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Abstract—This paper discusses the application of extreme events 

distribution taking the Limpopo River Basin at Xai-Xai station, in 
Mozambique, as a case analysis. We analyze the extreme value 

concepts, namely Gumbel, Fréchet, Weibull and Generalized Extreme 
Value Distributions and then extrapolate the original data to 1000, 

5000 and 10000 figures for further simulations and we compare their 

outcomes based on these three main distributions. 

 

Keywords—Catastrophes, extreme event, disasters, mathematical 

models, simulation. 

I. INTRODUCTION 

HE  issue of modeling extremes or rare events covers 

many areas of life, where events impact negatively on 

social and economic assets. Floods, earthquakes, snowfalls, 

hurricanes, heavy rains and extreme temperatures are some of 

a few examples that can be modeled in the field of natural 

disasters. Extreme events in the market side extreme events 

cover fields such as markets crashes, insurance industry and 

fluctuations in exchange rates that can affect the normal 

functioning of economic processes. Flood management and 

other catastrophes are typical events where mathematical 

approaches play a major role on problem solving and 

prevention. 

Mathematical models illustrated in present paper are just 

part of the wide range of Decision Support Systems (DSS), 

extensively discussed in the literature of risk management.  

DSS constitute a strong area of technology support to risk 

management. Risk management including socio-economic 

problems and environmental issues have benefitted in the last 

decades from the development of DSS. The following 

applications are among the most used for problems with flows, 
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Goal Programming, Multiatribute Models, Weighting 

Matrixes, Pareto Model, ABC Models, Assignment and Fuzzy 

Models, Linear Programming, GIS modeling, just to mention a 

few. 

Most mathematical problems are illustrated by equations, 

but [1] suggest that modeling problems should be included in 

real world modeling, and then find out the answer back within 

the model world. This process of converting the real world 

into a model world is classified as the most important step in 

the modeling process. Conceptual modeling has been applied 

in many different fields of study and the example in Fig. 1 

illustrates the concept of “Occam’s razor” as the starting point 

for the present research.  
 

 

Fig. 1 The Occam’s razor Conceptual Model [1] 

 

Fig. 1 shows, according to William of Occam, how “things 

should not be multiplied without good reason.” Meaning we 

shouldn’t make things harder than they need to be. In modeling 

setting, we should exclude the details which are irrelevant 

given the purpose, or which cannot be handled given the 

constraints and uncertainties.  

II. PURPOSE AND INFORMATION BACKGROUND 

A. Motivation and Purpose 

The purpose of this paper is to present a set of  comparative 

analyze of mathematical models based on the concept of 

extreme value distributions concepts, namely Gumbel, Fréchet, 

Weibull and Generalized Extreme Value Distributions. We 

also look at application of mathematical models to extreme 

events such as floods, climate change and global warming. A 
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real case is taken into consideration, based on 20 years rainfall 

data set registered at Xai-Xai precipitation station in Limpopo 

River Basin, Fig. 2. Moreover using Extreme Events Modeling 

we extrapolate additional simulations by generating three sets 

of random numbers of 1000, 5000 and 10000 figures, which 

are plotted and a comparative analysis is carried out in Section 

V.  
 

 

Fig. 2 Twenty years precipitation observed at Xai-Xai 

Data Source: INAM “data collected” 

 

Based on [2] there is strong evidence that in most countries 

where the records of increase and decrease on monthly or 

seasonal precipitation these countries also experienced 

changes in the amount of falling during the heavy and extreme 

precipitation events. Particular motivation for this topic is the 

magnitude and impact that the 2000 floods in Mozambique, 

over 40,000 families were resettled to less flood-prone areas, 

at least 800 people died, 650,000 were displaced, and 4.5 

million were affected; this figure corresponds to about a 

quarter of the country’s population [3] nevertheless the 

scarcity of data related to such events [4] and [5].  

B. Back ground Information  

“Extreme and non-extreme weather or climate events affect 

vulnerability to future extreme events by modifying resilience, 

coping capacity, and adaptive capacity” [6]. The IPCC, 2012 

[6] have foreseen unprecedented extreme weather and climate 

changes as direct consequence of changes in climate and 

weather anomalies.  

