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Abstract—Any rotation of a 3-dimensional object can be 

performed by three consecutive rotations over Euler angles. Intrinsic 
rotations produce the same result as extrinsic rotations in 
transformation. Euler rotations are the movement obtained by 
changing one of the Euler angles while leaving the other two 
constant. These Euler rotations are applied in a simple two-axis 
gimbals set mounted on an automotives. The values of Euler angles 
are [π/4, π/4, π/4] radians inside the angles ranges for a given 
coordinate system and these actual orientations can be directly 
measured from these gimbals set of moving automotives but it can 
occur the gimbals lock in application at [π/2.24, 0, 0] radians. In 
order to avoid gimbals lock, the values of quaternion must be [π/4.8, 
π/8.2, 0, π/4.8] radians. The four-gimbals set can eliminate gimbals 
lock. 

 
Keywords—Intrinsic rotations, extrinsic rotations, Euler 

rotations, rotation matrices, quaternion 

I. INTRODUCTION 
HE Euler angles are three angles to describe the 
orientation of a rigid body [1]. To describe such an 

orientation in 3-dimensional space three parameters are 
required. Euler angles also represent three composed rotations 
that move a reference frame to a given frame. This is 
equivalent to saying that any orientation can be achieved by 
composing three elemental rotations and also equivalent to 
saying that any rotation matrix can be decomposed as a 
product of three elemental rotation matrices. The main aim is 
to apply in the simple two-axis gimbals set mounted on the 
automotives. The objectives are: 

• To denote three consecutive angles on a rigid body. 
• To rotate mobile frame with intrinsic axes. 
• To rotate mobile frame with respect to reference 

frame. 
• To rotate the simple two-axis gimbals set with Euler 

rotations. 

II. DEFINATION OF EULER ANGLES 
Euler angles are a means of representing the orientation of 

any  frame  from a  transformed  frame.  Fig. 1 illustrates the  
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fixed  system  denoted  in l ower  case (x,y,z)  and  the rotated 
system denoted in upper case letters (X,Y,Z). In Z-X'-Z'' 
transformation, if a reference frame and the one whose 
orientation are given, first the line of nodes (N) can be defined 
as the intersection of the xy and the XY coordinate systems. In 
other words, line of nodes is the line perpendicular to both z 
and Z axis. Then Euler angles are defined as: 

• α (or φ ) is the angle between the x-axis and the line 
of nodes. 

• β (or θ) is the angle between the z-axis and the Z-
axis. 

• γ (or ψ) is the angle between the line of nodes and the 
X-axis. 

Euler angles between two frames are defined only if both 
frames have the same handedness. Euler angles are just one of 
the several ways of specifying the relative orientation of two 
such coordinate systems. It can use the different sets of angles 
to describe these orientations leading to different 
transformations. Therefore Euler angles should  always  be  
preceded  by  sequence of angles [2].  

 

 
 

Fig. 1 Euler angles - first rotation over angle α, second rotation over 
angle β, and third rotation over angle γ with  Z-X'-Z'' transformation 

III. ANGLES SIGNS AND RANGES 
Normally, angles are defined as positive when these angles 

rotate counter-clock-wise. The positive side will be the one of 
the positive axis of rotation. About the ranges:  

• α and γ range are defined 2π radians. A valid range 
could be [-π, π]. 

• β range covers π radians. For example could be [0, 
π] or [-π/2, π/2]. 

The angles α, β and γ are uniquely determined except for 
the singular case that the xy and the XY planes are identical, 
the z axis and the Z axis having the same or opposite 
directions. Indeed, if the z-axis and the Z-axis are the same (β 
= 0), only (α+γ) is uniquely defined and similarly, if the z-axis 
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and the Z-axis are opposite (β = π), only (α-γ) is uniquely 
defined. This   phenomenon   is   known   as   gimbals   lock   
of   Mechanical Engineering [3]. 

IV. EULER ANGLES INTRINSIC ROTATIONS 
Euler angles are given using the intrinsic rotations Z-X'-Z'', 

this means that these angles are equivalent to three 
concatenated intrinsic rotations around moving axes Z, X' and 
Z'' in that order. That order is non-commutative. It has to be 
applied in such a way that in the beginning one of the intrinsic 
axis moves together with the line of nodes. Starting with an 
initial set of mobile axes as illustrated in Fig. 2, say XYZ 
overlapping the reference axes xyz, three intrinsic rotations 
only about the mobile frame axes can be used to reach any 
target frame with an origin coincident with that of xyz from 
the reference frame. The values of the rotations are the Euler 
angles. 

