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Abstract—The use of buffer thresholds, blocking and adequate 
service strategies are well-known techniques for computer networks 
traffic congestion control. This motivates the study of series queues 
with blocking, feedback (service under Head of Line (HoL) priority 
discipline) and finite capacity buffers with thresholds. In this paper, 
the external traffic is modelled using the Poisson process and the 
service times have been modelled using the exponential distribution. 
We consider a three-station network with two finite buffers, for 
which a set of thresholds (tm1 and tm2) is defined. This computer 
network behaves as follows. A task, which finishes its service at 
station B,  gets sent back to station A for re-processing with 
probability . When the number of tasks in the second buffer exceeds 
a threshold tm2 and the number of task in the first buffer is less than 
tm1, the fed back task is served under HoL priority discipline. In 
opposite case, for fed backed tasks, “no two priority services in 
succession” procedure (preventing a possible overflow in the first 
buffer) is applied. Using an open Markovian queuing schema with 
blocking, priority feedback service and thresholds, a closed form 
cost-effective analytical solution is obtained. The model of servers 
linked in series  is very accurate. It is derived directly from a two-
dimensional state graph and a set of steady-state equations, followed 
by calculations of main measures of effectiveness. Consequently, 
efficient expressions of the low computational cost are determined. 
Based on  numerical experiments and collected results we conclude 
that the proposed model with blocking, feedback and thresholds can 
provide accurate performance estimates of linked in series networks.  

Keywords—Blocking, Congestion control, Feedback, Markov 
chains, Performance evaluation, Threshold-base networks.

I. INTRODUCTION

INITE buffer queues with thresholds, blocking and service 
priorities are of great importance towards the effective 

computer network traffic congestion control. Congestion 
occurs when many users compete for the network resources 
and the resources are inadequate for the requests. The use of 
thresholds and blocking for controlling congestion in 
computer network buffers is well known and  often used. 
Congestion control based on thresholds and blocking is aimed 
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to control the traffic-causing overload and so to satisfy the 
Quality of Service (QoS) requirements of the different classes 
of traffic. 

The aim of this paper is to build up an analytical model of 
computer networks with blocking, feedback priority service 
and threshold policies; seeking to obtain high network 
utilization, acceptable delay time, and some degree of fairness 
among users. It is difficult to compute the queue length, 
waiting time and other queuing features of this network, since 
this is a two-queue network and both are finite capacity 
queues with thresholds. Throughput studies, and efficiency 
studies of the network with blocking, thresholds and feedback 
using this model, are important for real-life applications. In 
the past couple of years, there has been a strong demand for 
computer networks that can provide adequate quality of 
service (QoS) among users. Such demand initiated a need for 
a solution where the servers play an active role in congestion 
control. A series of threshold policies and congestion control 
procedures were proposed to control queue lengths and to 
promote fairness among task generating sources [1, 2, 8, 9, 10, 
12, 17, 21, 24, 25]. Most computer networks are connection 
oriented, also known as linked in series. There are many 
blocking models that can be used to provide insight into the 
performance of those networks. Blocking models, if they can 
be solved efficiently, are often used in network planning and 
dimensioning. Due to obvious resource constrains, realistic 
models have finite capacity buffers, where the queue length 
cannot exceed its arbitrary maximum capacity. When the 
queue length reaches its capacity, the buffer and the server are 
said to be full (blocking factors). Queuing network models 
(QNMs) with finite capacity queues and blocking provide 
powerful and practical tools for performance evaluation and 
predication of discrete flow systems as computer systems and 
networks. As a consequence, cost-effective numerical 
techniques and analytic approximations are needed for study 
of complex queuing systems. Time priority mechanisms such 
as Head of Line (HoL), take into account that some services 
may tolerate longer delays than others and deal with the order 
with which tasks are transmitted [14]. The traditional analyses 
of the ONMs with blocking are based on the Markov Chain 
approach [3, 4, 7, 11, 16]. In recent years, extensive research 
in this field produced many results that are well explained in 
the literature. An excellent study may be found in the well-
known series of books by Balsamo [2] and Perros [21]. In 
addition, many interesting theories and models appeared in a
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variety of journals and at worldwide conferences in the field
of computer science, traffic engineering and communication 
engineering [6, 13, 19, 20, 23].