Rainfall and water patterns are identified as part of 

environmental concerns in Africa [7]. Thus, extensive areas 

experience variability of rainfall and many studies sustain that 

extreme events will increase or intensify in the future IPCC 

TAR, IPCC 2001 in [7]. Food security and human lives in 

Africa are increasingly endangered [8], and the IPCC, 2001b 

highlights the evidences suggesting the impact of 

anthropogenic global warming that recently has increased the 

frequency and magnitude of many extreme climate events such 

as floods, droughts, tropical and other storms, anomalous 

temperature and fires. Moreover the IPCC, 2001a [7] points 

out widespread poverty, recurrent droughts, inequitable land 

distribution and overdependence on rain-fed agriculture as the 

main source of vulnerability to climate change in Africa. Figs. 

3 (a) and 3(b) highlight the impacts of climate anomalies and 

extreme events in Africa during the most recent ENSO years 

[8]. 
 

 
        (a)                                      (b) 

Fig. 3 Climate anomalies and extreme events in Africa [8] 

 

Strategic key areas such as water, agriculture and food 

security, forestry, health, and tourism, which are closely linked 

to climate change have been affected extreme events and for 

the present century the IPCC, 2012 [6], has medium 

confidence that droughts will intensify in some seasons and 

areas, due to reduced precipitation and/or increased 

evapotranspiration. This will probably affect some areas in 

southern Europe and the Mediterranean region, central Europe, 

central North America, Central America and Mexico, northeast 

Brazil, and southern Africa.  

Social, economic and environmental sustainability can be 

enhanced by disaster risk management and adaptation 

approaches. A prerequisite for sustainability in the context of 

climate change is addressing the underlying causes of 

vulnerability, including the structural inequalities that create 

and sustain poverty and constrain access to resources (medium 

agreement, robust evidence). This involves integrating disaster 

risk management and adaptation into all social, economic, and 

environmental policy domains [5]-[8]. 

From the IPCC, 2012 [6] and [8], observations collected 

since 1950 give clear signs of changes in some extreme events, 

nevertheless the shortage on quality and quantity of data used 

for analysis vary across regions and for different magnitude of 

events and this, impacts the confidence of analysis also differ. 

Extreme events are subject to uncertainty since it is hard to 

gather related data, hence to predict and make assessments 

regarding changes in their frequency or intensity. The 

management of weather vagaries and extreme hydrological 

events seems to be beyond the control of human being [9], 

therefore the rarer the event the more difficult it is to identify 

long-term changes. Worldwide, the trends on extreme events 

show different behaviors from global to regional and local 

scales for specific patterns of hazards as illustrated in Fig. 4. 

That is; “(a) effects of a simple shift of the entire distribution 

toward a warmer climate (b) effects of an increase in 

temperature variability with no shift in the mean and (c) effects 
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of an altered shape of the distribution, in this example a 

change in asymmetry toward the hotter part of the distribution” 

[6].  
 

 

Fig. 4 The effect of changes in temperature distribution on extremes 

[6] 

 

Fig. 4 illustrates the scenarios changes on mean, variability 

and symmetry of weather with and without changes that might 

influence directly the extreme colds and extreme hot weather 

worldwide.  

The (IPCC, 2012) projections [6] on precipitation and 

temperature changes foreseen, with low confidence, changes in 

floods, due to limited evidence and because the causes of 

regional changes are complex. The impacts of climate 

extremes and the potential for disasters result from the climate 

extremes themselves and from the exposure and vulnerability 

of human and natural systems. Moreover there are strong 

evidence of their impacts on both human society and the 

natural environment. Recent decades witnessed increasing 

economic damages and loss of lives. The hurricane Mitch in 

1998 caused over 10,000 deaths in Central America [2], 

devastating 1999 December floods in Venezuela with over 

10,000 causalities and about $1.8 Bin cost of reconstruction 

[9] and [10] a flood in Mozambique February year 2000 with 

about 800 death and about 2% of economic losses [11], the 

Haiti earthquake in January 2010 and the 11 March 

devastating earthquake in Japan [12] and [13] are few 

evidences of how hard the world has been affected by changes 

in extremes. Both last events have resulted in economic and 

social asset losses that the world still to deal with. The Haiti is 

classified as the third most deadly disaster since 1900 [13], 

while the Japanese was not only the most expensive [12],  but 

also the most complex disaster ever happen, evidencing that 

human being even with modern technology continues to be 

exposure to natural disaster [4]. 