 

 
 

Fig.  2 Mobile frame rotations with respect to intrinsic axes 
 

The position of the mobile axes can be reached using three 
rotations with angles α, β, γ in three ways as follows: The XYZ 
system rotates while the xyz is fixed. Starting with the XYZ 
system overlapping the reference frame xyz, the same rotations 
can be performed using only rotations around the mobile axes 
XYZ. 

• Rotate the XYZ-system about the Z-axis by α. The X-
axis now lies on the line of nodes. 

• Rotate the XYZ-system again about the now rotated 
X-axis by β. The Z-axis is now in its final orientation, 
and the x-axis remains on the line of nodes. 

• Rotate the XYZ-system a third time about the new Z-
axis by γ. 

V. EULER ANGLES EXTRINSIC ROTATIONS 
This is the extrinsic rotations z-x-z, Euler angles are 

backward, meaning that the first angle is the intrinsic rotation 
and the last one is the precession. The extrinsic rotations about 
the reference frame axes as indicated in  Fig. 3 can be used to 
reach any target frame. Let xyz system be fixed while the XYZ 
system rotates. Start with the rotating XYZ system coinciding 
with the fixed xyz system. 

• Rotate the XYZ-system about the z-axis by γ. The X-
axis is now at angle γ with respect to the x-axis. 

• Rotate the XYZ-system again about the x-axis by β. 
The Z-axis is now at angle β with respect to the z-
axis. 

• Rotate the XYZ-system a third time about the z-axis 
by α. The first and third axes are identical. 

 

 
 

Fig. 3 Mobile frame rotations about the reference frame 
 

The rotation is always around the origin. Off center 
rotations require first shifting the origin and then the object is 
rotated. Fig. 4 demonstrates mobile frame rotations with 
respect to intrinsic rotations and extrinsic rotations. 

 

 
 

Fig. 4 Mobile frame rotations representing intrinsic rotations and 
extrinsic rotations 

These extrinsic rotations can be shown to be equivalent to 
the intrinsic rotations: The successive frames deduced from 
the initial (e) reference frame may be defined as (e), (f), (g) as 
shown in the equation (1). The vectors u, v, w are the 
successive vectors obtained with that rotation. The column 
matrix representing a vector x in the frame (e) is (x)e. If 
necessary a lower index will be also added to any matrix to 
operate in a specific frame. (Zα), (Xβ), (Zγ) are called the 
successive rotations. Thus the intrinsic operations are 
described as : 

 

( Zα)e = ( Zα)         ( Xβ )f = ( Xβ )        ( Zγ)g =  ( Zγ)             (1) 
 

When describing the intrinsic rotations in the (e) reference 
frame of course the matrices must be transformed to represent 
the rotations. Then by the rules of matrix algebra: 

 
( t )e  =  ( Zγ

'' )e ( Xβ
' )e ( Z α )e  ( u )e                                                            (2)   

 
( Xβ

' )e  =  ( Z α )e  ( Xβ
 )e ( Z α )e

t  =  ( Z α )  ( Xβ
 ) ( Z α )t         (3) 

( Zγ
'' )e    =  ( Z α )e  ( Xβ

 )f ( Zγ
 )g ( Xβ

 )f 
t ( Z α )e

t  

                 = ( Z α ) ( Xβ
 ) ( Zγ

 ) ( Xβ
 ) 

t ( Z α )t             (4) 
( t )e = [  ( Z α ) ( Xβ

 ) ( Zγ
 ) ( Xβ

 ) 
t ( Z α )t ][ ( Z α )  ( Xβ

 ) ( Z α )t ]         
         ( Z α )e  ( u )e = ( Z α ) ( Xβ

 ) ( Zγ
 )  ( u )e                      (5)             
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( R )e = ( Zγ
'' )e ( Xβ

' )e ( Z α )e  = ( Z α ) ( Xβ
 ) ( Zγ

 )                          (6) 
 
 
 The equation (5) can then of course be interpreted in 
extrinsic manner as a succession of rotations around the (e) 
axes. 
 

