to Fig. 8. In principle, the three gates are units
that collect the activations inside and outside the block, and
their function is to control cell activation through
multiplications. The input and output gates multiply the cell
input and output while the forget gate multiplies the previous
state of the cell. There is no activation function inside the cell.
The gate activation function is usually the logistic function σ
(described in (1)), where gate activations are between 0
(closed gate) and 1 (open gate). The cell input and output
activation functions are generally tanh (x), the logistic
function or in some cases the identity function.

The weighted peephole connections start from the cell to
the gates and are represented with dashed lines. The others
inside the block have a fixed weight of 1. The only block
outputs to the rest of the network are the result of multiplying
the output gate. For more details see [3], [6], [7]. Additionally,
in Figs. 9 and 10 an imaginary of what happens inside the
memory block can be made as time elapses.

Fig. 9 Memory block operation diagram [6]

The fact of having multiplicative and sums units makes it

natural to think of devising variants in the structure of the
memory block. This study is focused exclusively on blocks in
their standard extended form.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

701

Fig. 10 Structure of a memory block [6]

Mathematical modeling of learning in LSTM. LSTM is a
differentiable approximation of functions that is usually
trained with the descending gradient] and although originally a
doctored form of BPTT was used to approximate the error
gradient [7], for the mathematical calculation we will use
BPTT without doctoring based on [8]. Fig. 11 shows a
schematic illustrating how information is preserved in the
LSTM as the time variable elapses. The symbol “–” means
that the gate is closed and/or open. The gates are located like
this: output is above, forget is on the left and input is under. In
addition, it should be noted that the connection weight
between neurons i and j is denoted as ; is the number of
blocks in the hidden layer; h represents the output of the other
blocks in the hidden layer; the symbol represents the state
of cell c at time t.

Calculations are presented for a single block which is
assumed to be single cell. It will also be assumed that the
output layer has K units. The procedure for calculating the
Forward Pass and Backward Pass equations (BPTT) is shown
under. Before starting with the development of BPTT
equations for an LSTM, the notation that will be used in the
development of the equations is shown in Table III.

Fig. 11 Operation of learning conservation in LSTM [3]

TABLE III
MATHEMATICAL NOMENCLATURE OF AN LSTM NETWORK

Input
Block

Input
Gate

Forget
Gate

Output
Gate

Memory Cell

Subscript i c

input xi ,

output xi

No. Units I n/a n/a n/a C
Activation
function

n/a n/a n/a n/a
g (in-cell)
h (out-ell)

Forward Pass Equations. From a careful analysis of Fig. 8,
we can see that the mathematical representation of Table III
results in (20)-(25) [3]:

∑ 1 ∑ 1
1 ∑ 1

1 (20)

 (21)

∅ ∑ ∅1 ∑ ∅
1

1 ∑ ∅
1

1 (22)

∅ ∅ 	 (23) 	

∑ ∑ ∑ 			 (24)

	 (25) 	

Forward Pass Equations. Based on the fact that a variation
of the Backpropagation (as mentioned over) will be used, the
chain rule must be applied to calculate the partial derivatives.
Initially assume the next definitions:

, ∈ , ∈ 	

Considering the over, and from a careful analysis of Fig. 8

we have the subsequent Backward Pass equations:
Output gate:

	 	 ´ 	∑ (26)

Cells:

 	 	 ´ (27)

Forget gate:

	 	 ´ 	∑ (28)

Input gate:

	 	 ´ 	∑ (29)

States

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:12, 2016

702

	 	
	

	
	

	
	

	
	

 (30)

Comparison between MLP and LSTM. To conclude this
discussion paper, in Table IV, the most important
characteristics between MLP and LSTM are compared;
techniques that will be used to characterize PUs in cognitive
radio networks to validate the convenience of using LSTM as
a predictor of future states spectral channels use by primary
users.

TABLE IV

COMPARISON BETWEEN LSTM AND MLP

 MLP LSTM

Type of ANN Feed forward RNN

Feedback No Si

Type of Unit Neuron Memory block

Hidden Layers Si Si

Connections Feed forward Feed forward in the same layer

Learning Backpropagation BPTT

VI. CONCLUSIONS

The article presents a mathematical analysis about the
operation of type MPL, ANN, finally LSTM neural networks.

From the point of view of LSTM, we show the
mathematical modeling to obtain Backward Pass equations in
LSTM networks; this analysis is very important to develop
algorithms that lead to assess its application in fields as
telecommunications in lines of research such as Cognitive
Radio.

The analysis performed on LSTM to deduce the Backward
Pass equations does not exist in the studied literature and there
are no indications that they exist on the Internet, therefore it is
a resource that is available to be used by the academic and
scientific community.

REFERENCES
[1] Zachary, L., J. Berkowitz., C. Elkan., 2015. A critical review of

recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019.

[2] Pérez, J., 2002. Predictive models based on discrete time recurrent
neural networks. Department of Language and Computer Systems. PhD
Thesis, University of Alicante.

[3] Alex, Graves., 2012. Supervised Sequence Labelling with Recurrent
Neural Networks. Poland: Springer, ISBN: 978-3642247965.

[4] Neural networks basics. (Online). Accessed on February 7 2015,
retrieved from
http://grupo.us.es/gtocoma/pid/pid10/RedesNeuronales.htm.

[5] Artificial neuronal networks in intensive medicine. An example of
application with MPM II variables. (Online). Accessed May 17 2015,
retrieved from http://www.medintensiva.org/es/redes-neuronales-
artificiales-medicina-intensiva-/articulo/13071859/.

[6] Yan, S. Understanding LSTM networks. (Online). Accessed on August
11 2015 retrieved from http://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

[7] Schmidhuber, J., S, Hochrei., 1997. Long short-term memory. Journal
Neural computation, 9: 1735-1780.

[8] Ke-Lin, D., M. Swamy., 2013. Neural networks and statistical learning.
New York: Springer & Business Media, ISBN: 978-1447170471.