Coping and cost of adapting mechanism and strategies to 

climate change constitute one of the main priorities and 

concern for international institutions such as World Bank, the 

Organization for International Cooperation and Development, 

and the Secretariat of the United Nations Framework 

Convention on Climate Change (UNFCCC) whom have 

assessed and drew cost for the developing countries. 

Mozambique has been a specific case study from a group of 

experts [15] from researchers’ consortium, developing 50-year 

scenarios using an empirically derived model of human losses 

to climate-related extreme events, as an indicator of 

vulnerability and the need for adaptation assistance. The 

results of these scenarios were extended based on 

Mozambique’s achievements to 23 (LCDs) using high-

resolution climate projections, whose partial results from [15] 

are illustrated in Fig. 5. 
 

 

Fig. 5 The effect of changes in temperature distribution on extremes 

[15] 

 

Comparing the achieved results in [15] from Mozambique 

with average from a sample of the chosen 23 least developed 

countries, all scenarios assumed linear continuation of disaster 

frequencies absorbed over the period 1970-2008. The sample 

of 23 LDCs comprises Bangladesh, Burkina Faso, Cape Verde 

Islands, Central African Republic, Comoros Islands, Djibouti, 

Ethiopia, Gambia, Haiti, Laos, Lesotho, Madagascar, Malawi, 

Mali, Mauritania, Mozambique, Nepal, Niger, Senegal, 

Solomon Islands, Tanzania, Vanatu and Zambia. 

Notwithstanding, the authors in [15] highlighted the 

limitations to the applied methods, for instance, like using a 

cross-sectional regression model to make forward-looking 

estimates. Thus, the climate exposure scenarios relay on 

assumption of a linear increase in disaster frequencies over the 
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next 50 years and the uncertainties are large and difficult to 

estimate. The accuracy and also the degree of difficulty 

involved in solving the above-mentioned problems, depends 

critically on the simplifying assumptions applied by the analyst 

in setting up mathematical model of the real-world situation. 

The magnitude of exposure of developing countries to 

extreme events is discussed by [16] where the scenario in 

insurance business is commented “underlying trends show that 

there is in fact a real risk that climate change could create 

unsustainable losses in developed countries, and prevent the 

introduction of insurance to developing countries. The 

problems could arise from extreme events, such as storms or 

floods, or more indirectly, from changes in water, air, food 

quality and quantity, ecosystems, agriculture, and consumer 

or business behavior brought on by climate change”. Fig. 6 

show to what extent climate change might impact the 

economy. 
 

 

Fig. 6 Progressive onset climate change cost [16] 

 

Historically the three distributions have been considered 

isolated and their single parameter family unification is a 

relatively recent development [17], therefore the different 

options in regard to choice of their application. The Gumbel 

simplification is based on the existence of many standards 

distributions of the iX , in (2) for which Gumbel distribution 

is the appropriate limit forMn , where are included normal, 

exponential, Weibull and gamma families. Fig. 7 illustrates 

the annual maximum from rainfall data set for the period 

1990-2009.  
 

 

 

Fig. 7 Annual maximum rainfall data recorded in Xai-Xai 

 

In Fig. 7, we can see that January, February and March are 

the most critical months of main rainfall. Coincidentally this 

emphasizes the impact of rains during the period when heavy 

regional rains and strong depressions and cyclones hit the 

Mozambique Channel causing the 2000 floods, resulting in 

thousands of deaths, lost of economic and social assets. 

The scenario foreseen in [16] starts with the damage of 

infrastructures such as building and roads among other 

predominately. This will be followed by the escalation of 

prices as direct consequence of increased operating costs of 

consumers and businesses, derived from changing weather 

patterns and rising sea level. Thirdly, the “opportunity cost, 

will emerge; the deferment of decisions due to uncertainty as 

the realization grows that climate change is a material issue”  

[16], and lastly at societal level the changes in climate will 

damage the environment, affecting together the non-earning 

segments of the population and creating socio-economic 

stresses and escalate social volatility”. 