VI. EULER ANGLES EULER ROTATIONS 
Euler rotations are defined as the movement obtained by 

changing one of the Euler angles while leaving the other two 
constant. Euler rotations are never expressed in terms of the 
external frame, or in terms of the co-moving rotated body 
frame, but in a mixture. These Euler rotations constitute a 
rotation system of mixed axes, where the first angle rotates the 
line of nodes around the external axis z, the second rotates 
around the line of nodes and the third one is an intrinsic 
rotation around an axis fixed in the body that moves. 

 

 
 

Fig. 5 Euler rotations of the Earth. Intrinsic (green), precession (blue) 
and nutation (red) 

 
These rotations are called precession, nutation,  and  

intrinsic  rotation  as  shown  in Fig. 5. When these rotations 
are applied over individual frames, only precession is valid as 
a rotation operator, and only precession can be expressed in 
general as a matrix in the basis of the space.  

 

                             
 

Fig. 6 Three axes z-x-z-gimbals showing Euler angles 
  

If  the simple two-axis gimbals set are assumed, it is able to 
move each with respect to the former according to just one 
angle, there will be one initial, one final and two in the 
middle, which are called intermediate frames. The two in the 
middle work as two gimbals rings that allow the last frame to 
reach any orientation in space. Fig. 6 indicates three axes z-x-
z-gimbals showing Euler angles. External frame and external 
axis 'x' are not shown.  

 

 
Fig. 7 Illustration of the simple two-axis gimbals set 

The simple two-axis gimbals set are illustrated as given in 
Fig. 7. In this Figure, the outer gimbal or ring, which is the 
gyroscope frame, is mounted so as to pivot about an axis in its 
own plane determined by the support. This outer gimbal 
possesses one degree of rotational freedom and its axis 
possesses none. The next inner gimbal is mounted in the 
gyroscope frame so as to pivot about an axis in its own plane 
that is always perpendicular to the pivotal axis of the outer 
gimbal. This inner gimbal has two degrees of rotational 
freedom and its axis possesses one. Likewise, next innermost 
gimbal is attached to the inner gimbal, which has three 
degrees of rotational freedom and its axis possesses two.  

        

(a) Gimbals set operation    (b) Gyroscope frame precession 
Fig. 8 The simple two-axis gimbals set operation in the automotives 

and precession of the gyroscope frame 
In Fig. 8, as this gimbals set keeps the rotation axes 

constant, angles measured in the gyro frame are equivalent to 
angles measured in the lab frame together with precession of 
the gyroscope frame when the second and third Euler angles 
of the frame are constant.  

These gimbals set is a device for measuring or maintaining 
orientation based on the principles of conservation of angular 
momentum [4]. In essence, a mechanical gyroscope is a 
spinning wheel or disk whose axle is free to take any 
orientation. This orientation changes very little in response to 
a given external torque without the large angular momentum 
associated with the gyroscope's high rate of spin. Since 
external torque is minimized by mounting gimbals, its 
orientation remains nearly fixed, regardless of any motion of 
the platform on which it is mounted. 

One problem with gimbals systems is gimbals lock. 
Gimbals lock occurs when two axes in the three gimbals 
system align. When that happens, the object's movement is 
limited. An entire range of motion becomes impossible. There 
are two ways to avoid gimbals lock. One is to adjust the 
gimbals, either by maneuvering the surface so that the gimbals 
swing another way or by resetting the gimbals. If gimbals lock 
does occur, the gimbals must be reset to work again. Another 
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solution is to add more gimbals to the system. Adding a fourth 
gimbal helps to eliminate gimbals lock.  

VII. ROTATION MATRICES FOR EULER ANGLES 
Using the sequence of Euler angles, it is possible to change 

to and from matrix convention. Fixed axes and column 
vectors, with intrinsic rotations and the right-handed rule for 
the positive sign of the angles are assumed. This means that a 
transformation (ZXZ) is the result of performing first an 
intrinsic Z rotation, followed by an X and a Z rotation, in the 
moving axes. Its matrix is the product of Rot(Z,θ1) Rot(X,θ2) 
Rot(Z,θ3) like this: 

 

 
 

Sub-indexes refer to the order in which the angles are 
applied. Trigonometric notation has been simplified. For 
example, c1 means cosθ1 and s2 means sinθ2 and θ1 is the 
external angle between fixed axis x and line of nodes and θ3 
the internal angle from the line of nodes to rotated axis X. 
TABLIE I can be used both ways, to obtain an orientation 
matrix from Euler angles and to obtain Euler angles from the 
matrix. The possible combinations of rotations equivalent to 
Euler angles are shown in TABLE I. 
 