Despite all the research done so far, there are still many 
important and interesting models to be studied. One such 
model is finite capacity queues under various blocking 
mechanisms and synchronization constraints, such as those 
involving feedback service or priority scheduling. In this kind 
of model, a task with a fixed probability can return to the 
previous node immediately after its service at the current 
node. Although feedback queues have already been 
extensively studied in literature see [12, 15, 18], series queues 
with priority feedback are more complex object for research 
than the queues without feedback. The introduction of 
multiple-thresholds can give rise to inter-dependency between 
the thresholds setting, which are also dependent on the service 
discipline used. Because of these complex inter-dependencies, 
a suitable analytical model is necessary to understand the 
resulting interactions. The main aim of this paper is to 
formulate such a model with multiple queue thresholds and 
examine the queuing behaviour under a priority service 
discipline for feed backed tasks. 

The rest of the paper is organized as follows: Section 2 
presents and explains the analytical model. Section 3, analyzes 
a three-node network with blocking, priority feedback and 
thresholds. Procedures for calculating the performance 
measures and quality of service (QoS) parameters are 
presented in Section 4. Numerical results obtained using our 
solution techniques are given in Section 5.  Section 6 finally 
concludes the paper. 

II. MODEL DESCRIPTION

The general model description is: 
The arrival process from source station is Poisson. 
Each station consists of a single server and queue. 
Two stations provide service that is exponentially 
distributed. 
Scheduling disciplines are FCFS and HOL. 
All queues have finite capacity m1 and m2 with 
thresholds tm1 and tm2.

Fig. 1 presents a simplified three-station (source, station A
and station B) description of the proposed model. Tasks arrive 
from the source at station A according to the Poisson process 
with rate and they are processed in a FIFO manner. The 
service received by station A is as follows. The task first 
receives an exponentially distributed service with rate 1

A.
After service completion at station A, the task proceeds to 
station B (exponentially distributed service with rate B). Once 
it finishes at station B, it gets sent back to station A for re-
processing with probability (exponentially distributed 
service with rate 2

A - according to HoL priority discipline). 
Once finished, each re-processed task departs from the 
network. We are also assuming that tasks after  being 
processed in the station B  leave the network with 1-
probability.  

A feed backed task is served at station A according to a 
non-preemptive priority scheme (HoL). It is served 
independently of all other events if the number of tasks in the 

second buffer exceeds a threshold tm2 and the number of task 
in the first buffer is less than tm1. If the number of tasks in 
second buffer is less than tm2 and the number of tasks in the 
first buffer exceeds tm1, another procedure is applied. This 
“no two priority services in succession” procedure prevents a 
possible overflow in the first buffer. 

Fig.1. Illustration of the three-station network model with 
blocking, priority feedback service and thresholds. 

The HoL priority service means that a task cannot get into 
service at station A (it waits at station B – blocking factor) 
until the task currently in service is completed. The successive 
service times at both stations are assumed to be mutually 
independent and they are independent of the state of the 
network. 

In such networks, another one blocking factor may occurs 
when a station reaches its maximum capacity, which, in turn, 
may momentarily stop the traffic of all incoming tasks to that 
station. Let us say that between station A and station B, there 
is a waiting buffer with finite capacity m2. When the buffer 
fills up completely, the accumulation of new tasks from the 
first station is temporarily suspended. Similarly, if the first 
buffer (with capacity m1) in front of the first station gets full, 
then that source station is momentarily blocked. This is a 
classical mechanism for controlling the intensity of an arriving 
task streams from a source station. According to our model 
specification (see Fig. 1), when either of the buffers is full, 
any task upon completion of service at the source station or at 
station A, is forced to wait at its station. The task flows from 
the source station to station A or from the first station-to-
station B depending on service process in stations A or B
respectively. Physically, blocked tasks stay on the source 
station or on station A, but the nature of the service process in 
stations A and B allows us to treat them as located in 
additional places in the buffers and belonging to stations A or
B (see Fig. 2 and Fig. 3). If the server A is busy, any task 
which needs a repeated service in this station, after having its 
service completed in the station B, is forced to wait in this 
station (blocking factor). The nature of the service process in 
this case depends only of the service rates in station A.
Similarly; it allows one to treat this task as located in the 
additional place in the buffer A.