III. EXTREME VALUE THEORIES  

A. Mathematical Models in Floods Risk Management  

Flood risk management research has been of extreme 

importance in both hydrology theory and applications related 

to planning and management of water resources. For this 

purpose, several models applied from the very simple one such 

as the stochastic point process [15] to more complex 

simulation models computer based. The Poisson process 

although it is not the most simples in the stochastic classes of 

point process is privileged to be most important process, 

therefore it is important to refer the Poisson process as one of 

the first models for flood risk analysis, see Fig. 8, with mean 

value of  Np=50. 
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Fig. 8 Poisson distribution with Np=50 

 

In between the rank of the homogeneous stochastic point 

process model for flood risk analysis [15] discuss, in a detailed 

manner, the point process models as a classical model suitable 

to describe the flood peak and analyze flood risk, applying 

variety of points according to different purposes and cases. 

From the simplest, Poisson Process Model to flood risk can be 

assumed as the basic starting point. For example Zongxue 

(1993) [15] extrapolates two flood risk models using the 

Bayesian “HSPPB” model where the Bayes reference principle 

is introduced into “stochastic point process theory” is 

discussed: the authors have as an outcome: (1) the PBH model 

risk, which  indicates that the exceedance flood should be large 

than a certain )( 0RX R ≥ during a certain future period of 

years and (2) the Risk RPG model, which is based on having 

more information about historical floods prior to distribution 

of the intensity ʎ  that is considered to be taken as a two 

parameter gamma distribution. These models are beyond the 

scope of our discussion, but can serve as part of wide reference 

on flood risk management and more details on their 

application, c.f. [15]. 

On another hand [12] apply different models for flood 

forecasting in Sri Lanka starting by a hydrodynamic model test 

and in the following discuss a set of blackbox models and 

some conceptual models, which help to extract valuable 

results. Mathematically, our views and beliefs to the real world 

are translated to mathematical language that can be used for 

different purposes, such as development of scientific support, 

experimental and practical tests and decision making support 

for both management and planning. Fig. 9 shows the same 

distribution with trend to a binominal B100. 
 

 

Fig. 9 Fitting the Poisson distribution P(dark) to a binomial 

distribution B100 

 

Mathematical models, when we run simulations can lead to 

both deterministic and stochastic models, according to the 

different kind of factors that we might take into consideration. 

Deterministic models give specific type of results, a single 

number, but if we use random factor then we obtain a 

distribution of numbers. Given the uncertainty that is bounding 

our research, the present paper focus on stochastic models. 

The traditional method of flood risk management based on 

historical data is extensively discussed on [15], where many 

author illustrate the results out coming from the advances of 

hydrological science.  One of the most important issue that is 

taken in consideration in  this research, given the uncertainty is 

the selection criteria of the mathematical equations that lead 

the research, in order avoid the misleading and ambiguous of 

the results.  

The use of mathematical models has shown how important 

this discipline contributes to the management of people’s real 

life situations. 

Mathematical modeling of physical systems is, by 

definition, the description of system behavior by means of 

suitably chosen mathematical relations or equations. Since the 

mathematical description of real-world situations must always 

be, to some extent, imperfect, there is never a model for a 

given system but rather a spectrum of models [18].  

According to [19] information systems belong to the most 

complex artifacts built in today’s society. Developing and 

maintaining system raises a large number of problems, raging 

the purely technical to organizational and social ones. 

Moreover, according to [19], most of the problems within the 

information systems are due to lack of communication and 

conflicts among the stakeholders with different point of views 

and structuring framework. The need of negotiation in order to 

filter the differences is suggested as the main ground floor for 

problem solving. And this is called conceptual modeling.  

Borrowing these ideas from [19] we believe that 

mathematical models although consists mainly of logical 

expressions, they also have more to do with logical and 

conceptual schema in order to solve the complexity of the real 

world problems. The authors in [1] describe complexity as an 

association to the real world problem and argue that the 
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problems that modelers wish to solve exist in the real world 

and classify the real world as a nasty place with all sorts of 

complications. 

