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Analysis of a Spatiotemporal Phytoplankton

Dynamics: Higher Order Stability and Pattern

Formation
Randhir Singh Baghel, Joydip Dhar and Renu Jain

Abstract—In this paper, for the understanding of the phytoplankton
dynamics in marine ecosystem, a susceptible and an infected class
of phytoplankton population is considered in spatiotemporal domain.
Here, the susceptible phytoplankton is growing logistically and the
growth of infected phytoplankton is due to the instantaneous Holling
type-II infection response function. The dynamics are studied in
terms of the local and global stabilities for the system and further
explore the possibility of Hopf -bifurcation, taking the half saturation
period as (i.e., α) the bifurcation parameter in temporal domain.
It is also observe that the reaction diffusion system exhibits spa-
tiotemporal chaos and pattern formation in phytoplankton dynamics,
which is particularly important role play for the spatially extended
phytoplankton system. Also the effect of the diffusion coefficient
on the spatial system for both one and two dimensional case is
obtained. Furthermore, we explore the higher-order stability analysis
of the spatial phytoplankton system for both linear and no-linear
system. Finally, few numerical simulations are carried out for pattern
formation.

Keywords—Phytoplankton dynamics, Reaction-diffusion system,
Local stability, Hopf-bifurcation, Global stability, Chaos, Pattern
Formation, Higher-order stability analysis.

I. INTRODUCTION

P

HYTOPLANKTONS are the staple items for the food

web and they are the recycler of most of the energy

that flows through the ocean ecosystem. It has a major role

in stabilizing the environment as it consumes half of the

universal carbon dioxide and releases oxygen. So far, there

is a number of studies which show the presence of pathogenic

viruses in the plankton community [1], [18], [20]. A good

review of the nature of marine viruses and their ecological

as well as their biological effects is given in [6]. Marine

viruses infect not only plankton but cultivated stocks of Crabs,

Oysters, Mussels, Clams shrimp, Salmon and Catfish, etc. are

all susceptible to various kinds of viruses. We observed that

the viruses are nonliving organisms, in the sense, they have

no metabolism when out side the host and they can reproduce

only by infecting the living organisms. Viral infection of the

phytoplankton cell is of two types, namely, Lysogenic and

Lytic. In lytic viral infection, when a virus injects its DNA into
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a cell, it hijacks the cell’s replication machinery and produces

large a number of viruses. As a result, they rupture the host

and are released into the environment. On the other hand,

in lysogenic viral infection, the DNA of the viruses do not

use the machinery of the host themselves, but their genes are

duplicated each time as the host cell divides. Many papers

have already been developed which have used this kind of

lysogenic viral infection [1], [3], [10], [19].
Plankton pattern formation is dependent on the interplay of

various physical (temperature, light) and biological (nutrient

supply, fish predation) factors [22]. The pattern formation fo-

cuses on environment, social and technological sciences where

the nonlinearities conspire to from spatial patterns observe

The pattern formation in living systems is probably one of

the most exciting subjects in modern biology and ecology.

We observed that the pattern formations in the population

dynamics of both aquatic system and natural environment.

Our mainly study the pattern formation in marine ecosystem

taking the phytoplankton dynamics. Plankton system is study

an important area for research in marine ecology. Sometimes

are stationary, spiral, traveling or disordered in space and

time often referred as spatiotemporal chaos. The diffusion of

population is capturing the spatial distribution (i.e. pattern) of

both susceptible and infected class of population. The reaction-

diffusion equations modeling predator-prey interactions show

a wide spectrum of ecologically relevant behavior resulting

from intrinsic factors alone[14].

This study is partially motivated by few works, namely,

(i) a SIAM review paper [12] that considers the reaction -

diffusion system as a model for marine plankton dynamics,

(ii) a study on diffusion induced chaos [15] and (iii) a

phytoplankton dynamics with susceptible and infective classes

[5]. Our mathematical model is an extension of temporal

model presented by [5], in spatiotemporal domain.

