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 
Abstract—In this paper, the 1-D conduction-radiation problem is 

solved by the lattice Boltzmann method. The effects of various 
parameters such as the scattering albedo, the conduction–radiation 
parameter and the wall emissivity are studied. In order to check on 
the accuracy of the numerical technique employed for the solution of 
the considered problem, the present numerical code was validated 
with the published study. The found results are in good agreement 
with those published 

 
Keywords—Conduction, lattice Boltzmann method, planar 

medium, radiation. 

I. INTRODUCTION 

UMERICAL modeling of the coupled transient radiative 
conductive heat transfer is an important field of research 

because of its relevance in various engineering applications 
such as the measurement of thermo-physical properties and 
the thermal control by ceramics and low density refractory 
material, heat transfer through the semitransparent, porous 
materials, multilayered insulations, glass fabrication, industrial 
furnaces, optical textile fiber processing, fibrous insulation 
[1]-[5]. In recent years, use of the lattice Boltzmann method 
(LBM) as a potential computational fluid dynamics (CFD) 
tool for the solution of a large class of problems in science and 
engineering [6]-[9] has gained a momentum. As a different 
approach from the conventional CFD solvers, the LBM uses 
simple microscopic kinetic models to simulate complex 
transport phenomena. Its advantages include, among others, 
simple calculation procedure, simple and efficient 
implementation for parallel computation, easy and robust 
handling of complex geometries, and high computational 
performance with regard to stability and accuracy. With the 
successful applications of the LBM to a large class of fluid 
mechanics problems, Ho et al. [10], [11] solved a non-Fourier 
heat conduction problem in a planar medium using the LBM. 
Solidification of a planar medium using the LBM was 
analyzed by Jiaung et al. [12]. Srinivasan et al. [13] analyzed 
microscale heat transfer in multilayered thin films using 
parallel computation of the Boltzmann transport equation. Guo 
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and Zhao [14] solved a natural-convection problem and used 
temperature-dependent viscosity in the LBM formulation. 
Jamia et al. [15] used the LBM to solve natural-convection in 
a partitioned enclosure with inclined partitions attached to its 
hot wall. Chatterjee et al. [16] used the LBM to analyze solid–
liquid phase transitions in the presence of thermal diffusion. 
Quite recently, its application has also been extended to solve 
energy equations of conduction, convection, and radiation heat 
transfer problems. Raj et al. [17] used the LBM to analyze the 
solidification of a semitransparent planer layer; they used the 
discrete transfer method (DTM) to compute the radiative 
information. Mishra et al. [18] used the LBM to solve 
conduction–radiation problems in 1-D and 2-D rectangular 
geometries and used the finite volume method (FVM). Mondal 
et al. [19] used the lattice boltzmann method and the discrete 
ordinates method (DOM) for solving transient conduction and 
radiation heat transfer problems, they found that the LBM-
DOM combination is in excellent agreement with the FDM-
DOM combination, also The LBM-DOM was slightly faster 
than the FDM-DOM. Chaabane et al. [20] solved the 
conduction–radiation problems in enclosure using the lattice 
Boltzmann method and the control volume finite element 
method (CVFEM). Talukdar et al. [21] studied conduction–
radiation problem using the collapsed dimension method 
(CDM) in one dimensional gray planar absorbing, emitting 
and anisotropically scattering medium. Mishra et al. [22] 
studied the performance of the collapsed dimension method 
(CDM) and the discrete transfer method (DTM) in terms of 
computational time and their abilities to provide accurate 
results in solving radiation and/or conduction mode problems 
in a 2-D rectangular enclosure. The CDM was found to be 
much more economical than the DTM. 

In this paper, the 1-D conduction-radiation problem is 
solved by the lattice Boltzmann method. The effects of various 
parameters such as the scattering albedo, the conduction–
radiation parameter, and the wall emissivity are studied. In 
order to check on the accuracy of the numerical technique 
employed for the solution of the considered problem, the 
present numerical code was validated with the published 
study. 

II. MATHEMATICAL FORMULATION 

A. Problem Statement 

A one-dimensional planar medium of length L is considered 
for the present study. The initial condition at time t = 0 for the 
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temperature field T(x,t) is given by T(x,0) = TE and the 
boundary conditions at t > 0 by T(0, t) = TE and T(L, t) = Tw> 
TE. The west and the east boundaries are diffuse gray with 
emissivities εw and εE, respectively. β, ω, and N are the 
extinction coefficient, the scattering albedo, and the 
conduction-radiation parameter, respectively. For a 
homogeneous medium, the energy equation is given by: 

 

2
P R

T
ρc T- .qk

t


  



          (1) 

 

where ρ  is the density, Pc
 
is the specific heat and k is the 

thermal conductivity. 
Rq


 
is the radiative heat flux. 