TABLE I 
ROTATION MATRICES FOR INTRINSIC ROTATIOS 

 The possible combinations of rotations for gimbals lock at  (θ2 = 0, π)  
equivalent  to  Euler  angles  are  given  in TABLE II and TABLE III. 
 
 
 
 
 
 
 

TABLE II 
ROTATION MATRICES FOR GIMBALS LOCK AT Θ2 = 0 

 
XZX 

1 

0 

0 

0 

cos (θ1+ θ3) 
sin (θ1+ θ3) 

0 

- sin (θ1+ θ3) 
cos (θ1+ θ3) 

 
XYX 

1 

0 

0 
 

0 

cos (θ1+ θ3) 
sin (θ1+ θ3) 

0 

- sin (θ1+ θ3) 
cos (θ1+ θ3) 

 
YXY 

cos (θ1+ θ3) 
0 

- sin (θ1+ θ3) 
 

0 

1 

0 

sin (θ1+ θ3) 
0 

cos (θ1+ θ3) 

 
YZY 

cos (θ1+ θ3) 
0 

- sin (θ1+ θ3) 
 

0 

1 

0 

sin (θ1+ θ3) 
0 

cos (θ1+ θ3) 

 
ZYZ 

cos (θ1+ θ3) 
sin (θ1+ θ3) 
0 

- sin (θ1+ θ3) 
cos (θ1+ θ3) 
0 

0 

0 

1 

 
ZXZ 

cos (θ1+ θ3) 
sin (θ1+ θ3) 
0

- sin (θ1+ θ3) 
cos (θ1+ θ3) 
0 

0 

0 

1 

TABLE III 
ROTATION MATRICES FOR GIMBALS LOCK AT Θ2 = Π 

 
XZX 

-1 

0 

0 
 

0 

cos (θ1- θ3) 
sin (θ1- θ3) 

0 

sin (θ1- θ3) 
- cos (θ1- θ3) 

 
XYX 

-1 

0 

0 
 

0 

cos (θ1- θ3) 
sin (θ1- θ3) 

0 

sin (θ1- θ3) 
- cos (θ1- θ3) 

 
YXY 

- cos (θ1- θ3) 
0 

sin (θ1- θ3) 
 

0 

-1 

0 

sin (θ1- θ3) 
0 

cos (θ1- θ3) 

 
YZY 

- cos (θ1- θ3) 
0 

sin (θ1- θ3) 
 

0 

-1 

0 

sin (θ1- θ3) 
0 

cos (θ1- θ3) 

 
ZYZ 

cos (θ1- θ3) 
sin (θ1- θ3) 
0 

sin (θ1- θ3) 
- cos (θ1-θ3) 
0 

0 

0 

-1 

 
ZXZ 

cos (θ1- θ3) 
sin (θ1- θ3) 
0

sin (θ1- θ3) 
- cos (θ1-θ3) 
0 

0 

0 

-1

VIII. QUATERNION 
Unit quaternion [5], also known as Euler parameters 

provide another mechanism for representing 3D rotations. 
This is equivalent to the special unitary group description. 
Expressing rotations in 3D as unit quaternion instead of 
matrices has some advantages: 

• Concatenating rotations is computationally faster and 
numerically more stable. 

• Extracting the angle and axis of rotation is simpler. 
• Interpolation is more straightforward.  

 

 
XZX 

C2 

C1S2 

S1S2 

- S2C3 

C1C2C3 - S1S3 

C1S3 + S1C2C3 

S2S3 

- C1C2S3 - S1C3 

C1C3 - S1C2S3 

 
XYX 

C2 

S1S2 

- C1S2 

S2S3 

C1C3 - S1C2S3 

C1C2S3 + S1C3 

S2C3 

- C1S3 - S1C2C3 

C1C2C3 - S1S3

 
 
YXY 

 
C1C3 - S1C2S3 

S2S3 

- C1C2S3 - S1C3 

 
S1S2 

C2 

C1S2 

 
C1S3 + S1C2C3 

- S2C3 

C1C 2C3 - S1S3

 
 
YZY 

 
C1C2C3 - S1S3 

S2C3 

- C1S3 - S1C2C3 

 
- C1S2 

C2 

S1S2 

 
C1C2S3 + S1C3 

S2S3 

C1C3 - S1C2S3

 
 