In this paper, we have introduced the spatially extended of

the system and analyze four different cases of the system. In

the first case, explore the Hopf bifurcation and global stability

of the temporal system, in second case, determined the chaos

and pattern formation in 1-D and 2-D and also studied the

effect of diffusion coefficient on the spatiotemporal system

and third case, we introduce higher order stability analysis for

the linear and non-linear system. Fourth case, conclusion and

discuss are given.
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II. MATHEMATICAL MODEL

A mathematical model of phytoplankton dynamics is pro-

posed by considering the population densities of susceptible

and infected phytoplankton as Ps and Pi respectively, at any

instant of time t. The population of susceptible phytoplankton

is assumed to be growing logistically with intrinsic growth

rate r and carrying capacity K . Let a1 be the disease contact

rate and d1 be the removal rate of the diseased phytoplankton

population, out of which c1 fraction of infected phytoplankton

rejoin the susceptible phytoplankton population, because, dead

infected phytoplankton become nutrients for the growth of

susceptible phytoplankton after bacterial decomposition and

partially through natural recovery process in the ecosystem.

The proposed mathematical model is given as follows:

dPs

dT
= rPs

(

1 −
Ps

K

)

−
a1PsPi

η + Ps

+ c1Pi, (1)

dPi

dT
=

a1PsPi

η + Ps

− d1Pi, (2)

Ps(0) > 0, Pi(0) > 0,

where a1, c1, d1, η are all positive constant. The Holling type-

II the functional response a1PsPi

η+Ps

is used [8] and many other

researchers.

A. Analysis of Dynamical Behaviour

We study the dynamic behaviour of the system (1)-(2) and

non-dimensionalizing the system (1)-(2) using u = Ps

K
, v =

a1Pi

rK
, t = rT and ξ = K , α = η

K
, γ = c1

a1
, ω = c1K

r
, β = d1

r
,

corresponding temporal model is given by

du

dt
= u (1 − u) −

ξuv

(u + α)
+ γv, (3)

dv

dt
=

ωuv

(u + α)
− βv. (4)

The parameters α, β, γ, ξ, ω are strictly positive constants.

There are three biologically feasible steady states for the

system (3)-(4), namely (i) E0 = (0, 0), (ii) E1 = (1, 0),(iii)

E2 = (u∗, v∗) where u∗ = ( αβ
ω−β

), v∗ = {u∗(1−u∗)
ξu

∗

u
∗+α

−γ
}. The

non-trivial equilibrium E2 = (u∗, v∗) exists if ω > β, α <
ω−β

β
and (βξ − ωγ) > 0.

The general variation matrix corresponding to the system (3)-

(4) is given by

J =

[

1 − 2u − αξv
(u+α)2 − ξβ

ω
+ γ

ωαv
(u+α)2 0

]

.

The characteristic equation for the equilibrium E0 = (0, 0),
is λ(1 − λ) = 0 and corresponding eigenvalues are λ = 0, 1.

Therefore the equilibrium E0 = (0, 0) is unstable. The

characteristic equation for the equilibrium E1 = (1, 0), is

λ(1 + λ) = 0 and corresponding eigenvalues are λ = 0,−1.

Therefore the equilibrium E1 = (1, 0), is unstable in v-

direction and stable in u-direction. The characteristic equation

for the equilibrium E∗ = (u∗, v∗), is

P (λ) = λ2 + a1λ + a2 = 0 (5)

where

a1 =
αξv∗

(u∗ + α)2
+ 2u∗ − 1, a2 =

αv∗

(u∗ + α)2
(ξβ − ωγ).

Since a2 > 0 from the existence of equilibrium E∗,

therefore using Routh-Hurwitz criteria the equilibrium E∗ is

locally asymptotically stable, if a1 > 0.

Now, we explore the possibility of Hopf-bifurcation in the

system (3)-(4), taking α (the half saturation period) as the

bifurcation parameter. In a two dimensional dynamical system,

the necessary and sufficient conditions for the existence of the

Hopf-bifurcation are:

(1) if there exists α = α0, such that TrDf(u(α0)) = 0 and

detDf(u(α0)) > 0,

(2) d
dα

{Re(λ(α))}α=α0
6= 0.