B. Energy Equation 

For a one-dimensional planar geometry, in the LBM with a 
D1Q2 lattice, the discrete Boltzmann equation with 
Bhatanagar-Gross-Krook (BGK) approximation is given by 
[9]: 
 

 ( , ) 1
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where if  is the particle distribution function denoting the 

number of particles at the lattice node x


 and time t moving in 

direction i with velocity ie


 along the lattice ix e t  
connecting the neighbors,  is the relaxation time, and eq

if is 

the equilibrium distribution function. The relaxation time 
for the D1Q2 lattice is computed from: 
 

2 2
i

t

e

 
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where   is the thermal diffusivity. For this lattice, the two 

velocities 1e and 2e , and their corresponding weights 1w and 

2w , are given by: 
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After discretization, (2) is written as: 
 

1
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The temperature is obtained after summing if  over all 

direction: 
 

1,2

T( , ) ( , )i
i

x t f x t

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To process (6), an equilibrium distribution function is 

required, which for a conduction-radiation problem is given 
by: 
 

( , ) w T( , )eq
i if x t x t
 

        (8) 

 
To account for the volumetric radiation, the energy equation 

in the LBM formulation, (6) is modified to: 
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where the divergence of radiative heat flux Rq

x




is given by: 
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G is the incident radiation. 

C. Radiatve Information 

In the problem under consideration, the energy transport in 

any direction s


 is exclusively governed by the radiative 
transfer equation: 

 

' 4

1 ( , , ) ( , , )
β ( , , )

βω
        β(1 ω) ( , ) ( , , ) ( ' )d '

4πb

I x s t I x s t
I x s t

c t s

I x t I x s t p s s
 

 
  

 

    

     

      

(11) 

 
where c is the speed of light in the medium, sis the energy 

transport direction, 
4T / πbI  is the Planck’s black body 

intensity, d  is the solid angle and ( ' )p s s  the 

anisotropic scattering phase function. Equation (11) can be 
recast as: 
 

1 ( , , )
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
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where S is the radiative source term given as: 
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(13) 

 
The radiative boundary condition for (11), when the wall 

bounding the physical domain is assumed grey and emits and 
reflects diffusely, can be expressed as: 
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If anisotropic scattering is approximated by the linear 

anisotropic phase function 1 cos cos 'p a    , where a
is the anisotropy factor ( 1 1)a   , (13) for the source term 

can be written as : 
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 is the polar angle. 

Multiplying (12) throughout by the speed of light c, the 
radiative transfer equation along any lattice link designated by 
the index i can be written as: 
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Let ie


be the velocity of propagation along the ith lattice 

link of the D1QM lattice structure. If the velocity of light c


is 
fictitiously made equal to the velocity of particle propagation 

in the LBM, c e
 

 a convenient tool would be obtained to 
solve the radiative transfer equation using the LBM approach 
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Discretizing (19), we obtain: 

 

( ,  ) ( , ) β(S )      =1,...,Mi i i i i iI x e t t t I x t te I i     
  

    (20) 

 
Clearly in (20), the term on the right hand side can be seen 

as the collision term in the LBM, where Ii is the intensity 
particle distribution function. Using the standard LBM 
terminology, (11) can be written as: 
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where 

R is the relaxation time for the collision process and 

eq
iI  is the equilibrium particle distribution function. 
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In (17), G is the irradiation and Rq


 is the heat flux due to 

diffuse radiation, are computed from the following: 
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III. RESULTS AND DISCUSSION 

In this paper, the energy equation of a 1-D transient 
conduction- radiation problem is solved with LBM. Initially 
the medium is at temperature

ET . For 0t  , the west boundary 

temperature is maintained at 
W ET 2T . The medium is 

absorbing, emitting and isotropically scattering. The non 

dimensional time step 4 210  ( = )t    was considered 

and steady state condition was assumed to have been achieved 
when the maximum variation in temperature at any location 

between two consecutive time levels did not exceed 510 . 
First the effect of the grid size to the non-dimensional 
temperature results (T/Tw) is studied by comparing the steady 
state (SS) results at three locations in the medium for several 
grid sizes for β=1.0, N=0.1, TE=0.0, Tw=1.0, ω=0.5 and εw = εE 

= 1.0. The results are listed in Table I and show that the non-
dimensional temperature is stable and practically independent 
of the grid size.  

 
TABLE I 

EFFECT OF GRID SIZE ON NON-DIMENSIONAL TEMPERATURE STEADY STATE 

FOR β=1.0, TE=0.0, TW=1.0, ω=0.5, N=0.1 AND εW=εE=1.0 
  x/L = 0.25 x/L = 0.50 x/L = 0.75 

Nx=20 
 

M=4 
M=8 
M=16 
M=32 

0.8265 
0.8356 
0.8389 
0.8400 

0.6076 
0.6204 
0.6254 
0.6270 

0.3339 
0.3438 
0.3479 
0.3492 

M=32 
 

Nx=20 
Nx=30 
Nx=40 
Nx=60 

0.8400 
0.8438 
0.8269 
0.8227 

0.6270 
0.6210 
0.6181 
0.6152 

0.3492 
0.3365 
0.3441 
0.3425 

 
In Table II, for ξ = 0.05 β=1.0, N=0.1, TE=0.0, Tw=1.0, 

ω=0.5, εw =1.0 and εE = 1.0 or 0.0, the non-dimensional 
temperature results (T/Tw) are compared with those reported in 
the literature [23], [24] at three locations in the medium, It is 
observed that the LBM results are in good agreements with the 
published results. 
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TABLE II 
COMPARISON OF TRANSIENT TEMPERATURE T/TW AT TIME ξ=0.05 for β=1.0, 