ZYZ 

 
C1C 2C3 - S1S3 

C1S3 + S1C2 C3 

- S2C3 

 

 
- C1C2S3 -S1C3 

C1C3 - S1C2 S3 
 S2S3 

 
C1S2 

S1S2 

C2 

 
ZXZ 

C1C3 - S1C2S3 

C1C2S3 + S1C3 

S2S3 

- C1S3 -S1C2C3 

C1C2C3 - S1S3 

S2C3 

S1S2 

- C1S2 

C2 
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IX. RELATIONSHIP BETWEEN EULER ANGLES AND 
QUATERNION 

The rotations in three dimensions can be parameterized 
using both Euler angles and unit quaternion. The unit 
quaternion in this application is referred as "Euler 
parameters". 
The unit quaternion can be described as: 

 

 
 

 The orthogonal matrix corresponding to a 
counterclockwise / right-handed rotation by the unit 
quaternion q = q0 + iq1 + jq2 + kq3 are given by the 
homogeneous expression: 
 

 
  

The orthogonal matrix corresponding to a counterclockwise 
/ right-handed rotation with Euler angles [θ1, θ2, θ3] with ZXZ 
transformation is given by: 
 

 
 
By quaternion from Euler angles: 
 

 
 

 
 
Euler angles from quaternion: 
 

 
 
TABLE IV and TABLE V can be used to obtain quaternion 

from Euler angles and Euler angles from quaternion. The 
possible solutions are shown in TABLE IV and V. 

 
 
 

 
 

TABLE IV 
 THE POSSIBLE SOLUTIONS OF QUATERNION FROM EULER ANGLES 

 
 

XZX 

C1/2C2/2C3/2  - S1/2C2/2S3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 
- C1/2S2/2S3/2  + S1/2S2/2C3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 

 
 

XYX 

 
C1/2C2/2C3/2  - S1/2C2/2S3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 
C1/2S2/2S3/2  - S1/2S2/2C3/2 

 
 

YXY 

 
C1/2C2/2C3/2  - S1/2C2/2S3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 
- C1/2S2/2S3/2  + S1/2S2/2C3/2 

 
 

YZY 

 
C1/2C2/2C3/2  - S1/2C2/2S3/2 
C1/2S2/2S3/2  - S1/2S2/2C3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 

 
 

ZYZ 

 
C1/2C2/2C3/2  - S1/2C2/2S3/2 

- C1/2S2/2S3/2  + S1/2S2/2C3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 

 
 

ZXZ 

 
C1/2C2/2C3/2  - S1/2C2/2S3/2 
C1/2S2/2C3/2  + S1/2S2/2S3/2 
C1/2S2/2S3/2  - S1/2S2/2C3/2 
C1/2C2/2S3/2  + S1/2C2/2C3/2 

 
TABLE V 

THE POSSIBLE SOLUTIONS OF EULER ANGLES FROM QUATERNION 
 
XZX 

φ atan2  (  2  q0  q2  +  2  q1  q3  ,  2  q0  q3  -  2  q1  q2  ) 
ө acos   (  q0

2   +   q1
2 

 -   q2
2   -   q3

2  ) 
ψ -   atan2  (  2  q0  q2  -  2  q1  q3  ,  2  q0  q3  +  2  q1  q2  ) 

   
 

XYX 
φ -   atan2  (  2  q0  q3  -  2  q1  q2  ,  2  q0  q2  +  2  q1  q3  ) 
ө acos   (  q0

2   +   q1
2 

 -   q2
2   -   q3

2  ) 
ψ atan2 ( 2  q0  q3  +  2  q1  q2  ,  2  q0  q2  -  2  q1  q3  ) 

 
 
YXY 

φ atan2  (  2  q0  q3  +  2  q1  q2  ,  2  q0  q1  -  2  q2  q3  ) 
ө acos   (  q0

2   -   q1
2 

 +   q2
2   -   q3

2  ) 
ψ -   atan2  (  2  q0  q3  -  2  q1  q2  ,  2  q0  q1  +  2  q2  q3  ) 

 
 

YZY 
φ -   atan2  (  2  q0  q1  -  2  q2  q3  ,  2  q0  q3  +  2  q1  q2  ) 
ө acos   (  q0

2   -   q1
2 

 +   q2
2   -   q3

2  ) 
ψ atan2  (  2  q0  q1  +  2  q2  q3  ,  2  q0  q3  -  2  q1  q2  ) 

 
 