The existence of a pair of purely imaginary eigenvalues of the

Jacobian matrix is ensured from the condition (1). Moreover,

if the transversality condition (2) is satisfied, then the Hopf-

bifurcation occurs in the system.

We claim that system (3)-(4) exhibits the Hopf-bifurcation.

Now, we will verify the conditions (1) and (2) for the Hopf-

bifurcation in the system.

(a) 1 − 2u − αξv
(u+α)2 = 0, (b) αv

(u+α)2 (ξβ − ωγ) > 0. These

condition always hold because equilibrium v∗ is positivity

condition. Now we will check the bifurcation point from

condition (1). After substituting of the values of u∗ and v∗

and solving it for α, it reduces to

α =

{

(ω − β)(ξβ2 − ω2γ)

β2ξ(ω + β) − 2ωγ

}

(6)

For the understanding of the above result, taking the param-

eter values: ξ = 1, γ = 0.0001, ω = 2.0, and β = 0.6, we

get a positive root α = 0.5381 of the equation (6). Now, we

check the condition (2), then

λ2 − trDfλ + detDf = 0. (7)

Put λ = x + iy in (7), we get (x + iy)2 − trDf(x +
iy) + detDf = 0, on separating real parts, then we get
dλ
dα

=
(2x−T )(x dT

dα
)− dD

dα

(2x−T )2+(2y)2 +
2y2 dT

dα

(2x−T )2+(2y2) , where T = (1 −

2u− αξv
(u+α)2 ) and D = αv

(u+α)2 (ξβ −ωγ) at α = α0, x(α0) =

0, y(α0) = σ where λ = ±iσ then dλ
dα

= (
T dD

dα
+2σ2 dT

dα

(T62+4σ2) ) 6= 0.

This ensures that the above system has a hopf-bifurcation. It

is shown graphically in figure 1.

B. Global Stability

In this subsection, we describe the global stability behavior

of the system (3)-(4) without help of lyapunov function. Our

global stability analysis based on a purely algebraic criterion

provided by [24], [25], which is an application of floquet

theory and the poincare-benedixon theorem. For this global

stability analysis our system (3)-(4) in the following form:

du

dt
= uR(u) − v (S(u) − γ) ,

dv

dt
= v

(

ω

ξ
S(u) − β

)

, (8)
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Fig. 1. Phase plane and Time series for parameter values: ξ = 1, γ =
0.0001, ω = 2.0, β = 0.6, with (A) − (B) : α = 0.7, (C) − (D) : α =
0.5381 and (E) − (F ) : α = 0.4.

where

R(u) = (1 − u), S(u) =
ξu

(u + α)
. (9)

The system (8) will be globally stable around the locally

asymptotically stable positive interior equilibrium point E∗

if and only if the following condition holds,

d

du

(

Q(u) − Q(u∗)

S(u) − S(u∗)

)

≤ 0, (10)

for 0 ≤ x ≤ 1, Q(u) is define as follows:

Q(u) =
d

du
(uR(u)) − u

R(u)

S(u)

d

du
S(u). (11)

Now next is to find the inequality for Q(u) − Q(u∗) in the

following form. Substituting for R(u) and S(u) from (9) in (11)

then we get

Q(u) =

(

1 − 2u −
α(1 − u)

(u + α)

)

(12)

Inequality for Q(u) − Q(u∗) can be simplified as follows:

Q(u) − Q(u∗) =
(

1 − 2u − α(1−u)
(u+α)

)

−
(

1 − 2u∗ − α(1−u∗)
(u∗+α)

)

= − (u−u∗)
(u+α)(u∗+α) (2(u + α)(u∗ + α)

+ (α∗ − α)) .

From (9) we get

S(u) − S(u∗) =
ξ(u − u∗)

(u + α)(u∗ + α)
. (13)

Then substituting values for S(u)−S(u∗) and Q(u)−Q(u∗)
in the (10) we get

d
du

(

Q(u)−Q(u∗)
S(u)−S(u∗)

)

= − 1
ξ

d
du

(

2(u + α)(u∗ + α) + (α2 − α)
)

= − 2
ξ
(u∗ + α) d

du
(u + α)

The condition for the global stability (10) is holds as

follows:

d

du

(

Q(u) − Q(u∗)

S(u) − S(u∗)

)

= −
2

ξ
(u∗ + α) ≤ 0. (14)

Hence, it is clear that the positive interior equilibrium E∗ is

global stable.