TE=0.0, TW=1.0, ω=0.5, N=0.1 AND TWO SETS OF WALL REFLECTIVITIES 
  x/L = 0.25 x/L = 0.5 x/L = 0.75 

W

E

ε 1.0    

ε 1.0




 

[23] 
[24] 
Present  

0.4888 
0.4889 
0.4893 

0.1778 
0.1773 
0.1787 

0.0591 
0.0588 
0.05724 

W

E

ε 1.0    

ε 0.0




 
[23] 
[24] 
present 

0.5030 
0.5031 
0.5037 

0.2005 
0.2001 
0.1993 

0.0833 
0.0830 
0.0841 

 
Figs. 1 (a)-(c) show the effect of the conduction–radiation 

parameter (N=0.01, 0.1 and 1.0) by comparing the LBM 
results (T/Tw) and those published [19] at different non 
dimensional time values for β=1.0, ω=0.0 and εw = εE = 1.0. It 
is observed that the LBM results are in good agreements with 
those published. 

Figs. 2 (a)-(c) show the effect of the scattering albedo 
(ω=0.1, 0.5 and 0.9) by comparing the LBM results (T/Tw) and 
those published [19] at different non dimensional time values 
for β=1.0, N=0.01 and εw = εE = 1.0. Excellent agreement is 
found. 

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 1 Comparison of non-dimensional temperature (
WT/T ) at 

different instants  for several conduction-radiation parameter (a) N 

= 0.01, (b) N = 0.1 and (c) N = 1.0. 
 

 

(a) 
 

 

(b) 
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(c) 

Fig. 2 Comparison of non-dimensional temperature (
WT/T ) at 

different instants  for several scattering albedo (a) 0.1   (b)

0.5   and (c) 0.9  
 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 3 Comparison of non-dimensional temperature (
WT/T ) at 

different instants  for several west boundary emissivity (a)

Wε 0.1  (b)
Wε 0.5 and (c)

Wε 0.9  
 

Figs. 3 (a)-(c) show the effect of the west boundary 
emissivity (εw = 0.1, 0.5 and 0.9) by comparing the LBM 
results (T/Tw) and those published [19] at different non 
dimensional time values for β=1.0, ω=0.0, N=0.01 and εE = 
1.0. Excellent agreement is also found. 

Figs. 4 (a) and (b) show the effect of the emissivity by 
comparing the steady-state LBM results (T/Tw) and those 
published [21] for β=1.0, ω=0.0 and respectively for N=0.1 
and 0.01. It is shown that the LBM results are in good 
agreements with those published.  

 

 

(a) 
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(b) 

Fig. 4 Comparison of steady-state results (T/Tw) for β=1.0, ω=0.0 (a) 
N=0.1 (b) N=0.01 

 
Fig. 5 shows the effect of scattering albedo on temperature 

distribution. Both boundaries are assumed black. Three 
different values of scattering albedo (ω=0.0, 0.5 and 1.0) are 
considered. The LBM results (T/Tw) are given for two sets of 
boundary temperatures (TE=0.1 and 0.5) for N=0.1 and β=1.0. 
The LBM results are compared with those of [21]. Excellent 
agreement is found. 

 

 

Fig. 5 Comparison of steady-state results (T/Tw) for several scattering 
albedo 

 
 

Fig. 6 shows the effect of the extinction coefficient 
(β=0.1,1.0 and 2.0) on temperature distribution. Both 
boundaries are assumed black. The LBM results (T/Tw) are 
given for N=0.1 and ω=0.0. The LBM results are compared 
with those of [22]. Excellent agreement is found. 

 

 

Fig. 6 Comparison of steady-state results (T/Tw) for several 
extinction coefficients 

 
Figs. 7 (a) and (b) show the effect of the anisotropy factor a 

on non dimensional temperature distribution, for N=0.1, for 
two values of the scattering albedo ω=0.0 and 0.5 and for two 
values of the extinction coefficient β=0.1 and 1.0. Results are 
presented for a = -1.0, 0.0 and 1.0. It is shown that the 
anisotropy factor a has not an appreciable effect on the 
temperature distribution in the medium. 

 

 

(a) 
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(b) 

Fig. 7 Effect of the anisotropy factor a on non dimensional 
temperature 

WT/T  for (a)β 1.0  (b)β 0.1  

IV. CONCLUSION 

Combined conduction–radiation problem in one-
dimensional gray planar absorbing, emitting and 
anisotropically scattering medium has been investigated by the 
LBM. In order to examine the accuracy and the computational 
efficiency of the proposed method, the non-dimensional 
temperature (T/Tw) is compared with the published results for 
various values of the extinction coefficient, conduction–
radiation parameter, boundary emissivity, scattering albedo, 
anisotropy factor and east boundary temperature. For all cases 
studied, a good agreement is obtained. 
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