Deadlocks can occur in a multistage network with feedback 
and blocking - as depicted above. For example, assume that 
station A is blocked by station B (the second buffer is full). In 
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such situation, it is possible that a task in station B, upon its 
completion may get send back to station A, which in turn, will 
cause a deadlock. In this paper, we assume that deadlocks are 
detected and resolved instantaneously without any delay, 
simply by exchanging the blocked tasks. 

III. PROPOSED SOLUTION (QUEUEING MODEL)

Markov processes constitute the fundamental theory 
underlying the concept of queuing systems and provide very 
flexible, powerful, and efficient means for the description and 
analysis of dynamic computer network properties. Each 
queuing system can, in principle, be mapped onto an instance 
of a Markov process and then mathematically evaluated in 
terms of this process. The linked in series network model 
described in Section 2 is a multistage queuing system with 
recycling that also allows blocking. Service at each station 
(see Fig. 1) is provided by a single exponential server. 
External arrivals (tasks) from the source station join the first 
station in a Poisson fashion at the rate . We assume that each 
successive service at both station and the inter-arrival times 
are independent of each other. Under such assumptions the 
queuing network we are describing can be represented by a 
continuous-time Markov chain, in which the underlying 
Markov process can analyze the stationary and transient 
behavior of the network. We consider this network in its 
stationary conditions. As such, the queuing network model 
reaches a steady-state condition and the underlying Markov 
chain has a stationary state distribution. If each queue has 
finite capacity, the underlying process yields finite state space. 
The solution of the Markov chain representation may then be 
computed and the desired performance characteristics, such as 
queue length distribution, utilizations, and throughputs, 
obtained directly from the stationary probability vector. In 
addition, features such as blocking, priority feedback service, 
thresholds, may be incorporated into a Markov chain 
representation – although the effect of doing so will increase 
the size of the state space. 

In theory, any Markov model can be solved numerically. In 
particular, solution algorithm for Markov queuing networks 
with blocking, priority feedback service and thresholds is a 
five-step procedure: 

1. Definition of the series network state space (choosing a 
state space representation). 

2. Enumerating all the transitions that can possible occur 
among the states. 

3. Definition of the transition rate matrix Q that describes 
the network evaluation (generating the transition rate). 

4. Solution of linear system of the global balance 
equations to derive the stationary state distribution 
vector (computing appropriate probability vector). 

5. Computation from the probability vector of the average 
performance indices. 

The state of the queuing network with blocking, priority 
feedback service and thresholds (see Fig. 2 and Fig. 3) can be 
described by random variables (i,j,k), where i indicates the 
number of tasks at the first station, j indicates the number of 
tasks at second server and k represents the state of each server. 
Here, the index k may have the following values: 0, 1, 2, 3, 4.

TABLE I
THE INDEX  K VALUE

Index k: Task Description: 
0 Idle network 

1 Regular task service for i m1+1
and source blocking for i = m1+2 

2 Priority task service for i m1+1
and source blocking for i = m1+2

3 Blocking one node and regular task  
service at the other one 

4 Blocking one node and priority task  
service at the other one 

Based on an analysis the state space diagrams, the process 
of constructing the steady-state equations in the Markov 
model can be divided into several independent steps which 
describe some similar, repeatable schemas (see Fig. 2 and Fig. 
3). These steady-state equations are:

 · p0,0,0  = B (1- ) · p0,1,1 + 2
A · p1,0,2 for i=0, j=0, k=0 

(  + B  + B (1- )) · p0,j,1  = 1
A · p1,j-1,1 + 2

A · p1,j,2
+ B(1- ) · p0,j+1,1 for i=0,  j=1, ... , m2,  k=1;   if  m2>0
(  + B  + B (1- )) · p0,m2+1,1  = 1