ZYZ 

φ atan2  (  2  q0  q1  +  2  q2  q3  ,  2  q0  q2  -  2  q1  q3  ) 
ө acos   (  q0

2   -   q1
2 

 -   q2
2   +  q3

2  ) 
ψ -   atan2  (  2  q0  q1  -  2  q2  q3  ,  2  q0  q2  +  2  q1  q3  ) 

   
 

ZXZ 
φ -   atan2  (  2  q0  q2  -  2  q1  q3  ,  2  q0  q1  +  2  q2  q3  ) 
ө acos   (  q0

2   -   q1
2 

 -   q2
2   +  q3

2  ) 
ψ atan2  (  2  q0  q2  +  2  q1  q3  ,  2  q0  q1  -  2  q2  q3  ) 

 
X. HIGHER DIMENSIONS 

It is possible to define parameter analogous to the Euler 
angles in dimensions higher than three. The number of 
degrees of freedom of a rotation matrix is always less than the 
dimension of the matrix squared. That is, the elements of a 
rotation matrix are not all completely independent. The 
rotation matrix in dimension 2 has only one degree of 
freedom, since all four of its elements depend on a single 
angle of rotation. A rotation matrix in dimension 3 which has 
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nine elements has three degrees of freedom, corresponding to 
each independent rotation, by its three Euler angles. Any set 
of 6 parameters defines that the rotation matrix could be 
considered an extension of Euler angles to dimension 4. 

In general, the number of Euler angles in dimension D is 
quadratic in D; since any one rotation consists of choosing 
two dimensions to rotate between, the total number of 
rotations available in dimension D is: 

 

which  for  D = 2, 3, 4  yields  Nrot  =  1, 3, 6. 

 
XI. RESULTS OF EULER ANGLES  

The values of Euler angles, then the problem of gimbals 
lock,  and    then   the   values  of  quaternion  are  shown  in 
TABLE VI. 

 
 

TABLE VI 
THE VALUES OF EULER ANGLES, THE PROBLEM OF GIMBALS LOCK AND 

THE VALUES OF QUATERNION 
 

Method  

 

The Values of Euler Angles 

  α1 ( φ1) β1 ( ө1) γ1 (ψ1) α2 ( φ2) β2 ( ө2) γ2 (ψ2) 

Rotation  

matrices 

π / 4 π / 4 π / 4 3π / 4 3π / 4 3π / 4 

Method The Problems of Gimbals Lock 

Rotation  
matrices 

π /2.24  0 0 π / 1.81 π 0 

Method The Values of Quaternion 

 α1 (φ1) β1 ( ө1) γ1 (ψ1) δ1(ω1) α2 ( φ2) β2 ( ө2) γ2 (ψ2) δ2(ω2) 

Quarter-
nion 

π / 4.8 π / 8.2 0 π / 4.8 π / 1.3 π / 1.14 π  π / 1.3

 
XII. DISCUSSION 

From the given rotation matrix, there are two possible 
solutions when Euler angles are defined as the sequence of 

rotations, but only one inside the angles ranges is valid. This 
is because the sequence of rotations to reach the target frame 
is not unique if the ranges are not defined. In rotation 
matrices, Euler angles are computed by using Pseudo-code 
from the given matrix. Quaternion can be employed to obtain 
the values of quaternion from Euler angles. There has to be 
more than one gimbal in the automotives because the intrinsic 
rotation angle cannot be read from a single gimbal. Normally 
there are at least three for redundancy. Therefore the simple 
two-axis gimbals set are used to know the actual orientations 
of moving automotives and then Euler angles are directly 
measurable.  
 

XIII. CONCLUSION 
The values of Euler angles are [π/4, π/4, π/4] radians inside 

the angles ranges for the simple two-axis gimbals set mounted 
in the automotives but  it can occur the gimbals lock at Euler 
angles [π/2.24, 0, 0] radians. Euler parameters can eliminate 
the problem of gimbals lock at Mechanical Engineering. If the 
values of quaternion are at [π/4.8, π/8.2, 0, π/4.8] radians 
inside the angles ranges from Euler angles, the gimbals lock 
can be avoided. As the simple two-axis gimbals set keeps the 
rotation axes constant, angles measurements from the lab 
frame are the same as angles measurements from the gyro 
frame. Therefore the main advantage over orientations 
description is that Euler angles or Euler parameters can 
control the orientations of these gimbals set from moving 
automotives. 
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