III. MATHEMATICAL MODEL WITH DIFFUSION

Now, we will study the phytoplankton dynamics (1)-(2) with

movement (i.e., diffusion) and since the phytoplankton popu-

lation are not uniform in throughout the habitat. Therefore the

population densities, i.e., Ps and Pi are become space and time

dependent. Keeping in view of the above, our mathematical

model can state by the following reaction diffusion equations:

∂Ps

∂T
= rPs

(

1 −
Ps

K

)

−
a1PsPi

η + Ps

+ cPi + δ1∇
2Ps, (15)

∂Pi

∂T
=

a1PsPi

η + Ps

− dPi + δ2∇
2Pi, (16)

Ps(0) > 0, Pi(0) > 0,

where ∇2 is the usual laplacian operator for two dimensional,

δi, (i = 1, 2) are diffusion coefficients and a, b, c, d are positive

constants same as above section.

It is much easier to work with equation that have been scaled

to non-dimensional form, in above system, we take u = Ps

K
,

v = αPi

rK
, t = rT , xi = Xi(

r
δ1

)
1
2 and re-scaling the parameters

via, ξ = K , α = η
K

, γ = c
a

, δ = δ1

δ2
, ω = cK

r
, β = d

r
. Hence

our spatial model reduces to

∂u

dt
= u (1 − u) −

ξuv

(u + α)
+ γv + ∆u, (17)

∂v

dt
=

ωuv

(u + α)
− βv + δ∆v, (18)

u(x, y, 0) > 0, v(x, y, 0) > 0, (x, y) ǫ Ω and (19)

∂u

∂n
=

∂v

∂n
= 0, (x, y) ǫ ∂Ω, t > 0, (20)

where, n is the outward normal to ∂Ω. and the parameters α,

β, γ, ξ, ω are positive constant. We assume that the system is

defined on two dimensional bounded domain, denoted by Ω
and consider the zero-flux boundary conditions.

Now, we will study the effect of diffusion in the spatially ho-

mogenous equilibrium E∗ = (u∗, v∗) of the reaction diffusion

system. Obviously, the interior equilibrium point E∗ for the

non-spatial system (3)-(4) is a spatially homogeneous steady-

state for the reaction-diffusion system (17)-(18). We assume

that E∗ is stable in the non-spatial system, which means that
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the spatially homogeneous equilibrium is stable with respect

to spatially homogeneous perturbations.

The conditions for the diffusion instability to occur in sys-

tem (17) and (18), we take small heterogeneous perturbation

following form:

u(x, y, t) = u∗ + ǫ exp((kx + ky)i + λkt), (21)

v(x, y, t) = v∗ + η exp((kx + ky)i + λkt), (22)

where ǫ and η are chosen to be small and k = (kx, ky) is

the wave number. Substituting (21)-(22) into (17) and (18),

linearizing the system around the interior equilibrium E∗, we

get the characteristic equation as follows:

|Jk − λkI2| = 0, (23)

with

Jk =

[

a11 − k2 a12

a21 a22 − δk2

]

,

where, I2 and k are second order identity matrix and wave

number respectively and

a11 = 1 − 2u∗ − αξv∗

(u∗+α)2 , a12 = − ξβ
ω

+ γ, a21 = ωαv∗

(u∗+α)2 ,

a22 = 0.

The diffusion instability conditions when at least one of (23)

the eigenvalues of the systems matrix crosses the imaginary

axis. The characteristic equation following form:

λ2
k−(a11+a22−k2(1+δ))λk+(a11−k2)(a22−δk2)−a12a21 = 0.