A · p1,m2,1 + 2
A · p1,m2+1,2

+ B(1- ) · p0,m2+2,3 for i=0,  j=m2+1,  k=1
(  + 1

A) · p1,0,1  =  · p0,0,0 + B(1- ) · p1,1,1 + 2
A · p2,0,2

for i=1,  j=0,  k=1
(  + 1

A) · pi,0,1  =  · pi-1,0,1 + B(1- ) · pi,1,1 + 2
A · p i+1,0,2

for i=2, ... , m1+1,  j=0,  k=1;  if  m1>0
(  + 2

A) · p1,0,2  = B  · p0,1,1 + B(1- ) · p1,1,2 + 2
A · p1,1,4

for i=1,  j=0,  k=2
(  + 2

A) · pi,0,2  =  · pi-1,0,2 + B(1- ) · pi,1,2 + 2
A · pi,1,4

for i=2, ... , tm1+1,  j=0,  k=2;   if   tm1  1 
(  + 2

A) · pi,0,2  =  · pi-1,0,2 + B(1- ) · pi,1,2
for i = tm1+2, ... , m1+1,  j = 0,  k = 2;   if   tm1 < m1

(  + B(1- )+ 1
A + B ) · pi,j,1  =  · pi-1,j,1 + 1

A · pi+1,j-1,1
+ B(1- ) · pi,j+1,1 + 2

A · pi+1,j,2
for i=1, ... , m1+1,  j=1, ... , m2,  k=1;  if  m2 > 0

(  + B(1- )+ 1
A + B ) · pi,m2+1,1  =  · pi-1,m2+1,1

+ 1
A · pi+1,m2,1 + B(1- ) · pi,m2+2,3 + 2

A · pi+1,m2+1,2
for i=1, ... , m1+1,  j=m2+1,  k=1 

(  + B(1- )+ 2
A + B ) · p1,j,2  = 1

A · p1,j,3
+ B(1- ) · p1,j+1,2 + B  · p0,j+1,1 + 2

A · p1,j+1,4
for i=1,  j=1, ... , m2,  k=2;  if  m2 > 0

(  + B(1- )+ 2
A + B ) · pi,j,2  =  · pi-1,j,2 + 1

A · pi,j,3
+ B(1- ) · pi,j+1,2 + 2

A · pi,j+1,4
for i=2, ... , tm1+1,  j=1, ... , m2,  k=2;  if  tm1  1 & m2 > 0 

(  + B(1- )+ 2
A + B ) · pi,j,2  =  · pi-1,j,2 + 1

A · pi,j,3
+ B(1- ) · pi,j+1,2 (1)

for i=tm1+2, ... , m1+1, j=1, ... ,tm2+1, k = 2; 
                                                      if   tm1 < m1  &  tm2 < m2
(  + B(1- )+ 2

A + B ) · pi,j,2  =  · pi-1,j,2 + 1
A · pi,j,3

+ B(1- ) · pi,j+1,2
for i=tm1+2, ... , m1+1,  j=1, ... ,m2,  k=2;

                                    if   tm1 < m1  &  tm2 = m2  & m2 > 0
(  + B(1- )+ 2

A + B ) · pi,j,2  =  · pi-1,j,2 + 1
A · pi,j,3

+ B(1- ) · pi,j+1,2 + 2
A · pi,j+1,4

for i=tm1+2, ... , m1+1,  j=tm2+2, ... , m2,  k=2;
                                                 if   tm1 < m1  &  tm2 < m2-1
(  + B(1- )+ 2

A + B ) · pi,m2+1,2  =  · pi-1,m2+1,2
+ 1

A · pi,m2+1,3 + B · pi-1,m2+2,3
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for i =2, ... , m1+1,  j=m2+1,  k=2;  if  m1 > 0
(  + B(1- )+ 2