B. Extreme Value Theories, Exceedance and Threshold 

Rainfall 

Provided the historical data we can apply the extreme value 

theory techniques for estimating probabilities for future 

extreme levels [17]. Probabilistic extreme value theory, first of 

all deal, with the stochastic behavior of maximum and 

minimum random variables in group of time-ordered 

independent and identically distributed (iid) observations of a 

process that must follow extreme distribution of a generalized 

form, usually named as a GEV distribution.   
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for parameter .)0(, ξσµ and>  This family arises 

[20] by considering  limiting approximations to the 

distribution of  

 

),....,max( 1 nn XXM =        (2) 

 

Linearly rescaled as ∞→n , where  the iX are iid random 

variables having possible short-range dependence, but only 

very restricted form of long-range dependence pertaining to 

extreme [20] for more details. 

By 0=ξ  we get the special case, assuming the limit of (1) 

as 0→ξ , resulting on the Gumbel family discussed in the 

following sections with the distribution function [20] 
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In probability theory and statistics, the generalized extreme 

value distribution is a family of continuous probability 

distributions developed within extreme value theory to 

combine the  three separate classes corresponding to 0<ξ , 

0=ξ  and 0>ξ . 

Climate models improvements are appointed by [9], as 

sources to enhance abilities to simulate many aspects of 

climate variability and extremes and as an example they refer 

to decreased diurnal temperature ranges, warmer mean 

temperature associated with increased extreme cold days, and 

increased intensity of rainfall events. 

As discussed above the data set under analysis denote 

exceedance over the threshold (the average) rainfall set of 20 

year. According to [20] a model that support to extract upper 

extremes from a given set of data nxx ,...,1 to take exceedance 

over a predetermined, high threshold
µ

. exceedance jy
over 

µ
(peaks-over-threshold (plotted) are those 

µ>nx taken in 

the original order of their outcome or in any other order. This 

number of exceedance will be denoted by k or, occasionally, 

by K to emphasize the randomness of this figure. zero, 

otherwise. If iX
are iid random variables with common 

distribution function (df) df F, then 

 

{ } ( ) { } ,,....,0,1 , nkwherekBqpkKP pn

knk
n

k

==−





== −

    (4)  

 

where  pnB ,  is the binomial distribution with parameters n 

and  

 

( )µFp =                 (5) 

 

The mean number of exceedance over µ is  

 

, ( ) (1 ( ))n F np n Fµψ µ= − −                      (6)  

 

which defines a decreasing mean value function.   

Another mathematical model that [20] suggest support the 

analysis of highest figure of the rainfall data set is the so called 

annual maxima, blocks or Gumbel method given below. 

For iid random variables XmX ,...,1 with common df F, we 

can easy compute the df of maxima, as follow: 

 

{ } { }1max ,..., ( )m

i m
i m

P X x P X x X x F x
≤

≤ = ≤ ≤ =        (7) 

 

This can be complemented by the minima, generally 

deduced from corresponding results for maxima as follows: 

 

ni
i

ni
i XX

≤≤

−−= )min(min        (8) 

 

that can generate results in terms of the survivor function  

 
__

1 FF −=           (9) 

 

The study of extreme value distributions is widely discussed 

in different text books of this subject and different author such 

as, [10], [20]-[23] three main types of extreme value name the 

Gumbel Distribution also called Extreme Value Distribution 

(EDV) Type I, Fréchet Distribution (EDV Type II), the 

Weibull Distribution (EDV Type III) and the Generalized 

Extreme Value Distribution, a flexible three parameter 

distribution that combines the all three type listed above. 
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IV. EXTREME EVENTS MODELING 

A. Generalized Extreme Values Distribution 

In the field of statistical analysis the issue of Extreme events 

modeling is covered by Extreme value theory as a separate 

branch; the background of this theory is the extreme types of 

theorem, also known as three types theorem and it supports 

that there are only three types of distributions that are needed 

to model the maximum or minimum of the collection of 

random observation from a data set The standard Extreme 

values Distributions Functions, given in most statistic text 

books, mathematically are illustrated by the following 

equations: 

The standard Gumbel distribution also known as Extreme 

Value Type I distribution, is given by the following probability 

density function 

 

 
xeexf

−−=)(           (10)  

 

in case where 0=µ and .1=β  

The Fréchet Distribution, also known as the Extreme Value 

Type II, is defined by probability distribution function: 
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where α is shape parameter 0>α  and β is a scale 

parameter 0>β ,  

While the Weibull, also known as Extreme Value Type III, 

has the following probability distribution function:  

 
1
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             (12) 

 

where k>0 is the shape and 0>λ  is the scale parameter of 

the distribution. 