(24)

We obtain that a change in stability will occur when at least

one of the following two inequalities does not hold:

a11 + a22 − (1 + δ)k2 < 0, (25)

h(k2) ≡ (a11 − k2)(a22 − δk2) − a12a21 > 0, (26)

where aij is the elements of the matrix J∗. Since δ and k2 are

positive, both the inequalities always holds as a11 = tr(J∗) <
0 by the stability condition of the non-spatial steady state.

Hence in this system, the diffusion-driven instability never

occurs.

Numerical simulation is carried out for the linear stability

of the system (17)-(18) taking same parameter values as in the

previous subsection. Moreover, it is observed that the increases

of diffusivity ratio coefficient stabilizes the system (see Fig.

2).

Now, in the next two subsection, we perform numerical

simulation of the spatiotemporal system (17)-(18) evolution of

pattern with respect to the time T and also obtain the effect

of diffusion on the system for one and two dimensional cases.

A. One Dimensional Case

In this subsection, we will study of the following system

for one dimensional case.

∂u

dt
= u (1 − u) −

ξuv

(u + α)
+ γv +

∂2u

∂x2
, (27)

∂v

dt
=

ωuv

(u + α)
− βv + δ

∂2u

∂x2
, (28)
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Fig. 2. Plot of max Re(λ(k)) against k, parameter values are given in text.

u(x, 0) > 0, v(x, 0) > 0, for x ǫ [0, R] and (29)

∂u

∂x
=

∂v

∂x
= 0, (30)

The numerical solutions of the phytoplankton dynamics

(i.e., u, v) are plotted with one space coordinate and time.

Computer experiments are done in one dimension with

domain size 6000 and we checked the sensitivity of the

results to the choice of the time and space steps and their

values are chosen sufficiently small. The parameter values and

initial data: ω = 2, β = 0.8,ξ = 1,γ = 0.0001, δ = 1, h = 4,

∆t = 10−2, α = 0.3. Varying the time to the four basic

one-dimensional dynamics, namely stationary, intermittent

chaos and chaos covering (almost all) of the domain (see Fig.

3).

We shown that the numerically effect of diffusion con-

stant on the system (27)-(28) for one dimensional case .

We observed that the system is stabilized if the increases

the diffusivity coefficient. It is universal truth that diffusion

process is stabilized the system(see Fig.4).

B. Two-Dimensional Case

The numerical solutions of the phytoplankton dynamics

(17)-(18) are plotted for two dimensional (i.e.,) space x and y
coordinate with time t. We use the square domain (400×400)
for figure 5. The reaction diffusion equation is solved using

finite difference technique semi implicit in time along with

zero flux boundary condition and non-zero asymmetrical initial

condition. The parameter values are ξ = 1, α = 0.4, β = 0.6,

ω = 2.0, γ = 0.0001, δ = 0.5, h = 4, ∆t = 1/6 and
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Fig. 3. The red lines for susceptible phytoplankton, and green lines
for infected phytoplankton population density. Simulations are obtained for
different time scales and other parametric values are given in text. In figure
(a)T=5, in (b) T=800, in (c) T=2000, in (d) T=10000.
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Fig. 4. The red lines for susceptible phytoplankton, and blue lines for
infected phytoplankton population. Simulations are obtained for fixed time
T and different diffusivity constant. The other parametric values are given in
the text.

Fig. 5. Susceptible phytoplankton densities [first column] and infected
phytoplankton densities [second column] population density of the system.
Spatial patterns are obtained different time scales and other parametric values
are given in text. Plots show the population density of (a)-(b)T = 300, (c)-(d)
T = 600, (e)-(f)T = 800.

Fig. 6. Susceptible phytoplankton densities [first column] and infected
phytoplankton densities [second column] population density of the system.
Spatial patterns are obtained for fixed time T=300 and different values of
diffusivity constant. Plots show the population density of (a)-(b)δ = 5, (c)-
(d) δ = 15, (e)-(f)δ = 25.

initial condition (19)-(20). The time evolution of the system

led to the formation of spiral patterns, followed by irregular

patches covering the whole domain (see Fig. 5). The size of

these patches has been related to the characteristic length of

observed plankton patterns in the ocean.