A + B ) · p1,m2+1,2  = 1
A · p1,m2+1,3

+ B  · p0,m2+2,3 for i=1,  j=m2+1,  k=2 

For states with blocking the equations are: 
(  + B(1- ) + B ) · p0,m2+2,3  = 1

A · p1,m2+1,1
for i=0,  j=m2+2,  k=3

(  + B(1- ) + B ) · pi,m2+2,3  =  · pi-1,m2+2,3
+ 1

A · pi+1,m2+1,1
for i=1, ... , m1,  j=m2+2, k=3;  if  m1 > 0

( B(1- ) + B ) · pm1+1,m2+2,3  =  · pm1,m2+2,3 + 1
A · pm1+2,m2+1,1

for i=m1+1,  j=m2+2,  k=3
1

A · pm1+2,0,1  =  · pm1+1,0,1 + B(1- ) · pm1+2,1,1
for i=m1+2,  j=0,  k=1 

( 1
A + B(1- ) + B ) · pm1+2,j,1  =  · pm1+1,j,1

+ B(1- ) · pm1+2,j+1,1
for i=m1+2,  j=1, ... , m2,  k=1;  if  m2 > 0

( 1
A + B(1- ) + B ) · pm1+2,m2+1,1 =  · pm1+1,m2+1,1

for i=m1+2,  j=m2+1,  k=1
2

A · pm1+2,0,2  =  · pm1+1,0,2 + B(1- ) · pm1+2,1,2                                 
for i=m1+2,  j=0,  k=2; if tm1 < m1  or m1=0

2
A · pm1+2,0,2  =  · pm1+1,0,2 + B(1- ) · pm1+2,1,2

+ 2
A · pm1+2,1,4                                                                     (2)

for i=m1+2,  j=0,  k=2; if tm1 = m1  and m1 > 0 
( 2

A + B(1- ) + B ) · pm1+2,j,2  =  · pm1+1,j,2
+ B(1- ) · pm1+2,j+1,2 + 1

A · pm1+2,j,3
for i=m1+2,  j=1, ... , tm2+1, k=2; if  tm1< m1 & tm2<m2-
1
( 2

A + B(1- ) + B ) · pm1+2,j,2  =  · pm1+1,j,2
+ B(1- ) · pm1+2,j+1,2 + 1

A · pm1+2,j,3
for i=m1+2, j=1, ...,m2, k=2; if  tm1<m1 & tm2=m2 & m2>0
( 2

A + B(1- ) + B ) · pm1+2,j,2  =  · pm1+1,j,2
+ B(1- ) · pm1+2,j+1,2 + 1

A · pm1+2,j,3 + 2
A · pm1+2,j+1,4

for i=m1+2, j=tm2+2, ... ,m2, k=2; if  tm1<m1 & tm2 = m2-
2
( 2

A + B(1- ) + B ) · pm1+2,j,2  =  · pm1+1,j,2
+ B(1- ) · pm1+2,j+1,2 + 1

A · pm1+2,j,3 + 2
A · pm1+2,j+1,4

for i=m1+2,  j=1, ... , m2,  k=2; if  tm1= m1 & tm2 > 0
( 2

A + B(1- ) + B ) · pm1+2,m2+1,2  =  · pm1+1,m2+1,2
+ B  · pm1+1,m2+2,3  + 1

A · pm1+2,m2+1,3
for i=m1+2,  j=m2+1,  k=2

(  + 1
A) · p1,j,3  = B  · p1,j,1 + 2

A · p2,j,4
for i=1,  j=1, ... , tm2+1,  k=3;  if  tm1=0 

(  + 1
A) · p1,j,3  = B  · p1,j,1

for i=1,  j = tm2+2, ... , m2+1,  k=3;  if  tm1=0  & tm2 < m2 
(  + 1

A) · p1,j,3  = B  · p1,j,1
for i=1,  j=1, ... , m2+1,  k=3;  if  tm1 > 0

(  + 1
A) · pi,j,3  = B  · pi,j,1 +  · pi-1,j,3

for i=2, ... , tm1+1,  j=1, ... , m2+1,  k=3;  if  tm1  1 
(  + 1

A) · pi,j,3  = B  · pi,j,1 +  · pi-1,j,3 + 2
A · pi+1,j,4

for i=tm1+2, ... , m1+1,  j=1, ... , tm2+1,  k=3;  if  tm1 < m1
(  + 1

A) · pi,j,3  = B  · pi,j,1 +  · pi-1,j,3  for i=tm1+2, ... , 
m1+1,  j=tm2+2, ... , m2+1,  k=3;  if  tm1 < m1 & tm2 < m2 