More explanation about the application of the three 

probability distribution function and the usage of this Extreme 

Value Distribution is given by [20], where the 

parameterization of Weibull dfs is different from the standard 

one, where Weibull dfs with positive shape parameter is 

considered. 

B. Illustrations and Simulations  

When running the extreme function based on the row data 

the models result as shown in Figs. 10 and 11 with normal 

distribution and Fréchet, Gumbel Max and Gumbel Min 

respectively with a basic histogram. The Gumbel family as 

exhibited on Fig. 11 has symmetric behavior, the min to the 

max since it the generalized extreme value for minima is 

obtained based on a negative value of  x, i.e. by subtitling with 

(-x).   Hence it is important to mention that the results that aim 

to show the maxima can also be used to illustrate the minima 

by using a series of   nx−  instead of   nx . 

 

 

Fig. 10 The histogram and normal distribution as an outcome from 

the row data 

 

Using the same data, three main distributions can be 

analyzed, namely the  Fréchet , Gumebl maximum and Gumbel 

minimum, while the Weibull it is not applicable, as shown in 

Figs. 10 and 11. The Frechet and Gumbel min almost have the 

same parameters, therefore they illustrate the same behavior. 
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Fig. 11 Extreme distributions, collected data 

 

All graphics can be analyzed using their statistics and   

Goodness of fit, based on Kolmogorov and Anderson Darling 

as illustrated in Tables I to VIII.  
 

TABLE I 

FITTING RESULTS BASED ON COLLECTED DATA 

# Distribution Parameters 

1 Fréchet 30.224.4 +=+= EE βα  

2 Gumbel Max 30.22.4 +== Eµσ  

3 Gumbel Min 30.22.4 +== Eµσ  

4 Weibull 30.823.5 +=+= EE βα  
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TABLE II 

GOODNESS OF FIT BASED ON COLLECTED DATA 

# Distribution 
Kolmogorov Smirnov Anderson Darlin 

Statistic Rank Statistic Rank 

1 Fréchet 0.17 3 0.75 1 

2 Gumbel Max 0,13 1 1.0 2 

3 Gumbel Min 0.16 2 1.1 3 

4 Weibull N/A N/A 

 
TABLE III 

FITTING RESULTS BASED ON 1000 RANDOM NUMBERS 

# Distribution Parameters 

1 Fréchet 30.228.4 +=+= EE βα  

2 Gumbel Max 30.26.3 +== Eµσ  

3 Gumbel Min 30.26.3 +== Eµσ  

4 Weibull 30.224.5 +=+= EE βα  

 

In order to reinforce our analysis on extreme values and 

exceedance, we used the collected data to generate random 

numbers for more simulations namely with 1000, 5000 and 

10000 figures, which outputs are illustrated in graphic and 

their statistical summary, respectively. 
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Fig. 12 Extreme distributions for 1000 random number 
 

 

TABLE IV 

GOODNESS OF FIT BASED ON 1000 RANDOM NUMBERS 

# Distribution 
Kolmogorov Smirnov Anderson Darlin Chi-Square 

Statistic Rank Statistic Rank Statistic Rank 

1 Fréchet 0.15 4 48.0 4 2.3E+2 4 

2 Gumbel Max 0,15 3 59.0 1 2.1E+2 3 

3 Gumbel Min 0.01 1 0.15 5 1.8 1 

4 Weibull 0.01 2 3.1E+2 2 2.6 2 
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Fig. 13 Extreme distributions for 5000 random number 
 