We show the numerically effect of the diffusion coefficient

on the system (17)-(18). We observed that if the increases the

diffusion coefficient then the system is stabilized(see Fig.6).
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IV. HIGHER ORDER STABILITY ANALYSIS

In this subsection, we will determine the instability con-

dition by the higher-order spatiotemporal perturbation terms

[21]. We choose a general two non-dimensional reaction-

diffusion system. Taking the system (3)-(4) is recalled with

specific choice of parameter values. The reaction diffusion

system with two dimensional is described as follows:

ut = f(u, v) + uxx + uyy, (31)

vt = g(u, v) + δ(vxx + vyy), (32)

with no-flux boundary conditions and initial distribution of

population within 2D bounded domain. The interior equilib-

rium point E∗ for the non-spatial system corresponding to the

model (31)-(32) is a spatially homogeneous equilibrium for

the system (31)-(32). we consider E∗ is locally asymptotically

stable equilibrium for the temporal model. The stability of

temporal system for requires following two conditions:

fu + gv < 0, fugv − fvgu > 0, (33)

here, fu denotes partial derivative of f(u, v) with respect to u

evaluated at (u∗, v∗), fv stands for partial derivative of f(u, v)
with respect to v evaluated at (u∗, v∗) and so on. Taking the

spatiotemporal perturbations u(t, x, y) and v(t, x, y) on the

steady states u∗, v∗ defined by u = u∗ + n(t, x, y), v = v∗ +
p(t, x, y) and then expanding the temporal part in Taylor series

up to second order around the steady state, we find following

two expressions:

nt = fun+fvp+
fuu

2
n2 +

fvv

2
p2+fuvnp+nxx+nyy, (34)

pt = gun+gvp+
guu

2
n2+

gvv

2
p2+guvnp+δ(pxx+pyy). (35)

Now, we taking spatiotemporal perturbation in the

form n(t, x, y) = n(t)coskxxcoskyy, p(t, x, y) =
p(t)coskxxcoskyy with no-flux boundary condition leads to

the following two system of equations:

nt = fun + fvp +
fuu

2
n2 +

fvv

2
p2 + fuvnp − k2n, (36)

pt = gun + gvp +
guu

2
n2 +

gvv

2
p2 + guvnp − δk2p. (37)

It is clear from above two equations that the growth or decay

of first-order perturbation terms depends upon the second-

order perturbation terms. Further, we need the dynamical

equations for second-order perturbation terms involved in (36)-

(37). Multiplying (36) by 2u and neglecting the contribution of

third-order perturbation terms, we find the dynamical equation

for u2 as

(n2)t = 2fun2 + 2fvnp − 2k2n2, (38)

and proceeding in a similar fashion, the dynamical equations

for remaining second-order perturbations are given by

(p2)t = 2gunp + 2gvp
2 − 2k2p2, (39)

(np)t = gun2 + fvp
2 + (fu + gv)np − k2(1 + δ)np. (40)

The truncation of third- and higher-order terms in Taylor

series expansion and neglecting of third and higher-order

perturbation terms during derivation of dynamical equations

(36)-(40) leads us to a closed system of equations for

n, p, n2, p2, np. Otherwise, one cannot avoid infinite hierarchy

of dynamical equations for perturbation terms. Truncation of

higher-order terms does not affect the understanding of the role

of leading-order non-linearity. Applicability and significance

of the analysis can be justified with the perturbation terms

up to order three for the system (3)-(4) with suitable choice

of parameter values. Consideration of third- and higher-order

perturbation terms may be required for this type of analysis

use in other system. It also depends upon the non-linearity

involved. The dynamical equations (36)-(40) can be written

into a compact matrix form as follows:

dX

dt
= AX, (41)

where, X = [n, p, n2, p2, np]T and

A =













a11 fv
fuu

2
fvv

2 fuv

gu a22
guu

2
gvv

2 guv

0 0 a33 0 2fv

0 0 0 a44 2gu

0 0 gu fv a55













,

with a11 = fu − k2, a22 = gv − δk2, a33 = 2(fu − k2),
a44 = 2(gv − δk2), a55 = (fu + gv) − k2(1 + δ). Taking