1
A · pm1+2,j,3  = B  · pm1+2,j,1 +  · pm1+1,j,3

for i=m1+2,  j=1, ... , m2+1,  k=3
 (  + 2

A) · p1,j,4  = B  · p1,j,2 for i=1,  j=1, ... , m2+1, k=4
(  + 2

A) · pi,j,4  = B  · pi,j,2 +  · pi-1,j,4
for i=2, ... , m1+1,  j=1, ... , m2+1,  k=4

2
A · pm1+2,j,4  = B  · pm1+2,j,2 +  · pm1+1,j,4

for i=m1+2,  j=1, ... , m2+1,  k=4

Fig. 2.  Two-dimensional network state diagram (first part) 

Fig. 3.  Two-dimensional network state diagram (second part) 
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Here, a linked in series network with blocking is 
formulated as a Markov process and the stationary probability 
vector can be obtained using numerical methods for linear 
systems of equations. The process of solving the set of 
equations given by (1) and (2) with common algorithms is not 
a trivial case, because part of the graph has an irregular shape. 
There are many methods for the solution of a system of linear 
algebraic equations but some of these are restricted to certain 
regular structures of the parameter matrix. In this paper, a 
method is used, in which the whole graph column by column 
is sequentially re-numbered in order to solve this problem (to 
get a standard finite-state one-dimensional Markov chain). 
This operation is necessary for solving a set of linear 
equations in MATLAB based on the well-known MATLAB 
efficient sparse storage schemas and efficient sparsity-
preserving algorithms. The state of any Markov chain may be 
represented as an integer-valued row vector adopted by the 
above-mentioned MATLAB algorithms. After this operation, 
new set of linear equations can be solved using classical 
numerical methods, based on algorithms typical for sparse and 
diagonal matrices (for example – numerical experiments in 
MATLAB). The generation of the rate matrix Q can now be 
accomplished by going through the list of states and 
generating all the feasible transitions out of each state and the 
associated rate of transition. For this kind of Markov process 
in a steady state, we simply have [2, 5, 22]: 

 xQ = 0                                                                     (3) 

Where x is the stationary probability vector whose k-th 
element xk is the steady-state probability that the system is in 
state k. Vector x can be obtained from (3) and the normalizing 
condition 1x

statesall
k , using equation-solving techniques. 

In the next step, calculated state probabilities are assigned 
to each state shown on the two-dimensional state graphs.  

IV. PERFORMANCE MEASURES (AN INTEGRAL APPROACH)

The different types of queuing systems are analyzed 
mathematically to determine performance measure from the 
description of the system. Since most queuing systems have 
stochastic elements, these measures are often random 
variables and their probability distributions, or at the very 
least their expected values desired to be found. Normally, 
however, we are content with the results in the steady state. 
The system is said to be in steady state when all transient 
behaviour has ended, and the values of the performance 
measures are independent of time. The solution of the Markov 
chain representation may then be computed. The desired 
performance characteristics, such as queue length distribution, 
utilizations, and throughputs can be also obtained directly 
from the stationary probability distribution vector. 

The most important performance measures are: 
1. Idle probability pidle:

0,0,0idle pp                                                                     (4) 

2. Station A blocking probability pblA :

11m

0i
3,22m,iblA pp                                                                (5) 

3. Source station blocking probability pblS :

3,22m,11m

12m

1j
4,j,21m3,j,21m

2,j,21m

12m

0j
1,j,21mblS

p)pp(

)pp(p

                        (6) 

4. Both stations (source and station A) simultaneous 
blocking probability pblAS :

3,22m,11mblAS pp                                                          (7) 

5. Station B blocking probability pblB :

)pp(p 4,j,i

12m

1j
3,j,i

21m

1i
blB                                        (8) 