TABLE V 

FITTING RESULTS BASED ON 5000 RANDOM NUMBERS 

# Distribution Parameters 

1 Fréchet 30.228.4 +=+= EE βα  

2 Gumbel Max 30.26.3 +== Eµσ  

3 Gumbel Min 30.26.3 +== Eµσ  

4 Pareto 30.20.78 +== Eβα  

5 Weibull 30.225.5 +=+= EE βα  

 

 

 

 

TABLE VI 

GOODNESS OF FIT BASED ON 5000 RANDOM NUMBERS 

# Distribution 
Kolmogorov Smirnov Anderson Darlin Chi-Square 

Statistic Rank Statistic Rank Statistic Rank 

1 Fréchet 0.14 4 2.5E+2 3 1.4E+2 4 

2 Gumbel Max 0,14 3 3.0E+2 4 1.2E+2 3 

3 Gumbel Min 0.01 2 0.29 2 7.6 2 

4 Pareto 0.44 5 1.6E+3 5 1.8E+4 5 

4 Weibull 0.01 1 0.28 1 6.8 1 
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Fig. 14 Extreme distributions for 10000 random number 

 

 

TABLE VII 

FITTING RESULTS BASED ON 10000 RANDOM NUMBERS 

# Distribution Parameters 

1 Fréchet 30.229.4 +=+= EE βα  

2 Gumbel Max 30.26.3 +== Eµσ  

3 Gumbel Min 30.26.3 +== Eµσ  

4 Pareto 30.20.58 +== Eβα  

5 Weibull 30.225.5 +=+= EE βα  

 

 

 

 

 

 

TABLE VIII 

GOODNESS OF FIT BASED ON 10000 RANDOM NUMBERS 

# Distribution 
Kolmogorov Smirnov Anderson Darlin Chi-Square 

Statistic Rank Statistic Rank Statistic Rank 

1 Fréchet 0.15 4 5.1E+2 3 N/A  

2 Gumbel Max 0,14 3 6.2E+2 4 N/A  

3 Gumbel Min 0.0 1 0.16 1 5.4 1 

4 Pareto 0.48 5 3.5E+3 5 4.8E+3 3 

4 Weibull 0.0 2 0.23 2 5.7 2 

 

The behavior shown on the distributions seem to be the 

same as the random numbers go beyond 1000, therefore the 

same shapes behavior we can see as for 5000 and 10000 

random numbers, where the Gumbel minimum and the Weibull 

grow toward the exceedance over the pick period of floods, 

while the Gumbel Maximum has the same skewness with 

Fréchet symmetric shape and the Pareto appears out of range. 

V. ANALYSIS AND DISCUSSION 

Basically, our contribution is given on the applications of 

the Generalized Extreme Value distributions to analyze and 

simulate real data set from rainfall that extremely affected 

Mozambique, impacting the economy and social assets.  

Traditional illustrations based on extreme analytical software 

are shown on Figs. 8 and 9 based on simple Poisson with 

Np=50, Fig. 8, and additionally with trend to a binominal 

distribution B100, Fig. 9. Also it plays a major role the 

comparative analysis that is given based on randomly 

generated data, where we focused on statistical analysis and 

the raking process based on Kolmogorov Smirnov, Anderson 

Darlin and Chi-Squared goodness of fit, which details are 

shown Tables I-VI. 

VI. CONCLUSIONS 

Our primary conclusion is that the usage of Extreme Value 

Models is helpful for data set analysis, where we can assess the 

limit distribution of the maxima of a set of independent and 

identically distributed random data. For this specific case we 

see that the Weibull distribution appears to cover the skewness 

of data set distribution with trend to maxima, while the 

Gumbel and Fréchet denote their traditional skewness. 

Regarding the data under consideration from Mozambique, 

with Weibull and Pareto distributions there is a trend to follow 

the threshold is given in the year 2000. 

For this specific analysis the application of General Extreme 

Value that covers the three main Extreme Value Distributions 

seem to be dominated by both Fréchet and Gumbel Maximum, 

since their skewness is mostly left while the long tile is right. 

This is the opposite outcome for the Weibull, Pareto and 

Gumbel Minimum that gives a trend to the row data given the 

maximum rainfall of year 2000, expressed in Figs. 8 and 9. 
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