solution of the system of (41) in the form X(t) ∼ eλt one can

obtain the characteristic equation for the matrix A

|A − λI5| = 0, (42)

where, λ ≡ λ(k) are the eigenvalues of A. Thus, required

instability condition demands at least one of the eigenvalues

of matrix A must have positive real part, i.e. Re(λ(k)) > 0 for

at least one rǫ(1, 2, ..., 5). Existence of at least one eigenvalue

having positive real part implies that spatiotemporal perturba-

tion diverge with the advancement of time. The complicated

structure of the matrix A prevent us to find the eigenvalues

analytically. Therefore, using numerical simulations, we find

an interval for k where at least one eigenvalues of A have

positive real part.

Now, we consider system (17)-(18) and choosing some

parameter values ξ = 1, γ = 0.0001, ω = 2.0, β = 0.6,

α = 0.4 for different values of δ and its interior equilibrium

point E∗ = (0.5714, 0.4164) is locally asymptotically stable

for the temporal model corresponding to the model (17)-(18).

We now calculate the eigenvalues of the matrix A for the

model system (17)-(18) around the steady state u∗ = 0.5714,

v∗ = 0.4164. We found that one eigenvalue having positive

real part for a range of values of k in figure 7(a, b, c), we

have plotted largest Re{λ(k)} ≡ linear obtained by solving

(23) along with largest Re{λ(k)} ≡ higher order computed

numerically for the characteristic equation (42) for a range of

wavelengths. It is clear that linear and higher order are positive

for k ǫ (0.1, 1) over the entire range. These results ensure the

existence of realistic parameter values, where the eigenvalues

obtained from linear and non linear analysis possesses negative

real part but one eigenvalue of the matrix A have positive real

part within the same range of values for k(see figure 7).
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Fig. 7. For holling type-II functional response, Maximum of Re(λ(k)) plots
for (red line) linear and (blue line) non-linear system versus k. The parametric
values are given in the text.

V. DISCUSSION AND CONCLUSION

In this paper, a phytoplankton dynamics namely, susceptible

and infected population with spatial movement have been

studied. Dynamic behavior of the steady state were studied

and also explored the existence of Hopf bifurcation. It is

established that when the half saturation period (α) of Holling-

II functional response crossed its threshold value α0, the sus-

ceptible and infected phytoplankton population start oscillating

around the endemic equilibrium (see Fig. 1 for different values

of α). In particular, we observed that the endemic equilibrium

is stable, when α < 0.5381 (Fig. 1(A)-(B)), but when α
crosses the threshold value α0 = 0.5381, the above system

exhibits Hopf-bifurcation (see Fig. 1(C, D, E, F)).

Also, we have studied the reaction diffusion model in both

one and two dimension space coordinates. For one dimensional

case, we shown that how modest changes in a single parameter

of the system time T, can lead to dramatic changes in the

qualitative dynamics of solutions(see Fig.3) and observed that

the effect of diffusion on the spatial system, if the use of

sufficient large values of diffusion constant then it can be made

stable of the spatial system(see Fig. 4).

Furthermore, the dynamics of the spatially extended system

are complicated and will depend on the system parameters, the

initial data, and also the specifics of habitat geometry. There

are situations where the local dynamics of solutions gives

us important clues to the behavior in the spatially extended

situation. For two dimensional case, numerical experiments for

different values time T and different types of initial conditions

for obtained different types of pattern (see Fig.5). Also shown

that effect of the diffusion on the spatiotemporal system for

two dimensional case, if the sufficient large diffusion constant

increases then the stabilized the system(see Fig.2, 6).

We observed that the unstable spatial system can be made

stable by increasing diffusivity coefficient to a sufficiently

large value(see Fig. 7). Also obtained the stability of the linear

and non linear system to predict the stable or not with the help

of higher-order stability analysis(see Fig.7).

Hence, the the rate of growth of susceptible phytoplank-

ton due to the dead infected phytoplankton (which become

nutrients of susceptible phytoplankton after bacterial decom-

position) is a major factor for the stability of the system.
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