6. Both stations (source and station B) simultaneous 
blocking probability pblBS :

)pp(p 4,j,21m

12m

1j
3,j,21mblBS                            (9) 

7. The average number of blocked tasks in station A:

)p1(n
11m

0i
3,22m,iblA                                                  (10) 

8. The average number of active (non-blocked) tasks in 
station A:

)p1()p1(l
12m

1j
k,j,i

4

3k

21m

1i

12m

0j
k,j,i

2

1k

21m

1i
A     (11) 

9. The average number of tasks in the first buffer vA :
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1i
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                                                                            (12)
10.  The average number of tasks in station A:
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                                                                                             (13) 
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11. The average number of blocked tasks in source station: 

3,22m,11m

12m

1j
4,j,21m3,j,21m

2,j,21m

12m

0j
1,j,21mblS

p1)p1p1(

)p1p1(n

             (14) 

12. The average number of simultaneous blocked tasks in 
both stations (source and station A) nblAS :

3,22m,11mblAS p2n                                                   (15)                                         

13. The average number of tasks blocked in station B:

)p1p1(n 4,j,i

12m

1j
3,j,i

21m

1i
blB                               (16) 

14. The average number of active (non-blocked) tasks in 
station B:

11m

0i
3,22m,i

12m

1j
1,j,0

12m

1j

2

1k
k,j,i

21m

1i
B )p1()p1()p1(l

                                                                                             (17) 

15. The average number of tasks in the second buffer vB :

)p2m(

p)1j(p)1j(v

11m

0i
3,22m,i

4

1k
k,j,i

12m

2j

21m

1i

12m

2j
1,j,0B

(18)

16. The average number of tasks in station B:

3,22m,i

11m

0i

12m

1j
k,j,i

4

1k

21m

1i

12m

1j
1,j,0B

p)12m(

)pj(pjn
                     (19) 

17. The average number of simultaneous blocked tasks in 
both stations (source and station B) nblBS :

)pp(2n 4,j,21m

12m

1j
3,j,21mblBS                         (20) 

18. The mean blocking time in station A:

)p1(1n
t

11m

0i
3,22m,iBB

blA
blA                                 (21)

19. The mean blocking time in station B:
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20. The mean blocking time in source station: 
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21. The simultaneous mean blocking time in both stations 
(source and station A):

B
blAS

blAS
1

2
n

t                 (24)

22. The simultaneous mean blocking time in both stations 
(source and station B):
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blBS p11p11t           (25) 

23. The mean waiting time in the buffer A:
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24. The mean response time in station A:

AblAA
2

A
1

A wt11q                                           (27) 

25. The mean waiting time in the buffer B:
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26. The mean response time in station B:

blBBBB t1wq (29)

27. The average network throughput (sojourn) time: 

BAblSthr qqt1t                                    (30)

28. The effective input stream rate (intensity): 

blS

1
t1

1                            (31)

29. Station A utilization A :

A = lA + nblA                        (32)

30. Station B utilization B :

B = lB + nblB                        (33)

V. NUMERICAL RESULTS

To demonstrate our analysis procedures of a three-station 
network with blocking, priority feedback service and 
thresholds proposed in Section 3, we have performed 
numerous calculations. The first group of calculations was 
realized for many parameters combinations by varying the 
feedback probability  within a range from 0.0 to 1.0 and by 
varying both threshold values within a range from 0 to 10 for
tm1, plus within a range from 10 to 0 for tm2 (tm1+tm2 =
const). The inter-arrival rate  from the source station to 
station A is chosen as equal to 2.0. The service rates in station 
A and station B are equal to 1

A = 4.0, 2
A = 1.0, B = 3.0.

Based on such parameters, the following results were obtained 
and presented in Fig. 4 and Fig. 5. Figs. 4-5 depict the Quality 
of Service (QoS) parameters as a function of the thresholds 
policy and of the feedback probability value. In the two 
figures, the buffers size is taken as m1 = 12 and m2 = 10.

Fig. 4. Graphs of QoS parameters, where, blA-pr is the station A
blocking probability, blS-pr is the source station blocking 
probability, blB-pr is the station B blocking probability, blAS-pr is 
the simultaneous blocking probability of the source station and 
station A, blBS-pr is the simultaneous blocking probability of the
source station and station B and idle-pr is idle network probability. 

Fig. 5. Graphs of QoS parameters, where S-rate is the effective 
input rate, A1-rate is the effective service rate of regular tasks in 
station A (blocking factor), A2-rate is the service rate of priority tasks 
in station A (no blocking), B-rate is the effective service rate in 
station B (blocking factor), A-utiliz and B-utiliz are servers utilization 
coefficients. 

For the second group of experiments the following 
parameters were chosen: the service rates in station A and 
station B are equal to 1

A = 2.0, 2
A = 2.0, B = 1.6. The 

inter-arrival rate  from the source station to station A is 3.0.
The feedback probability  is equal to 0.6. Buffer capacities 
are: m1 = 2 with threshold tm1 = 1 and m2 is changed within 
the range from 0 to 16 (with step 2) with threshold tm2 equal 
to m2/2. For this model the following results were obtained 
and the majority of them are presented in Table 1 and Fig. 6. 

TABLE II
THE MEASURES OF EFFECTIVENESS

m2 wA wB tblA tblS tthr tblB tblAS tblBS 1

0 0.96 0.00 0.15 0.36 3.36 0.11 0.11 0.08 1.42 

2 0.94 1.06 0.18 0.37 4.45 0.12 0.13 0.10 1.41 

4 0.92 1.68 0.09 0.33 4.94 0.14 0.06 0.11 1.49 

6 0.87 1.87 0.05 0.29 5.01 0.16 0.03 0.11 1.59 

8 0.85 2.21 0.03 0.28 5.32 0.17 0.02 0.11 1.62 

10 0.85 2.56 0.02 0.27 5.63 0.17 0.01 0.12 1.64 

12 0.84 2.91 0.01 0.27 5.98 0.18 0.01 0.12 1.65 

14 0.84 3.29 0.01 0.26 6.35 0.18 0.00 0.12 1.66 

16 0.84 3.70 0.00 0.26 6.76 0.18 0.00 0.12 1.66 

Given parameters: 1/  = 0.333, 1/ 1
A = 0.500, 1/ 2

A = 0.500, 1/ B = 0.625, m1 
= 2, m2 (var) = 0 - 16, tm1 = 1, tm2 (var) = 0 – 8, and  = 0.60.

The results of the experiment clearly show that the effect of 
the blocking, feedback phenomena and threshold policy must 
be taken into account when analyzing performance of a 
computer network. As noted above, feedback probability ,
blocking factor and threshold policy considerably change the 
performance measures in such networks. Figs. 4-6 illustrate 
dependencies of QoS parameters and effective input and 
service rates on the feedback probability and buffer threshold 
policy. 
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Fig. 6. Graphs of QoS parameters, where, blA-pr is the 
station A blocking probability, blS-pr is the source station 
blocking probability, blB-pr is the station B blocking 
probability, blAS-pr is the simultaneous blocking probability 
of the source station and station A, m1-fill and m2-fill are
buffers filling coefficients and blBS-pr is the simultaneous 
blocking probability of the source station and station B.

VI. CONCLUSION

In this paper, we investigated the problem of analytical 
(mathematical) modeling and calculation of the stationary 
state probabilities for a multistage network with recycling 
task, blocking and threshold policy. We have developed an 
analytical, queuing-base model for the blocking characteristics 
in a series computer network. In particular, we modeled the 
threshold-based buffers filling control algorithm. Tasks 
blocking probabilities and some other fundamental 
performance characteristics of such network were derived, 
followed by numerical examples. The results confirm 
importance of a special treatment for the models with 
blocking, with HOL feedback service, and threshold policy in 
finite capacity buffers, which justifies this research. The 
results can be used for capacity planning and performance 
evaluation of real-time computer networks where blocking, 
feedback and thresholds are present. Moreover, this proposal 
is useful in designing buffer sizes or channel capacities for a 
given blocking probability requirement constraint. 
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